\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 242, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/242\hfil Existence of positive periodic solutions] {Existence of positive periodic solutions for neutral Li\'enard differential equations with a singularity} \author[F. Kong, S. Lu, Z. Liang \hfil EJDE-2015/242\hfilneg] {Fanchao Kong, Shiping Lu, Zaitao Liang} \address{Fanchao Kong \newline College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China} \email{fanchaokong88@yahoo.com} \address{Shiping Lu \newline College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China} \email{lushiping26@sohu.com} \address{Zaitao Liang \newline Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China} \email{liangzaitao@sina.cn} \thanks{Submitted May 6, 2015. Published September 21, 2015.} \subjclass[2010]{34B16, 34B20, 34B24} \keywords{Positive periodic solution; neutral differential equation; \hfill\break\indent deviating argument; singular; Mawhin's continuation} \begin{abstract} By applying Mawhin's continuation theorem, we study the existence of positive periodic solutions for a second-order neutral functional differential equation $$ ((x(t)-cx(t-\sigma)))''+f(x(t)) x'(t)+g(t,x(t-\delta))=e(t), $$ where $g$ has a strong singularity at $x=0$ and satisfies a small force condition at $ x=\infty$, which is different from the corresponding ones known in the literature. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In recent years, the existence of periodic solutions for the second order differential equations with a singularity have been studied in many literature. See \cite{1993-Fonda-p1294--1311}-\cite{2014-Wang-p227--234} and the references therein. Wang \cite{2014-Wang-p227--234} studied the Li\'enard equation with a singularity and a deviating argument \begin{equation} x''(t)+f(x(t))x'(t)+g(t,x(t-\sigma))=0, \label{eSP} \end{equation} where $0\leq\sigma0. \] Assume that \[ \varphi(t)=\lim_{x\to+\infty}\sup\frac{g(t,x)}{x}, \] exists uniformly for a. e. $t\in[0,T]$, i.e., for any $\varepsilon>0$, there is $g_\varepsilon\in L^2(0,T)$ such that \[ g(t,x)\leq(\varphi(t)+\varepsilon)x+g_\varepsilon, \] for all $x>0$ and a. e. $t\in[0,T]$. Assume that $\varphi\in C( {\mathbb{R},\mathbb{R}})$ and $\varphi(t+T)=\varphi(t)$, $t\in {\mathbb{R}}$. Wang established the following theorem. \begin{theorem} \label{thm1.1} Assume that the following conditions are satisfied: \begin{itemize} \item[(H1)] (Balance) There exist constants $00$ for all $x>D_2$. \item[(H3)] (Decomposition) $g(t,x)=g_0(x)+g_1(t,x)$, where $g_0\in C((0,+\infty), \mathbb{R})$ and $g_1:[0,T]\times[0,+\infty)\to \mathbb{R}$ is an $L^2$-Carath\'eodory function, i. e., $g_1$ is measurable with respect to the first variable, continuous with respect to the second one, and for any $b>0$ there is $h_b\in L^2((0,T);[0,+\infty))$ such that $|g_1(t,x)|\leq h_b(t)$ for a.e. $t\in [0,T]$ and all $x\in [0,b]$. \item[(H4)] (Strong force at $x=0$) $\int_{0}^{1} g_0(x)dx=-\infty$. \item[(H5)] (Small