\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 241, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/241\hfil Existence of bounded solutions] {Existence of bounded solutions for nonlinear hyperbolic partial differential equations} \author[T. Diagana, M. M. Mbaye \hfil EJDE-2015/241\hfilneg] {Toka Diagana, Mamadou Moustapha Mbaye} \address{Toka Diagana \newline Department of Mathematics, Howard University, 2441 6th Street N.W., Washington, DC 20059, USA} \email{tdiagana@howard.edu} \address{Mamadou Moustapha Mbaye \newline Universit\'e Gaston Berger de Saint-Louis, UFR SAT, D\'epartement de Math\'ematiques, B.P. 234, Saint-Louis, S\'en\'egal} \email{tafffmbaye@yahoo.fr} \thanks{Submitted July 4, 2015. Published September 21, 2015.} \subjclass[2010]{43A60, 34B05, 34C27, 42A75, 47D06, 35L90} \keywords{Hyperbolic partial differential equations; bounded solutions; \hfill\break\indent almost automorphic; pseudo-almost automorphic} \begin{abstract} In this article we first establish a new representation formula for bounded solutions to a class of nonlinear second-order hyperbolic partial differential equations. Next, we use of our newly-established representation formula to establish the existence of bounded solutions to these nonlinear partial differential equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Aziz and Meyers \cite{AM} established the existence, uniqueness, and continuous dependence on the initial data of periodic solutions to the class of nonlinear second-order hyperbolic partial differential equations \begin{equation}\label{LL} \begin{gathered} \frac{\partial^2 u}{\partial x \partial t} + a(t,x)\frac{\partial u}{\partial x} + b(t,x) \frac{\partial u}{\partial t} + c(t,x) u = f(t,x, u), \quad \text{in }\mathbb{R} \times [0,T],\\ u(t,0) = \theta(t), \quad \text{for all }t \in \mathbb{R}, \end{gathered} \end{equation} where $a, b, c: \mathbb{R} \times [0, T] \to \mathbb{R}$ and $f: \mathbb{R} \times [0, T] \times \mathbb{R} \to \mathbb{R}$ are $p$-periodic functions and $\theta: \mathbb{R} \to \mathbb{R}$ is a $p$-periodic continuously differentiable function. The main tool utilized by Aziz and Meyers is a representation formula presented by Picone \cite{PI}. Some years ago, Al-Islam \cite{N} used the same representation formula to study the existence and uniqueness of pseudo-almost periodic solutions to \eqref{L} under some appropriate conditions. The use of Picone's representation formula is somewhat tedious as it is expressed in terms of three functions $\alpha, \beta$, and $\gamma$, which are solutions to some other partial differential equations. The first objective of this paper consists of using operator theory tools to establish a new representation formula for bounded solutions to \eqref{LL} in the special case $\theta(t) \equiv 0$; that is, \begin{equation}\label{L} \begin{gathered} \frac{\partial^2 u}{\partial x \partial t} + a(t,x)\frac{\partial u}{\partial x} + b(t,x) \frac{\partial u}{\partial t} + c(t,x) u = f(t,x, u), \quad \text{in }\mathbb{R} \times [0, T],\\ u(t,0) = 0, \quad \text{for all }t \in \mathbb{R}. \end{gathered} \end{equation} Our second objective consists of using our newly-established representation formula to study the existence of bounded (respectively, pseudo-almost automorphic) solutions to \eqref{L} when the coefficients $a, b, c, a_x: \mathbb{R} \times [0, T] \to \mathbb{R}$ are bounded (respectively, almost automorphic) and the forcing term $f: \mathbb{R} \times [0, T] \times \mathbb{R} \to \mathbb{R}$ is bounded (respectively, pseudo-almost automorphic in $t \in \mathbb{R}$ uniformly with respect to the two other variables). One should point out that other slightly different versions of \eqref{L} have been considered in the literature. In particular, Poorkarimi and Wiener \cite{PW} studied bounded and almost periodic solutions to a slightly modified version of \eqref{L}, which in fact represents a mathematical model for the dynamics of gas absorption. However, the study of pseudo-almost automorphic solutions to \eqref{L} is an untreated original question, which constitutes the main motivation of this article. The study of periodic, almost periodic, almost automorphic, pseudo-almost periodic, weighted pseudo-almost periodic, and pseudo-almost automorphic solutions to differential differential equations constitutes one of the most relevant topics in qualitative theory of differential equations mainly due to their applications. Some contributions on pseudo-almost automorphic solutions to differential and partial differential equations have recently been made in \cite{CE, TDbook, L, LLL, LL, XJ}. Here we study the existence of bounded (respectively, pseudo-almost automorphic) solutions to \eqref{L} under some appropriate assumptions. One should point out that the case $\theta \not\equiv 0$ makes the operators involved in our study nonlinear. Such a case will be left for future investigations. The article is organized as follows: Section 2 is devoted to preliminaries and notations from operator theory as well as from the concept of pseudo-almost automorphy. In Section 3, we establish a representation formula. Section 4 is devoted to the main result. In Section 5, we give an example to illustrate our main result. \section{Preliminaries} \subsection*{Notation} Let $(\mathbb{X}, \|\cdot\|)$ and $(\mathbb{Y}, \|\cdot\|_{\mathbb{Y}})$ be Banach spaces. Let $BC(\mathbb{R} , \mathbb{X})$ (respectively, $BC(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denote the collection of all $\mathbb{X}$-valued bounded continuous functions (respectively, the class of jointly bounded continuous functions $F: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$). The space $BC(\mathbb{R}, \mathbb{X})$ equipped with its natural norm, that is, the sup norm defined by $$ \|u\|_\infty = \sup_{t \in \mathbb{R}} \|u(t)\|,$$ is a Banach space. Furthermore, $C(\mathbb{R}, \mathbb{Y})$ (respectively, $C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denotes the class of continuous functions from $\mathbb{R}$ into $\mathbb{Y}$ (respectively, the class of jointly continuous functions $F: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$). If $A$ is a linear operator upon $\mathbb{X}$, then the notations $D(A)$ and $\rho(A)$ stand respectively for the domain and the resolvent of $A$. The space $B(\mathbb{X}, \mathbb{Y})$ denotes the collection of all bounded linear operators from $\mathbb{X}$ into $\mathbb{Y}$ equipped with its natural uniform operator topology $\|\cdot\|$. We also set $B(\mathbb{Y}) = (\mathbb{Y}, \mathbb{Y})$ whose corresponding norm will be denoted $\|\cdot\|$. \subsection*{Pseudo-Almost Automorphic Functions} \begin{definition}\label{DDD} A function $f\in C(\mathbb{R},\mathbb{X})$ is said to be almost automorphic if for every sequence of real numbers $(s'_n)_{n \in \mathbb{N}}$, there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ such that $$ g(t):=\lim_{n\to\infty}f(t+s_n)$$ is well defined for each $t\in\mathbb{R}$, and $$ \lim_{n\to\infty}g(t-s_n)=f(t)$$ for each $t\in \mathbb{R}$. \end{definition} If the convergence above is uniform in $t\in \mathbb{R}$, then $f$ is almost periodic. Denote by $AA(\mathbb{X})$ the collection of such almost automorphic functions. Note that $AA(\mathbb{X})$ equipped with the sup-norm $\|\cdot\|_\infty$ is a Banach space. \begin{definition}\label{KKK} \rm A jointly continuous function $F: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ is said to be almost automorphic in $t \in \mathbb{R}$ if $t \to F(t,x)$ is almost automorphic for all $u \in K$ ($K \subset \mathbb{Y}$ being any bounded subset). Equivalently, for every sequence of real numbers $(s'_n)_{n \in \mathbb{N}}$, there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ such that $$ H(t, u):=\lim_{n\to\infty}F(t+s_n, u) $$ is well defined in $t\in\mathbb{R}$ and for each $u \in K$, and $$ \lim_{n\to\infty}H(t-s_n, u)=F(t, u)$$ for all $t\in \mathbb{R}$ and $u \in K$. The collection of such functions will be denoted by $AA(\mathbb{Y}, \mathbb{X})$. \end{definition} Define $$ PAP_0(\mathbb{R}, \mathbb{X}) := \big\{ f \in BC(\mathbb{R}, \mathbb{X}): \lim_{T \to \infty} {\frac{1}{2T}} \int_{-T}^T \| f(s)\| ds = 0\big\}. $$ Similarly, $PAP_0(\mathbb{Y}, \mathbb{X})$ will denote the collection of all bounded continuous functions $F: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ such that $$ \lim_{T \to \infty} {\frac{1}{2T}} \int_{-T}^T \| F(s, x)\| ds =0 $$ uniformly in $x \in K$, where $K \subset \mathbb{Y}$ is any bounded subset. \begin{definition}[\cite{L, LL}]\label{DEF} \rm A function $f \in BC(\mathbb{R}, \mathbb{X})$ is called pseudo-almost automorphic if it can be expressed as $f = g + \phi$, where $g \in AA(\mathbb{X})$ and $\phi \in PAP_0(\mathbb{X})$. The collection of such functions will be denoted by $PAA({\mathbb X})$. \end{definition} The functions $g$ and $\phi$ appearing in Definition \ref{DEF} are respectively called the {\it almost automorphic} and the {\it ergodic perturbation} components of $f$. \begin{definition} \rm A bounded continuous function $F: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ is said to be pseudo-almost automorphic whenever it can be expressed as $F= G + \Phi$, where $G\in AA(\mathbb{Y},\mathbb{X})$ and $\Phi \in PAP_0(\mathbb{Y}, \mathbb{X})$. The collection of such functions will be denoted by $PAA(\mathbb{Y}, \mathbb{X})$. \end{definition} \begin{theorem}[\cite{LL}] \label{MN} The space $PAA(\mathbb{X})$ equipped with the supremum norm $\|\cdot\|_\infty$ is a Banach space. \end{theorem} \begin{theorem}\label{thm2.6} % LI Suppose $F: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ belongs to $PAA(\mathbb{Y}, \mathbb{X})$; $F = G+H$, with $u \to G(t,u)$ being uniformly continuous on any bounded subset $K$ of $\mathbb{Y}$ uniformly in $t \in \mathbb{R}$. Furthermore, we suppose that there exists $L > 0$ such that $$ \|F(t,u) - F(t,v)\| \leq L \|u-v\|_{\mathbb{Y}} $$ for all $u,v \in \mathbb{Y}$ and $t \in \mathbb{R}$. Then the function defined by $h(t) = F(t, \varphi(t))$ belongs to $PAA(\mathbb{X})$ provided $\varphi \in PAA(\mathbb{Y})$. \end{theorem} \begin{theorem}[\cite{LL}] If $F: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ belongs to $PAA(\mathbb{Y}, \mathbb{X})$ and if $u \to F(t,u)$ is uniformly continuous on any bounded subset $K$ of $\mathbb{Y}$ for each $t \in \mathbb{R}$, then the function defined by $h(t) = F(t, \varphi(t))$ belongs to $PAA(\mathbb{X})$ provided $\varphi \in PAA(\mathbb{Y})$. \end{theorem} For more on pseudo-almost automorphic functions and related issues, we refer the reader to the book by Diagana \cite{TDbook}. \section{Representation formula for bounded solutions of \eqref{L}} Let $\mathcal{C}_T = C[0, T]$ be the Banach space of all continuous functions from $[0, T]$ to $\mathbb{R}$ equipped with the sup norm defined by $$ \|\varphi\|_{T} := \sup_{x \in [0, T]} |\varphi(x)| $$ for all $\varphi \in \mathcal{C}_T$. To study \eqref{L} our first task consists of using operator theory tools to establish a new representation formula. For that, if $q: [0, T] \to \mathbb{R}$ is a measurable function, we consider the linear operators $A$ and $B$ defined on $\mathcal{C}_T$ by \begin{gather*} D(A) = \big\{\varphi \in \mathcal{C}_T: \varphi_x = \frac{d\varphi}{dx} \in \mathcal{C}_T \text{ and } \varphi(0) = 0\big\}, \quad A\varphi = \frac{d\varphi}{dx}, \text{ for all } \varphi \in D(A), \\ D(B_q) = \big\{\varphi \in \mathcal{C}_T: q \varphi\in \mathcal{C}_T \big\}, \quad B_q \varphi = q \varphi. \end{gather*} Obviously, if $q \in \mathcal{C}_T$, then $D(B_q) = \mathcal{C}_T$. Moreover, using the above-mentioned operators, one can easily see that \eqref{L} can be rewritten as follows \begin{equation}\label{MM} (A + B_b) \frac{\partial u}{\partial t} + (B_a A + B_c) u = f. \end{equation} To study \eqref{MM}, we consider the differential equation \begin{equation}\label{M} L \frac{dv}{dt} + M v = g, \end{equation} where $L = A + B_\beta$ and $M =B_\alpha A + B_\gamma$ with $\alpha, \beta, \gamma: [0, T] \to \mathbb{R}$ being continuous functions. Notice that $L$ and $M$ are respectively defined by $$ D(L) = D(A) \cap D(B_\beta) = D(A) \quad\text{and} \quad Lv = \frac{dv}{dx} + \beta v , \quad \text{for all } v \in D(A) $$ and $$ D(M) = D(B_\alpha A) \cap D(B_\gamma) =D(A) \quad \text{and} \quad Mv = \alpha \frac{dv}{dx} + \gamma v , \quad \text{for all } v \in D(A). $$ The next lemma shows that \eqref{M} in fact is not a singular differential equation ($0 \in \rho(L)$), which makes our computations less tedious. \begin{lemma}\label{I} If the function $\beta: [0, T] \to \mathbb{R}$ is continuous, then the operator $L$ is invertible and its inverse $L^{-1}$ is given for all $w \in \mathcal{C}_T$ by $$ L^{-1} w(x): = \int_{0}^x K(x,y) w(y) dy, $$ where the kernel $K$ is defined by $$ K(x,y) := e^{- \int_{y}^x \beta(r) dr} $$ for all $0 \leq y \leq x \leq T$. Furthermore, if $ \beta_{\ast} : = \inf_{y \in [0, T]} \beta(y) > 0$, then $\|L^{-1}\| \leq T$. \end{lemma} \begin{proof} First of all, we need to solve the differential equation \begin{equation}\label{LI} \frac{du}{dy} + \beta u = v \end{equation} where $u \in D(A)$ and $v \in \mathcal{C}_T$. For that, multiplying both sides of \eqref{LI} by the function $ R(y) = e^{ \int_{0}^y \beta(r)dr}$ and integrating on $[0, x]$, we obtain \begin{align*} u(x) &= e^{- \int_{0}^x \beta(r)dr} \int_{0}^x e^{ \int_{0}^y \beta(r)dr} v(y) dy \\ &= \int_{0}^x K(x,y) v(y) dy \end{align*} where $K(x,y) = e^{- \int_{y}^x \beta(r) dr}$ for all $0 \leq y \leq x \leq T$. Therefore, $$ L^{-1} v(x): = \int_{0}^x K(x,y) v(y) dy $$ for all $v \in \mathcal{C}_T$. Now, using the fact $K(x,y) \leq e^{-\beta_{\ast} (x-y)} \leq 1$ for $0 \leq y \leq x \leq T$, one can easily see that \[ \|L^{-1} v(x) \| \leq \|v\|_T \int_0^x |K(x,y)| dy \leq T \|v\|_T \] and hence $\|L^{-1}\| \leq T$. \end{proof} Let $\mathbb{Z}_T$ (respectively $\mathbb{Y}_T$) be the Banach space of all bounded (jointly) continuous functions from $\mathbb{R} \times [0, T]$ to $\mathbb{R}$ (respectively, from $[0, T] \times \mathbb{R}$ to $\mathbb{R}$) equipped with the sup norm defined for each $u \in \mathbb{Z}_T$ (respectively, $u \in \mathbb{Y}_T$) by $$ \|u\|_{T, \infty} := \sup_{t \in \mathbb{R}, x \in [0, T]} | u(t,x)|. $$ Moreover, we set \begin{gather*} K_t(x,y) := e^{- \int_y^x b (t,r) dr}, \\ H(t,x) = \frac{\partial a}{\partial x} (t,x) + a(t,x) b(t,x) - c(t,x) \end{gather*} for all $t \in \mathbb{R}$ and $x, y \in [0, T]$. Let us point out that the quantity $H$ given above is also known as the Euler's invariant, see for instance Ibragimov \cite{I}. The proof of the main results of this paper requires the following assumptions: \begin{itemize} \item[(H1)] There exists $\delta > 0$ such that $a(t,x) \geq \delta$ for all $t \in \mathbb{R}$ and $x \in [0, T]$. \item[(H2)] The function $f: \mathbb{R} \times [0, T] \times \mathbb{R} \to \mathbb{R}$ is Lipschitz in the third variable uniformly in the first and second variables; that is, there exists $C > 0$ such that \begin{equation}\label{LIP} \big| f(t,x, u) - f(t,x,v)\big| \leq C |u - v| \end{equation} for all $u, v \in \mathbb{R}$ uniformly in $t \in \mathbb{R}$ and $x \in [0, T]$. \item[(H3)] The function $f = g + h \in PAA(\mathbb{Y}_T, \mathbb{R})$ ($g$ being the almost automorphic component while $h$ represents the ergodic part). Moreover, $g: \mathbb{Y}_T \to \mathbb{R}$, $(x, u) \to g(t,x,u)$ is uniformly continuous on bounded subset of $\mathbb{Y}_T$ uniformly in $t \in \mathbb{R}$. \item[(H4)] The functions $ (t,x) \to a(t,x), \frac{\partial a}{\partial x} (t,x), b(t,x), c(t,x)$ are jointly continuous and almost automorphic in $t \in \mathbb{R}$ uniformly in $x \in [0, T]$. \end{itemize} Under (H4), we set \begin{gather*} C_\infty := \sup_{t \in \mathbb{R}, x \in [0, T]} |H(t,x)|= \sup_{t\in \mathbb{R}, x \in [0, T]} \Big| \frac{\partial a}{\partial x} (t,x) + a(t,x) b(t,x) -c(t,x)\Big|, \\ B_\infty := \sup_{s\in \mathbb{R}, x \in [0, T]} \Big (\int_0^x e^{- \int_y^x b(s, r)dr} dy\Big). \end{gather*} We have the following representation formula for bounded solutions of \eqref{L}. \begin{theorem}\label{R} Assume {\rm (H1)--(H2)} and the functions $a, b, c: \mathbb{R} \times [0, T] \to \mathbb{R}$ are jointly bounded continuous. Then \eqref{L} has a unique bounded continuous solution $\widetilde u$ whenever $C +C_\infty<\delta B_{\infty}^{-1}$. Furthermore, $\widetilde u$ is given by the new representation formula \begin{equation}\label{RE} \widetilde u(t,x) = \int_{-\infty}^t e^{ - \int_s^t a(\sigma,x) d\sigma} G \widetilde u (s, x) ds \end{equation} where \begin{align*} G \widetilde u(t, x) &= \int_0^x \Big[\frac{\partial a}{\partial y} (t,y) + a(t,y) b(t,y) - c(t,y)\Big] K_t(x, y) \widetilde u(t,y) dy \\ &\quad+ \int_0^x K_t (x, y) f(t, y, \widetilde u(t,y)) dy. \end{align*} \end{theorem} \begin{proof} Replacing $\alpha$ by $a$, $\beta$ by $b$, and $\gamma$ by $c$, in the previous setting and using the fact $L^{-1}$ exists (Lemma \ref{I}), it follows that the solvability of \eqref{L} is equivalent to that of the following first-order partial differential equation \begin{equation}\label{X} \frac{\partial u}{\partial t} = - L^{-1} M u + L^{-1} f. \end{equation} Notice that the operator $L^{-1} M$ can be explicitly computed. Indeed, for each $v \in D(A)$, we have \begin{align*} L^{-1} M