\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 256, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/256\hfil Controllability of integro-differential systems] {Controllability of neutral stochastic integro-differential systems with \\ impulsive effects} \author[A. Benchaabane \hfil EJDE-2015/256\hfilneg] {Abbes Benchaabane} \address{Abbes Benchaabane \newline Laboratoire LAMED, 8 May 1945 University, BP401, Guelma 24000, Algeria} \email{abbesbenchaabane@gmail.com} \thanks{Submitted June 15, 2014. Published October 2, 2015.} \subjclass[2010]{93B05, 93E03, 37C25} \keywords{Complete controllability; fixed point theorem; \hfill\break\indent stochastic neutral impulsive systems} \begin{abstract} This article concerns the complete controllability for nonlinear neutral impulsive stochastic integro-differential system in finite dimensional spaces. Sufficient conditions ensuring the complete controllability are formulated and proved under the natural assumption that the associated linear control system is completely controllable. The results are obtained by using the Banach fixed point theorem. A numerical example is provided to illustrate our technique. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} The problem of controllability is one of the fundamental concept in mathematical control theory and engineering. The problem of controllability is to show the existence of a control function, which steers dynamical control systems from its initial state to the final state, where the initial and final states may vary over the entire space. The controllability of nonlinear deterministic systems in a finite dimensional space has been extensively studied, \cite{balachandran1987controllability,klamka2000schauder}. Stochastic differential equations have been considered extensively through discussion in the finite dimensional spaces. As a matter of fact, there exist broad literature on the related to the topic and it has played an important role in many ways such as option pricing, forecast of the growth of population, etc., and as an applications which cover the generalizations of stochastic differential equations arising in the fields such as electromagnetic theory, population dynamics, and heat conduction in material with memory and stochastic differential equations are obtained by including random fluctuations in ordinary differential equations which have been deduced from phenomenological or physical laws. Random differential and integral equations play an important role in characterizing numerous social, physical, biological and engineering problems. For more details reader may refer \cite{bharucha1972random,mao2007stochastic,oksendal2003stochastic} and reference therein. For a dynamic system the simplest continuous stochastic perturbation is naturally considered to be a Brownian motion (BM). In general, a continuous stochastic perturbation will be modeled as some stochastic integral with respect to the (BM). However, the (BM) has the strange property that even though its trajectory is continuous in $t$, it is not differentiable for all $t$ . So for a stochastic integral with respect to (BM) one has to use a different approach, Ito approach is used to define it (see \cite{situ2005brownian,peszat2007stochastic} for details). Controllability of non-linear stochastic systems in finite-dimensional spaces has been investigated by many authors. Klamka and Socha \cite{klamka1977some} derived sufficient conditions for the stochastic controllability of linear and nonlinear systems using a Lyapunov