force at $x=\infty$) $$\| \varphi\|_\infty<(\frac{\sqrt{\pi}}{T})^2. $$ \end{itemize} Then \eqref{eSP} has at least one positive $T$-periodic solution. \end{theorem} Meanwhile, the problem of the existence of periodic solutions to the neutral functional differential equation was studied in many papers, see \cite{1995-Zhang-p378--392}-\cite{2004-Lu-p433--448} and the references therein. For example, in \cite{2006-Liu-p121--132}, Liu and Huang studied the following neutral functional differential equation \[ (u(t)+Bu(t-\tau))'=g_1(t,u(t))+g_2(u(t-\tau_1))+p(t). \] And in in \cite{2004-Lu-p433--448}, Lu and Ge studied the existence of periodic solutions for a kind of second-order neutral functional differential equation of the form \begin{align*} &\frac{d^2}{dt^2}\Big(u(t)-\sum^{n}_{j=1} c_{j}u(t-r_{j})\Big)\\ &=f(u(t))u'(t)+\alpha(t)g(u(t)) +\sum^{n}_{j=1} \beta_{j}g(u(t-\gamma_{j}))+p(t), \end{align*} where $f$, $g\in C(\mathbb{R}; \mathbb{R})$, $a(t)$, $p(t)$, $\beta_j(t)$, $\gamma_j(t)$ $(j= 1, 2, \dots , n)$ are continuous periodic functions defined on $\mathbb{R}$ with period $T > 0$, $c_j$, $r_j\in \mathbb{R}$ are constants with $r_j > 0$ $(j = 1, 2, \dots , n)$. By using the continuation theorem of coincidence degree theory and some new analysis techniques, the authors obtained some new results on the existence of periodic solution. However, to the best of our knowledge, the studying of positive periodic solutions for the neutral functional differential equation with a singularity is relatively infrequent. As we know, in order to establish the existence of positive periodic solutions, a key condition is that the greatest lower bound must be estimated because of the singularity. However, it is difficult to verify the greatest lower bound, especially for the neutral functional differential equations with a singularity. Besides, because of the singularity, the third condition of Mawhin's continuation theorem is not easy to verify. Inspired by the above facts, in this paper, we consider the following neutral Li\'enard differential equation with a singularity and a deviating argument \begin{equation} ((x(t)-cx(t-\sigma)))''+f(x(t)) x'(t)+g(t,x(t-\delta))=e(t), \label{1-2} \end{equation} where $c$ is a constant with $|c|<1$, $0\leq\sigma,~\delta0$ for all $x>D_2$, where $\overline{g}(x)=\frac{1}{T}\int_{0}^{T} g(t,x)dt$, $x>0$. \end{itemize} \item[(H2)] $g(t,x )=g_1(t,x )+g_0(x )$, where $g_1: [0,T]\times(0,+\infty)\to \mathbb{R}$ is a continuous function and \begin{itemize} \item[(1)] there exist positive constants $m_0$ and $m_1$ such that \[ g(t,x)\leq m_0x +m_1,\quad\text{for all }(t,x)\in [0,T]\times(0,+\infty); \] \item[(2)] $\int_{0}^{1} g_0(x)dx=-\infty$. \end{itemize} \end{itemize} \section{Main results} \begin{theorem}\label{thm3.1} Suppose that the conditions (H1)-(H2) hold, $| c|<1$ and \[ \frac{ | c| (1+| c|)+m_0T^2}{(1-| c|)^2}<1, \] then the \eqref{1-2} has at least one positive $T$-periodic