v(x) &= L^{-1} \Big(a \frac{dv}{dx} + c v\Big) (x)\\ &= \int_0^x K_t(x,y) a(t,y) \frac{dv}{dy} dy + \int_{0}^x K_t(x,y) c(t,y) v(y) dy \\ &= \Big[ a(t,y) K_t(x,y) v(y) \Big]_{0}^x - \int_0^x \frac{\partial}{\partial y} [a(t,y) K_t (x,y)] v(y) dy \\ &\quad+ \int_{0}^x K_t(x,y) c(t,y) v(y) dy \\ &= a(t,x) v(x) - \int_0^x \Big[\frac{\partial a}{\partial y}(t,y) + a(t,y) b(t,y) - c(t,y) \Big] K_t(x,y) v(y) dy. \end{align*} Using the expression of $L^{-1} M$, one can easily see that \eqref{X} is equivalent to \begin{equation}\label{XX} \frac{\partial u}{\partial t} = - a(t,x) u + Gu(t,x) \end{equation} where \begin{align*} Gu(t, x) &= \int_0^x \Big[\frac{\partial a}{\partial y} (t,y) + a(t,y) b(t,y) - c(t,y)\Big] K_t(x, y) u(t,y) dy \\ &\quad + \int_0^x K_t (x, y) f(t, y, u(t,y)) dy. \end{align*} Clearly, bounded solutions to \eqref{XX} are given by $$ u(t,x) = \int_{-\infty}^t \exp\Big\{ - \int_s^t a(\sigma,x) d\sigma \Big\} G u (s, x) ds. $$ Setting $$ \Gamma u (t,x) : = \int_{-\infty}^t e^{ - \int_s^t a(\sigma,x) d\sigma} G u (s, x) ds, $$ one can easily see that $\Gamma$ maps $\mathbb{Z}_T$ into itself. In addition, it is easy to see that $$ \| \Gamma u - \Gamma v\|_{T, \infty} \leq B_\infty \delta^{-1} \big(C + C_\infty\big) \| u - v\|_{T, \infty}. $$ Therefore, the nonlinear integral operator $\Gamma$ has a unique fixed point $\widetilde u \in \mathbb{Z}_T$ whenever $C + C_\infty < \delta B_{\infty}^{-1}$. In this event, the function $\widetilde u$ is the only bounded continuous solution to \eqref{L}. \end{proof} \section{Existence of pseudo-almost automorphic solutions} \begin{theorem}\label{O} Assume {\rm (H1)--(H4)} and that $ b_\ast:= \inf_{t \in \mathbb{R}, x \in [0, T]} b(t,x) > 0$. Then \eqref{L} has a unique pseudo almost automorphic solution $\widetilde u$ whenever $C+\mathcal{C}_\infty < \delta B_{\infty}^{-1}$. \end{theorem} \begin{proof} Let $u = u_1 + u_2 \in PAA(\mathbb{Z}_T)$ and let $f = g + h \in PAA(\mathbb{Y}_T, \mathbb{R})$ where $u_1$ and $g$ are the almost automorphic components while $u_2$ and $h$ represent the ergodic part. Consequently, $G$ can be rewritten as $G u = G_1 u + G_2 u$, where \begin{align*} G_1 u(t,x) &= \int_0^x \Big[\frac{\partial a}{\partial y} (t,y) + a(t,y) b(t,y) - c(t,y)\Big] K_t(x, y) u_1(t,y) dy \\ &\quad + \int_0^x K_t (x, y) g(t, y, u(t,y)) dy \end{align*} and \begin{align*} G_2 u(t,x) &= \int_0^x \Big[\frac{\partial a}{\partial y} (t,y) + a(t,y) b(t,y) - c(t,y)\Big] K_t(x, y) u_2(t,y) dy \\ &\quad + \int_0^x K_t (x, y) h(t, y, u(t,y)) dy \end{align*} Since $t \to b(t,x)$ is almost automorphic uniformly in $x \in [0, T]$, then for every sequence of real numbers $(s'_n)_{n \in \mathbb{N}}$ there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ such that $$ b_1(t,r):=\lim_{n\to\infty}b(t+s_n, r) $$ is well defined for each $t\in\mathbb{R}$ uniformly in $r \in [0, T]$, and $$ b(t,r) = \lim_{n\to\infty}b_1(t-s_n, r) $$ for each $t\in \mathbb{R}$ uniformly in $r \in [0, T]$. Now $$ -\int_{y}^x b_1(t,r)dr =-\int_{y}^x \lim_{n\to\infty}b(t+s_n, r) dr = -\lim_{n \to \infty} \int_{y}^x b(t+s_n, r) dr $$ is well defined for each $t\in\mathbb{R}$ uniformly in $x,y \in [0, T]$, and $$ -\int_{y}^x b(t,r) dr= -\int_{y}^x \lim_{n\to\infty}b_1(t-s_n, r)dr = -\lim_{n\to\infty}\int_{y}^x b_1(t-s_n, r)dr $$ for each $t\in \mathbb{R}$ uniformly in $x,y \in [0, T]$. Using the continuity of the exponential function it follows that $$ K_{t}^1(x,y):=\lim_{n\to\infty} K_{t+s_n} (x,y) $$ is well defined for each $t\in\mathbb{R}$ uniformly in $x, y \in [0, T]$, and $$ K_{t}(x,y) = \lim_{n\to\infty} K_{t-s_n}^1 (x,y) $$ for each $t\in \mathbb{R}$ uniformly in $x,y \in [0, T]$, and hence $t \to K_t (x,y)$ is almost automorphic uniformly in $x, y \in [0, T]$. Clearly, $t \to H(t,y) K_t(x, y)u_1(t,y)$ and $t \to K_t (x, y) g(t, y, u(t,y))$ are almost automorphic functions for all $x, y \in [0, T]$ as products of almost automorphic functions. It easily follows that $t \to G_1 u(t,x)$ is almost automorphic uniformly in $x \in [0, T]$. Now \begin{align*} &\frac{1}{2r} \int_{-r}^r |G_2 u(t,x)| dt \\ &= \frac{1}{2r} \int_{-r}^r \Big|\int_0^x H(t,y)K_t(x, y) u_2(t,y) + \int_0^x K_t (x, y) h(t, y, u(t,y)) dy \Big| dt \\ &\leq \frac{C_\infty e^{Tb_{\ast}}}{2r}\int_{-r}^r \int_0^x |u_2(t,y))| \,dy\,dt + \frac{e^{Tb_{\ast}}}{2r} \int_{-r}^r \int_0^x |h(t, y, u(t,y))| \,dy\,dt \\ &\leq C_\infty e^{Tb_{\ast}}\int_{0}^x \Big(\frac{1}{2r} \int_{-r}^r |u_2(t,y))| dt\Big) dy + e^{Tb_{\ast}}\int_{0}^x \Big(\frac{1}{2r} \int_{-r}^r |h(t, y, u(t,y))| dt\Big) dy, \end{align*} and thus $$ \lim_{T \to \infty} \frac{1}{2r} \int_{-r}^r |G_2 u(t,x)| dt= 0 $$ uniformly in $x \in [0, T]$. Therefore $t \to Gu(t,x) \in PAA(\mathbb{Z}_T)$ uniformly in $x \in [0, T]$. Now $$ \Gamma u (t,x) : = \int_{-\infty}^t e^{ - \int_s^t a(\sigma,x) d\sigma} G u (s, x) ds = \Gamma_1 u(t,x) + \Gamma_2 u(t,x), $$ where $$ \Gamma_j u (t,x) : = \int_{-\infty}^t e^{ - \int_s^t a(\sigma,x) d\sigma} G_j u (s, x) ds, \quad j = 1, 2. $$ Since $s \to e^{ - \int_s^t a(\sigma,x) d\sigma} G_1 u (s, x)$ is almost automorphic and that $$ \| \Gamma_1 u\|_{T, \infty} \leq \| G_1 u\|_{T, \infty}\delta^{-1} < \infty $$ it follows that $t \mapsto \Gamma_1 u(t,x)$ is almost automorphic uniformly in $x \in [0, T]$. Now \begin{align*} \frac{1}{2r} \int_{-r}^r |\Gamma_2 u(t,x)| dt &\leq \frac{1}{2r} \int_{-r}^r \int_{-\infty}^t e^{-\delta (t-s)} |G_2 u(s,x)| \,ds\,dt \\ &= \int_{0}^\infty e^{-\delta \sigma}\Big(\frac{1}{2r} \int_{-r}^r |G_2 u(t-\sigma, x))| dt\Big) d\sigma. \end{align*} Since $PAP_0(\mathbb{Z}_T)$ is translation invariant and $G_2 \in PAP_0(\mathbb{Z}_T)$ it follows that $$ \lim_{r \to \infty} \frac{1}{2r} \int_{-r}^r |G_2 u(t-\sigma, x))| dt = 0 $$ for each $\sigma \in \mathbb{R}$, uniformly in $x \in [0, T]$. Using the Lebesgue's Dominated Convergence Theorem it follows that $$ \lim_{r \to \infty} \frac{1}{2r} \int_{-r}^r |\Gamma_2 u(t,x)| dt = 0 $$ uniformly in $x \in [0, T]$. In view of the above, it follows that $t \to \Gamma u(t,x)$ is pseudo-almost automorphic uniformly in $x \in [0, T]$. Therefore, $\Gamma$ maps $PAA(\mathbb{Z}_T)$ into itself. Moreover, from Theorem \ref{R}, we have $$ \| \Gamma u - \Gamma v \|_{T, \infty} \leq B_\infty (C + C_\infty)\delta^{-1} \| u - v \|_{T, \infty}. $$ Therefore $\Gamma$ has a unique fixed point $\widetilde u \in \mathbb{Z}_T$ whenever $C+C_\infty < \delta B_{\infty}^{-1}$. In this event, the function $\widetilde u$ is the only pseudo-almost automorphic solution to \eqref{L}. \end{proof} \section{An example} Fix $\delta_0 > 0$. Consider the system of nonlinear hyperbolic partial differential equations \eqref{L} in which \begin{gather*} a(t,x)=\delta_0(2 + \sin t)(2+\cos \frac{x}{\delta_0}), \quad b(t,x)=2 - \sin t, \\ c(t,x)= \delta_0(4 - \sin^{2} t)(2+\cos \frac{x}{\delta_0}), \quad f(t,x,u)=\frac{1}{2}\big(u \sin t+ e^{-|t|}\sin u\big) \end{gather*} for all $t \in \mathbb{R}$, $x \in [0, 1]$, and $u \in \mathbb{R}$. For all $u, v \in \mathbb{R}$, $t \in \mathbb{R}$ and $x \in [0, 1]$, we have \begin{gather*} | f(t,x, u) - f(t,x,v)| =\frac{1}{2}|(u - v) \sin t+ e^{-|t|}(\sin u - \sin v)| \leq |u - v|, \\ a(t,x)=\delta_0(2 + \sin t) (2 + \cos \frac{x}{\delta_0})\geq \delta_0>0, \\ b_\ast:= \inf_{t \in \mathbb{R}, x \in [0, 1]} b(t,x) = \inf_{t \in \mathbb{R}, x \in [0, 1]} (2 - \sin t)=1 >0. \end{gather*} Clearly, assumptions (H1)--(H4) are satisfied with $\delta=\delta_0$ and $C=1$. From \begin{align*} \int_0^x e^{- \int_y^x b(s, r)dr} dy &=\int_0^x e^{- \int_y^x(2 - \sin s)dr} dy\\ &=\int_0^x e^{- (2 - \sin s)( x - y)} dy\\ &= \frac{1 - e^{ x(\sin s - 2)}}{2 - \sin s}, \end{align*} we deduce that \begin{equation*} B_\infty = \sup_{s \in \mathbb{R},x \in [0,1]} \Big(\frac{1 - e^{ x(\sin s - 2)}}{2 - \sin s}\Big)\leq 1 - e^{-3}. \end{equation*} Similarly, \begin{align*} C_\infty=\sup_{t \in \mathbb{R},x \in [0,1]}|H(t,x)| =\sup_{t \in \mathbb{R},x \in [0,1]} \Big|-&(2 + \sin t)\sin \frac{x}{\delta_0}\Big|\leq 3. \end{align*} In view of the above, $B_{\infty}(C + C_\infty)\leq 4(1 - e^{-3})$. Therefore, using Theorem \ref{O}, it follows that \eqref{L} with the above-mentioned coefficients has a unique pseudo-almost automorphic solution whenever $\delta_0$ is chosen so $\delta_0> 4(1 - e^{-3})$. \begin{thebibliography}{00} \bibitem{N} N. Al-Islam; Pseudo-almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations. {\it PhD Thesis}, Howard University, 2009. \bibitem{AM} A. K. Aziz, A. M. Meyers; Periodic solutions of hyperbolic partial differential equations in a strip. {\it Trans. Amer. Math. Soc.} \textbf{146} (1969), pp. 167-178. \bibitem{CE} P. Cieutat, K. Ezzinbi; Existence, uniqueness and attractiveness of a pseudo-almost automorphic solutions for some dissipative differential equations in Banach spaces. {J. Math. Anal. Appl.} \textbf{354} (2009), no. 2, 494-506. \bibitem{TDbook} T. Diagana; \emph{Almost automorphic type and almost periodic type functions in abstract spaces.} Springer, 2013, New York. \bibitem{I} N. H. Ibragimov; Extension of Euler's method to parabolic equations, {\it Commun. Nonlinear. Sci. Numer. Simulat.} {\it 14} (2009), p. 1157-1168. \bibitem{L} J. Liang, J. Zhang, T-J. Xiao; Composition of pseudo-almost automorphic and asymptotically almost automorphic functions. {\it J. Math. Anal. Appl.} \textbf{340} (2008), no. 1493-1499. \bibitem{LLL} J. Liang, G. M. N'Gu\'er\'ekata, T-J. Xiao, J. Zhang; Some properties of pseudo-almost automorphic functions and applications to abstract differential equations. {\it Nonlinear Anal.} \textbf{70} (2009), no. 7, 2731-2735. \bibitem{PI} M. Picone; Sulle equazioni alle derivate parziali del second' ordine del tipo iperbolico in due variabili independenti. {\it Rend. Circ. Mat. Palermo} \textbf{30} (1910), pp. 349--376. \bibitem{PW} H. Poorkarimi, J. Wiener; Almost periodic solutions of nonlinear hyperbolic equations with time delay. {\it 16th Conference on Applied Mathematics, Univ. of Central Oklahoma, Electron. J. Diff. Eqns., Conf.} \textbf{07} (2001), pp. 99-102. \bibitem{LL} T-J. Xiao, J. Liang, J. Zhang; Pseudo-almost automorphic solutions to semilinear differential equations in Banach spaces. {\it Semigroup Forum} \textbf{76} (2008), no. 3, 518--524. \bibitem{XJ} Ti-J. Xiao, X-X. Zhu, J. Liang; Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications. {\it Nonlinear Anal.} \textbf{70} (2009), no. 11, 4079-4085. \end{thebibliography} \end{document}