technique. Mahmudov and Zorlu \cite{mahmudov2005controllability} derived sufficient conditions for complete and approximate controllability of semilinear stochastic systems with non-Lipschitz coefficients via Picard-type iterations. Balachandran et al. \cite{balachandran2007controllability,balachandran2008controllability} studied the controllability of semilinear stochastic integrodifferential systems using the Banach fixed point theorem. The theory of impulsive differential equations has provided a natural framework for mathematical modeling of many real world phenomena, namely in control, biological and medical domains \cite{yang2001impulsive,bainov1993impulsive,balachandran2009existence}. In these models, the processes are characterized by the fact that they undergo abrupt changes of state at certain moments of time between intervals of continuous evolution. The presence of impulses implies that the trajectories of the system do not necessarily preserve the basic properties of the non-impulsive dynamical systems. To this end the theory of impulsive differential systems has emerged as an important area of investigation in applied sciences \cite{lakshmikantham1989theory}. Yang, Xu and Xiang \cite{yang2006exponential} established the exponential stability of non-linear impulsive stochastic differential equations with delays. More recently, Liu and Liao \cite{liu2007existence} studied the existence, uniqueness and stability of stochastic impulsive systems using Lyapunov-like functions. Many of the physical systems may also contain some information about the derivative of the state component and such systems are called neutral systems. Therefore, the investigation of stochastic impulsive neutral differential equations attracts great attention, especially as regards to controllability \cite{sivasundaram2008controllability,xu2007exponential}. In this article, we consider the impulsive neutral semilinear stochastic integrodifferential system \begin{equation} \begin{gathered} \begin{aligned} &d\{ x(t)-G(t,x(t),g(\eta x(t))\}\\ & =A(t)x(t)dt+B(t)u(t)dt +F_1\left( t,x(t),f_{1,1}(\eta x(t)),f_{1,2} (\delta x(t)),f_{1,3}(\xi x(t))\right) dt \\ &\quad +F_2\left( t,x(t),f_{2,1}(\eta x(t)),f_{2,2}(\delta x(t)),f_{2,3}(\xi x(t))\right) dw(t), \end{aligned}\\ t\in [ 0,T] ,\quad t\neq t_k, \\ \Delta x(t_k)=I_k(x(t_k^{-})),\quad t=t_k,\; k=1,2,\dots,r, \\ x(0)=x_0\in \mathbb{R}^n, \end{gathered} \label{eq1} \end{equation} where, for $i=1,2$: \begin{gather*} f_{i,1}(\eta x(t))=\int_0^{t}f_{i,1}(t,s,x(s))ds, \quad f_{i,2}(\delta x(t))=\int_0^{T}f_{i,2}(t,s,x(s))ds, \\ g(\eta x(t))=\int_0^{t}g(t,s,x(s))ds, \quad f_{i,3}(\xi x(t))=\int_0^{t}f_{i,3}(t,s,x(s))dw(s). \end{gather*} Here $A(t)$ and $B(t)$ are continuous matrices of dimensions $n\times n$, and $n\times m$ respectively \begin{gather*} F_1:[ 0,T] \times \mathbb{R}^n\times \mathbb{R}^n\times \mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}^n, \\ F_2:[ 0,T] \times \mathbb{R}^n\times \mathbb{R}^n\times \mathbb{R}^n\times \mathbb{R}^n\to R^{n\times n}, \\ G:[ 0,T] \times \mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}^n, \quad f_{i,1},f_{i,2}:[ 0,T] \times [ 0,T] \times \mathbb{R}^n\to \mathbb{R}^n, \\ f_{i,3}:[ 0,T] \times [ 0,T] \times \mathbb{R}^n\to R^{n\times n}, \quad g:[ 0,T] \times [ 0,T] \times \mathbb{R}^n\to \mathbb{R}^n. \end{gather*} $I_k\in C(\mathbb{R}^n,\mathbb{R}^n)$, $u(t)$ is a feedback control and $w$ is a $n$-dimensional standard (BM). Furthermore, $0=t_00$ is \begin{equation*} \mathcal{R}_{t}(x_0)=\{ x(t,x_0,u):u\in U_{ad}\} , \end{equation*} where $x(t,x_0,u)$ is the solution of \eqref{eq1} corresponding to $ x_0\in \mathbb{R}^n$ and $u(.)