solution. \end{theorem} \begin{proof} Consider the operator equation \[ Lx=\lambda Nx,\quad \lambda\in(0,1). \] Let $\Omega_1=\{x\in\overline{\Omega}, Lx=\lambda Nx ,\lambda\in(0,1)\}$. If $x\in \Omega_1$, then $x$ must satisfy \begin{equation} ((Au)'(t))'+\lambda f(u(t))u'(t)+\lambda g(t,u(t-\delta))=\lambda e(t). \label{3-1} \end{equation} Integrating \eqref{3-1} on the interval $[0,T]$, we have \begin{equation} \int_{0}^{T}g(t, u(t-\delta ))dt=0. \label{3-2} \end{equation} It follows from (H1)(1) that there exist positive constants $D_1$, $D_2$ and $\tau\in[0,T]$ such that \begin{equation} D_1\leq u(\tau)\leq D_2. \label{3-3} \end{equation} Then, we obtain \begin{equation}\label{3-4} \| u\|_0 =\max_{t\in [0,T]}|u(t)| \leq\max_{t\in [0,T]}|u(\tau)+\int_{\tau}^{t}u'(s)ds| \leq D_2+ \int_{0}^{T}|u'(s)| ds. \end{equation} Multiplying the both sides of \eqref{3-1} by $u(t)$ and integrating on the interval $[0,T]$, we obtain \begin{equation} \begin{aligned} &\int_{0}^{T}( (Au)'(t) )'u(t)dt\\ &=- \lambda \int_{0}^{T}f(u(t))u'(t)u(t)dt -\lambda \int_{0}^{T}g(t,u(t-\delta))u(t)dt +\lambda \int_{0}^{T}e(t)u(t)dt\\ &=-\lambda \int_{0}^{T}g(t,u(t-\delta))u(t)dt +\lambda \int_{0}^{T}e(t)u(t)dt. \end{aligned} \label{3-5} \end{equation} Furthermore, \begin{equation} \begin{aligned} \int_{0}^{T}( (Au)'(t) )'u(t)dt &=-\int_{0}^{T} (Au)'(t) u'(t)dt\\ &=- \int_{0}^{T} (Au)'(t) [u'(t)-c u'(t-\sigma)+c u'(t-\sigma)]dt\\ &=- \int_{0}^{T} (Au)'(t) [(Au')(t)+c u'(t-\sigma)]dt\\ &=-\int_{0}^{T}|(Au')(t)|^2dt-\int_{0}^{T}c u'(t-\sigma) (Au)'(t) dt. \end{aligned} \label{3-6} \end{equation} Substituting \eqref{3-6} in \eqref{3-5}, we obtain \begin{align*} &\int_{0}^{T}|(Au')(t)|^2dt\\ &=-\int_{0}^{T}c u'(t-\sigma) (Au)'(t) dt +\lambda \int_{0}^{T}g(t,u(t-\delta))u(t)dt -\lambda \int_{0}^{T}e(t)u(t)dt \\ &\leq | c| \int_{0}^{T}|u'(t-\sigma)|| (Au)'(t) |dt +\int_{0}^{T}|g(t,u(t-\delta))||u(t)|dt + \int_{0}^{T}|e(t)||u(t)|dt. \end{align*} It follows from (H2)(1) that \begin{equation} \begin{aligned} \int_{0}^{T}|(Au')(t)|^2dt &\leq | c| \int_{0}^{T}|u'(t-\sigma)|| (Au)'(t) |dt +m_0\int_{0}^{T}|u(t)|^{2}dt\\ &\quad +m_1\int_{0}^{T} |u(t)|dt+ \int_{0}^{T}|e(t)||u(t)|dt. \end{aligned} \label{3-7} \end{equation} Moreover, by applying H\"{o}lder inequality and Minkowski inequality, we can have \begin{align} &\int_{0}^{T}|u'(t-\sigma)|| (Au)'(t) |dt \nonumber \\ &\leq \Big(\int_{0}^{T} | (Au)'(t) |^2dt\Big)^{1/2} \Big(\int_{0}^{T} |u'(t-\sigma)|^2dt\Big)^{1/2} \nonumber\\ &=\Big(\int_{0}^{T} |(Au)'(t)|^2dt\Big)^{1/2} \Big(\int_{0}^{T} |u'(t)|^2dt\Big)^{1/2} \nonumber\\ &=\Big[\Big(\int_{0}^{T} |u'(t)-cu'(t-\sigma)|^2dt\Big)^{1/2}\Big] \Big(\int_{0}^{T} |u'(t)|^2dt\Big)^{1/2} \nonumber\\ &\leq \Big[\Big(\int_{0}^{T} |u'(t)|^2dt\Big)^{1/2} +\Big(\int_{0}^{T}|c u'(t-\sigma)|^2dt\Big)^{1/2}\Big] \Big(\int_{0}^{T} |u'(t)|^2dt\Big)^{1/2} \nonumber\\ &\leq\Big[\Big(\int_{0}^{T} |u'(t)|^2dt\Big)^{1/2} +| c|\Big(\int_{0}^{T}| u'(t)|^2dt\Big)^{1/2}\Big] \Big(\int_{0}^{T} |u'(t)|^2dt\Big)^{1/2} \nonumber\\ &=(1+| c|) \int_{0}^{T}|u'(t)|^2 dt. \label{3-8} \end{align} Substituting \eqref{3-8} into \eqref{3-7} and by \eqref{3-4}, we can obtain \begin{equation} \begin{aligned} \int_{0}^{T}|(Au')(t)|^2dt & \leq | c| (1+| c|) \int_{0}^{T}|u'(t)|^2dt +m_0T\| u\|_0^{2} \\ &\quad +(m_1+\| e\|_0)T\| u\|_0\\ &\leq | c| (1+| c|) \int_{0}^{T}|u'(t)|^2dt +m_0T(D_2+\int_{0}^{T}|u'(s)|ds)^{2} \\ &\quad +(m_1+\| e\|_0)T(D_2+\int_{0}^{T}|u'(s)|ds). \end{aligned} \label{3-9} \end{equation} By applying the third part of Lemma \eqref{lem2.1}, we have \begin{equation} \int_{0}^{T}|u'(t)|^2dt=\int_{0}^{T}|(A^{-1}A)u'(t)|^2dt \leq\frac{1}{(1-| c|)^2}\int_{0}^{T}|(Au')(t)|^2dt. \label{3-10} \end{equation} Substituting \eqref{3-10} into \eqref{3-9} and by applying H\"{o}lder inequality, we obtain \begin{align*} &\int_{0}^{T}|(Au')(t)|^2dt\\ &\leq [ | c| (1+| c|)+m_0T^2] \int_{0}^{T}|u'(t)|^2dt\\ &\quad + [2m_0D_2+m_1+\| e\|_0]T\sqrt{T}\Big( \int_{0}^{T}|u'(t)|^2 dt\Big)^{1/2} +m_0TD^2_2+(m_1+\| e\|_0)TD_2\\ &\leq \frac{ | c| (1+| c|)+m_0T^2}{(1-| c|)^2}\int_{0}^{T}|(Au')(t)|^2dt\\ &\quad +\frac{[2m_0D_2+m_1+\| e\|_0]T\sqrt{T}}{1-| c|} \Big(\int_{0}^{T}|(Au')(t)|^2dt\Big)^{1/2} +m_0TD^2_2 \\ &\quad +(m_1+\| e\|_0)TD_2. \end{align*} It follows from $\frac{ | c| (1+| c|)+m_0T^2}{(1-| c|)^2}<1$ that there exist a positive constant $M$ such that \[ \int_{0}^{T}|(Au')(t)|^2dt\leq M, \] which combining with \eqref{3-10} gives \begin{equation} \int_{0}^{T}|u'(t)|^2dt \leq\frac{M}{(1-| c|)^2} . \label{3-11} \end{equation} Then by \eqref{3-4}, we obtain \begin{equation} \| u\|_0\leq D_2+ \frac{\sqrt{TM}}{ 1-| c| }:=M_1 .\label{3-12} \end{equation} Since $[Au](t)$ is $T$-periodic, there exists $t_0\in [0,T]$ such that $[Au'](t_0)=0$. Hence, we have that, for $t\in[0,T]$, \begin{equation} \begin{aligned} |[Au'](t)| &=|[Au'](t_0)+\int_{t_0}^{t}([Au'](s))'ds|\\ &\leq \lambda \int_{0}^{T}|f(u(t))||u'(t)|dt +\lambda \int_{0}^{T}|g(t,u(t-\delta))|dt. \end{aligned} \label{3-13} \end{equation} Set $F_{M_1}=\max_{|u|\leq M_1}|f(u)|$, then by \eqref{3-11} we obtain \begin{equation} \int_{0}^{T}|f(u(t))||u'(t)|dt \leq F_{M_1}\int_{0}^{T}|u'(t)|dt \leq \frac{F_{M_1} \sqrt{TM}}{ 1-| c| }.\label{3-14} \end{equation} Write $$ I_{+}=\{t\in[0,T]:g(t, u(t-\delta ))\geq0\};\quad I_{-}=\{t\in[0,T]:g(t, u(t-\delta ))\leq0\}. $$ Then it follows from \eqref{3-2} and (H2)(1) that \begin{equation} \begin{aligned} \int_{0}^{T}| g(t,u(t-\delta))|dt&=\int_{I_{+}}g(t,u(t-\delta))dt-\int_{I_{-}}g(t,u(t-\delta))dt\\&=2\int_{I_{+}}g(t,u(t-\delta))dt\\ &\leq2m_0\int_{0}^{T} u (t-\delta)dt+2 \int_{0}^{T}m_1dt\\ &\leq 2m_0T \| u\| _0+2Tm_1. \end{aligned} \label{3-15} \end{equation} According to \eqref{3-14} and \eqref{3-15}, we have \begin{align*} \| Au'\|_0 &\leq \lambda \int_{0}^{T}|f(u(t))||u'(t)|dt +\lambda \int_{0}^{T}|g(t,u(t-\delta))|dt\\ &\leq \lambda\Big(\frac{F_{M_1} \sqrt{TM}}{ 1-| c| }+2m_0T M_1+2Tm_1\Big), \end{align*} which combining with the first part of Lemma \ref{lem2.1}, we see that \begin{align*} | u'(t)|&=|[A^{-1}Au'](t)|\leq\frac{\| Au'\|_0}{|1-|c||}\\ &\leq \frac{ \frac{F_{M_1} \sqrt{TM}}{ 1-| c| }+2m_0T M_1+2Tm_1}{|1-|c||}, \end{align*} i. e., \begin{equation} \| u'\|_0\leq \frac{ \frac{F_{M_1} \sqrt{TM}}{ 1-| c| }+2m_0T M_1+2Tm_1}{|1-|c||} :=A_3. \label{3-16} \end{equation} On the other hand, it follows from \eqref{3-1} and (H2) that \begin{equation} \begin{aligned} ((Au)'(t+\delta))' &=-\lambda f(u(t+\delta))u'(t+\delta)-\lambda [g_1(t+\delta, u(t))+g_0(u(t))]\\ &\quad +\lambda e(t+\delta). \end{aligned} \label{3-17} \end{equation} Multiplying both sides of \eqref{3-17} by $u'(t)$, we have \begin{equation} \begin{aligned} ((Au)'(t+\delta))'u'(t) &=-\lambda f(u(t+\delta ))u'(t+\delta )u'(t)\\ &\quad -\lambda [g_1(t+\delta, u(t))+g_0(u(t))] u'(t) +\lambda e(t+\delta )u'(t). \end{aligned} \label{3-18} \end{equation} Let $\tau\in [0,T]$ be as in \eqref{3-3}. For any $t\in[\tau,T]$, integrating \eqref{3-18} on the interval $[\tau,T]$, we have \begin{align*} \lambda\int_{u(\tau)}^{u(t)}g_0(u)du&=\lambda\int_{\tau}^{t}g_0(u(t))u'(t)dt\\ &=-\int_{\tau}^{t}((Au)'(t+\delta))'u'(t)dt -\lambda \int_{\tau}^{t}f(u(t+\delta ))u'(t+\delta )u'(t)dt\\ &\quad -\lambda\int_{\tau}^{t}g_1(t+\delta,u(t))u'(t)dt +\lambda\int_{\tau}^{t} e(t +\delta)u'(t)dt. \end{align*} Set $G_{M_1}=\max_{|u|\leq M_1}|g_1(t,u)|$, then from the inequality above, we obtain \begin{align*} &\lambda|\int_{u(\tau)}^{u(t)}g_0(u)du|\\ &=\lambda|\int_{\tau}^{t}g_0(u(t))u'(t)dt|\\ &\leq \int_{0}^{T}|((Au)'(t+\delta))'u'(t)|dt +\lambda\int_{0}^{T}|f(u(t+\delta ))||u'(t+\delta )||u'(t)|dt \\ &\quad +\lambda\int_{0}^{T}|g_1(t+\delta,u(t))||u'(t)|dt +\lambda\int_{0}^{T} |e(t +\delta )||u'(t)|dt\\ &\leq \| u'\|_0 \int_{0}^{T}|((Au)'(t+\delta))' |dt +\lambda F_{M_1} \| u'\|^2_0T +\lambda G_{M_1}\| u'\|_0T +\lambda \| e\|_0\| u'\|_0T, \end{align*} i. e., \begin{equation} \begin{aligned} \lambda |\int_{u(\tau)}^{u(t)}g_0(u)du| &\leq \| u'\|_0 \int_{0}^{T}|((Au)'(t+\delta))' |dt +\lambda F_{M_1} \| u'\|^2_0T \\ &\quad +\lambda G_{M_1}\| u'\|_0T +\lambda \| e\|_0\| u'\|_0T. \end{aligned} \label{3-19} \end{equation} Moreover, \begin{align*} \int_{0}^{T}|((Au)'(t+\delta))' |dt &= \int_{0}^{T}|((Au)'(t ))' |dt\\ & \leq \lambda \Big( \int_{0}^{T}|f(u(t))||u'(t)|dt + \int_{0}^{T}|g(t,u(t-\delta))|dt\Big), \end{align*} which combining with \eqref{3-14} and \eqref{3-15} yields \begin{equation} \begin{aligned} \int_{0}^{T}|((Au)'(t ))' |dt & \leq \lambda \Big( \int_{0}^{T}|f(u(t))||u'(t)|dt + \int_{0}^{T}|g(t,u(t-\delta))|dt\Big)\\ &\leq\lambda \Big(\frac{F_{M_1} \sqrt{TM}}{ 1-| c| }+2m_0T M_1+2Tm_1\Big). \end{aligned} \label{3-20} \end{equation} Substituting \eqref{3-20} into \eqref{3-19} and combining with \eqref{3-16}, obtain \begin{align*} |\int_{u(\tau)}^{u(t)}g_0(u)du| &\leq A_3 \Big(\frac{F_{M_1} \sqrt{TM}}{ 1-| c| }+2m_0T M_1+2Tm_1\Big) + F_{M_1} A_3^2T \\ &\quad + G_{M_1}A_3T +\| e\|_0A_3T<+\infty . \end{align*} According to (H2)(2), we can see that there exists a constant $M_2>0$ such that, for $t\in[\tau,T]$, \begin{equation} u(t)\geq M_2. \label{3-21} \end{equation} For the case $t\in[0,\tau]$, we can handle similarly. Let us define \begin{gather*} 00$, then we have \begin{equation} \mu_0 x_0-\frac{\mu_0(A_1+A_2)}{2} +(1-\mu_0) \overline{g} (x_0) >\mu_0(x_0-\frac{A_1+A_2}{2})>0. \label{3-27} \end{equation} Combining with \eqref{3-26} and \eqref{3-27}, we can see that $H(\mu_0,x_0)\neq0$, which contradicts the assumption. Therefore $H(\mu,x)$ is a homotopic mapping and $x^\top H(\mu,x)\neq0$, for all $(x,\mu)\in (\partial\Omega\cap \ker L )\times[0,1]$, then \begin{align*} \deg({\rm JQN},\Omega\cap {\rm \ker L},0) &=\deg(H(0,x),\Omega\cap{\rm \ker L},0)\\ &=\deg(H(1,x),\Omega\cap{\rm \ker L},0)\\ &=\deg(Kx,\Omega\cap{\rm \ker L},0)\\ &=\sum_{x\in K^{-1}(0)} {\rm sgn}|K'(x)|\\ &=1\neq0. \end{align*} Thus, condition (3) of Lemma \ref{lem2.2} is also satisfied. Therefore, by applying Lemma \ref{lem2.1}, we can conclude that \eqref{1-2} has at least one positive $T$-periodic solution. \end{proof} \section{Example} In this section, we provide an example to illustrate results from the previous sections. \begin{example} \label{examp4.1} \rm Consider the neutral Li\'enard differential equation with a singularity and a deviating argument, \begin{equation} \begin{aligned} &( (u(t)-0.1u(t-\pi))'))'+\Big(\frac{u^2(t)}{3+u(t)}+9\Big)u'(t)\\ &+\frac{1}{2}(1+\frac{1}{2}\sin8t)u(t-\delta) -\frac{1}{u (t-\delta)}= \sin 8t. \end{aligned} \label{4-1} \end{equation} Corresponding to Theorem \ref{thm3.1} and \eqref{1-2}, we have \begin{gather*} f(u(t))=\frac{u^2(t)}{3+u (t)}+9,\quad e(t)= \sin8t,\\ g(t,u(t-\delta))= \frac{1}{2}\Big(1+\frac{1}{2}\sin8t \Big) u (t-\delta)-\frac{1}{u (t-\delta)}. \end{gather*} Then, we choose $$ \sigma=\pi,\quad c =0.1,\quad T=\frac{\pi}{4}, \quad m_0=\frac{3}{4},\quad D_1=2,\quad D_2=3. $$ Thus, $| c|<1$ and the conditions (H1) and (H2) are satisfied. Meanwhile, we have \[ \frac{ | c| (1+| c|)+m_0T^2}{(1-| c|)^2}\approx 0.706 <1. \] Hence, by applying Theorem \ref{thm3.1}, we can see that \eqref{4-1} has at least one positive $\frac{\pi}{4}$-periodic solution. \end{example} \begin{remark} \rm Since only a few papers consider positive periodic solutions for the neutral Li\'enard equation. One can easily see that all the results in \cite{1993-Fonda-p1294--1311}-\cite{1977-Hale-p} and the references therein are not applicable to \eqref{4-1} for obtaining positive periodic solutions with period $\frac{\pi}{4}$. This implies that the results in this paper are essentially new. \end{remark} \subsection*{Acknowledgments} The research was supported by the the National Natural Science Foundation of China (Grant No.11271197). The authors would like to express their gratitude to Professor Giovanni Monica Bisci for his valuable guidance, and also to the reviewers for their valuable comments and constructive suggestions, which help us improve this article. \begin{thebibliography}{99} \bibitem{1993-Fonda-p1294--1311} A. Fonda, R. Man\'{a}sevich, F. Zanolin; \emph{Subharmonic solutions for some second order differential equations with singularities}, SIAM J. Math. Anal. 24 (1993) 1294--1311. \bibitem{1977-Gaines-p} R. Gaines, J. Mawhin; \emph{Coincidence Degree and Nonlinear Differential Equations}, Springer Verlag, Berlin, 1977. \bibitem{2011-Hakl-p7078--7093} R. Hakl, P. Torres, M. Zamora; \emph{Periodic solutions to singular second order differential equations: the repulsive case}, Nonlinear Anal. TMA. 74 (2011) 7078--7093. \bibitem{1977-Hale-p} J. Hale; \emph{Theory of Functional Differential Equations}, Springer, New York, 1977. \bibitem{1988- Kiguradze-p2340--2417} I. Kiguradze, B. Shekhter; \emph{Singular boundary value problems for ordinary second-order differential equations}, J. Sov. Math. 43(2) (1988) 2340--2417. \bibitem{1987-Lazer-p109--114} A. Lazer, S. Solimini; \emph{On periodic solutions of nonlinear differential equations with singularities}, Proc. Amer. Math. Soc. 88 (1987) 109--114. \bibitem{2006-Liu-p121--132} B. Liu, L. Huang; \emph{Existence and uniqueness of periodic solutions for a kind of first order neutral functional differential equation}, J. Math. Anal. Appl. 322 (2006) 121--132. \bibitem{2008-Li-p3866--3876} X. Li, Z. Zhang; \emph{Periodic solutions for second order differential equations with a singular nonlinearity}, Nonlinear Anal. TMA. 69 (2008) 3866--3876. \bibitem{2003-Lu-p1285--1306} S. Lu, W. Ge; \emph{On the existence of periodic solutions for neutral functional differential equation}, Nonlinear Anal. TMA. 54 (2003) 1285--1306. \bibitem{2003-Lu-p195--209} S. Lu, W. Ge; \emph{Periodic solutions for a kind of second order differential equations with multiple deviating arguments}, Appl. Math. Comput. 146 (1) (2003) 195--209. \bibitem{2004-Lu-p433--448} S. Lu, W. Ge; \emph{Existence of periodic solutions for a kind of second-order neutral functional differential equation}, Appl. Math. Comput. 157 (2004) 433--448. \bibitem{2003-Torres-p643--662} P. Torres; \emph{Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem}, J. Differential Equations. 190 (2003) 643--662. \bibitem{2004-Wang-p319--331} Z. Wang; \emph{Periodic solutions of the second order differential equations with singularities}, Nonlinear Anal. TMA. 58 (2004) 319--331. \bibitem{2012-Wang-p279--307} Z. Wang, T. Ma; \emph{Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities}, Nonlinearity. 25 (2012) 279--307. \bibitem{2014-Wang-p227--234} Z. Wang; \emph{Periodic solutions of Li\'enard equation with a singularity and a deviating argument}, Nonlinear Anal. Real World Appl. 16 (2014) 227--234. \bibitem{1995-Zhang-p378--392} M. Zhang; \emph{Periodic solutions to linear and quasilinear neutral functional differential equation}, J. Math. Anal. Appl. 189 (1995) 378--392. \bibitem{1996-Zhang-p254--269} M. Zhang; \emph{Periodic solutions of Li\'enard equations with singular forces of repulsive type}, J. Math. Anal. Appl. 203 (1996) 254--269. \end{thebibliography} \end{document}