\in U_{ad}$. \end{itemize} \begin{definition} \label{def1} \rm System \eqref{eq1} is completely controllable on $[0,T]$ if \begin{equation*} \mathcal{R}_T(x_0)=L_2(\Omega ,\mathcal{F}_T,\mathbb{R}^n\mathbf{),} \end{equation*} that is, if all the points in $L_2(\Omega ,\mathcal{F}_T,\mathbb{R}^n)$ can be reached from the point $x_0$ at time $T$. See Example \eqref{x1} for Motivated application. \end{definition} \section{Controllability} In this section we derive controllability conditions for the non-linear stochastic system \eqref{eq1} using the contraction mapping principle. We impose the following conditions on data of the problem \begin{itemize} \item[(H1)] The functions $F_i$, $f_{i,j}$, $G$, $g$, $i=1,2$, $j=1,3$ satisfies the Lipschitz condition: there exist constants $L_1$, $N_1$, $K_1$, $C_1$, $q_k>0$ for $x_h$, $y_h$, $v_h$, $z_h\in \mathbb{R}^n$, $h=1,2$ and $0\leq s\leq t\leq T$ such that \begin{gather*} \begin{aligned} &\|F_i(t,x_1,y_1,v_1,z_1)-F_i(t,x_2,y_2,v_2,z_2)\|^2 \\ &\leq L_1\left( \| x_1-x_2\| ^2+\| y_1-y_2\| ^2+\| v_1-v_2\| ^2+\| z_1-z_2\| ^2\right), \end{aligned} \\ \| G(t,x_1,y_1)-G(t,x_2,y_2)\| ^2\leq N_1\left( \| x_1-x_2\| ^2+\| y_1-y_2\| ^2\right) , \\ \| f_{i,j}(t,s,x_1(s))-f_{i,j}(t,s,x_2(s))\| ^2\leq K_1\| x_1-x_2\| ^2, \\ \| g(t,s,x_1(s))-g(t,s,x_2(s))\| ^2\leq C_1\| x_1-x_2\| ^2, \\ \| I_k(x)-I_k(y)\| ^2\leq q_k\| x-y\| ^2,\quad k\in \{ 1,\dots,r\} . \end{gather*} \item[(H2)] The functions $F_i$, $f_{i,j}$, $G$, $g$, $i=1,2$, $j=1,3$ are continuous and there are constants $L_2$, $N_2$, $K_2$, $C_2$, $d_k>0$ for $x, y, v, z\in \mathbb{R}^n$ and $0\leq t\leq T$ such that \begin{gather*} \| F_i(t,x,y,v,z)\| ^2\leq L_2\left( 1+\| x\| ^2+\| y\| ^2+\| v\|^2+\| z\| ^2\right) , \\ \| G(t,x,y)\| ^2\leq N_2\left( 1+\|x\| ^2+\| y\| ^2\right) , \\ \| f_{i,j}(t,s,x(s))\| ^2\leq K_2\left( 1+\|x\| ^2\right) , \\ \| g(t,s,x)\| ^2\leq C_2\left( 1+\|x\| ^2\right) , \\ \| I_k(x)\| ^2\leq d_k\left( 1+\|x\| ^2\right) ,\quad \ k\in \{ 1,\dots,r\} . \end{gather*} \item[(H3)] The linear system \eqref{eq0} is completely controllable. \end{itemize} Now for our convenience, let us introduce the following notation: \begin{gather*} l_1=\max \{ \| \phi (t)\| ^2,\; t\in [0,T]\} ,\quad l_2=\max \{ \| A(t)\| ^2,\; t\in [ 0,T]\} , \\ M=\max \{ \| \Gamma _{s}^{T}\| ^2,\; s\in [0,T]\} . \end{gather*} The following lemma will play an important role in the proofs of our main results (see \cite{oksendal2003stochastic}). \begin{lemma}[Ito isometry] \label{lemmeizo} Let $\Psi :J\times \Omega \to \mathbb{R}^n$ be measurable and $\mathcal{F}_{t}$-adapted mapping and such that $\mathbf{E} \int_0^{T}\| \Psi (s,\omega )\| ^2ds<\infty $. Then \begin{equation*} \mathbf{E}\| \int_0^{t}\Psi (s)dw(s)\| ^2 =\mathbf{E} \Big( \int_0^{t}\| \Psi (s)\| ^2ds\Big) ,\quad \text{for }t\in [ 0,T] \end{equation*} \end{lemma} \begin{lemma}[\cite{mahmudov2003controllability}]\label{lemme1} For every $z\in L_2(\Omega ,\mathcal{F}_T,\mathbb{R}^n)$ \begin{itemize} \item $\mathbf{E}\| \Pi _0^{t}z\| ^2\leq M\mathbf{E}\| z\| ^2$. \item Assume (H3) holds, then there exist $l_{3}>0$ such that \begin{equation*} \mathbf{E}\| \mathbf{(}\Pi _0^{T})^{-1}\| ^2\leq l_{3}. \end{equation*} \end{itemize} \end{lemma} We define the operator $V$ from $\mathbf{H}_2$ to $\mathbf{H}_2$ as follows: \begin{align*} (Vx)(t) &=(\widehat{G}x)(t)+\int_0^{t}A\phi (t-s)(\widehat{G} x)(s)ds+\int_0^{t}\phi (t-s)(\widehat{F}_1x)(s)ds \\ &\quad +\int_0^{t}\phi (t-s)(\widehat{F}_2x)(s)dw(s)+\sum_{00$ such that for $x,y\in \mathbf{H}_2$, we have \begin{gather} \mathbf{E}\| (Vx)(t)-(Vy)(t)\| ^2\leq M_1\Big( \sup_{s\in [ 0,T] }\mathbf{E}\| x(s)-y(s)\|^2\Big) , \label{ini2} \\ \mathbf{E}\| (Vx)(t)\| ^2\leq M_2\Big( 1+T\sup_{s\in [ 0,T] }\mathbf{E}\| x(s)\| ^2\Big) . \label{ini3} \end{gather} \end{lemma} \begin{proof} First, we prove inequality \eqref{ini2}, since \eqref{ini3} can be established in a similar way. For $i=1,2$, let $x, y\in \mathbf{H}_2$. It follows from condition (H1), Holder inequality and Ito isometry that \begin{align*} &\| (\widehat{F}_ix)(t)-(\widehat{F}_iy)(t)\| ^2\\ &\leq L_1\Big( \| x(t))-y(t))\| ^2+\| f_{i,1}(\eta x(t))-f_{i,1}(\eta y(t))\| ^2 \\ &\quad +\| f_{i,2}(\delta x(t))-f_{i,2}(\delta y(t))\| ^2+\| f_{i,3}(\xi x(t))-f_{i,3}(\xi y(t))\| _{Q}^2\Big) , \\ &\leq L_1(1+2T^2K_1+TK_1)\sup_{s\in [ 0,T] }\| x(s)-y(s)\| ^2, \end{align*} from which it follows that \[ \mathbf{E}\Big( \int_0^{t}\| (\widehat{F}_ix)(s)-(\widehat{F} _iy)(s)\| ^2ds\Big) \leq L_1T(1+2T^2K_1+TK_1)\sup_{s\in [ 0,T] }\mathbf{E} \| x(s)-y(s)\| ^2. \] We have \begin{align*} \| (\widehat{G}x)(t)-(\widehat{G}y)(t)\| ^2 &\leq N_1\Big( \| x(t)-y(t)\| ^2+\| g(\eta x(t))-g(\eta y(t))\| ^2\Big) , \\ &\leq N_1(1+T^2C_1)\Big( \sup_{s\in [ 0,T] }\|x(s)-y(s)\| ^2\Big) , \end{align*} Then we obtain \begin{equation} \mathbf{E}\Big( \int_0^{t}\| (\widehat{G}x)(s)-(\widehat{G} y)(s)\| ^2ds\Big) \leq N_1T(1+T^2C_1)\Big( \sup_{s\in [ 0,T] }\mathbf{E}\| x(s)-y(s)\| ^2\Big) . \end{equation} It follows from the above inequality, Holder inequality and Ito isometry that \begin{align*} &\mathbf{E}\| (Vx)(t)-(Vy)(t)\| ^2\\ &\leq 5\mathbf{E} \| \int_0^{t}A\phi (t-s)[ (\widehat{G}x)(s)-(\widehat{G}y)(s) ] ds\| ^2 \\ &\quad +5\mathbf{E}\| \int_0^{t}\phi (t-s)[ (\widehat{F}_1x)(s)-( \widehat{F}_1y)(s)] ds\| ^2 \\ &\quad +5\mathbf{E}\| \int_0^{t}\phi (t-s)[ (\widehat{F}_2x)(s)-( \widehat{F}_2y)(s)] dw(s)\| ^2 \\ &\quad +5\mathbf{E}\| \sum_{00,\quad\text{for some }T>0. \end{align*} Hence, the stochastic system \eqref{eq1} is completely controllable on $ [ 0,T] $. \end{example} \begin{thebibliography}{00} \bibitem{balachandran1987controllability} K. Balachandran, J. P. Dauer; \newblock Controllability of nonlinear systems via fixed-point theorems. \newblock {\em Journal of optimization theory and applications}, 53(3):345--352, 1987. \bibitem{klamka2000schauder} J. Klamka; \newblock Schauder's fixed-point theorem in nonlinear controllability problems. \newblock {\em Control and Cybernetics}, 29(1):153--166, 2000. \bibitem{bharucha1972random} Albert T. Bharucha-Reid; \newblock {\em Random integral equations}. \newblock Elsevier, 1972. \bibitem{mao2007stochastic} Xuerong Mao; \newblock {\em Stochastic differential equations and applications}. \newblock Elsevier, 2007. \bibitem{oksendal2003stochastic} Bernt {\O}ksendal; \newblock {\em Stochastic differential equations}. \newblock Springer, 2003. \bibitem{situ2005brownian} Rong Situ; \newblock Brownian motion, stochastic integral and ito's formula. \newblock {\em Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering}, pages 39--74, 2005. \bibitem{peszat2007stochastic} Szymon Peszat, Jerzy Zabczyk; \newblock {\em Stochastic partial differential equations with L{\'e}vy noise: An evolution equation approach}, volume 113. \newblock Cambridge University Press, 2007. \bibitem{klamka1977some} J. Klamka L. Socha. \newblock Some remarks about stochastic controllability. \newblock {\em Automatic Control, IEEE Transactions on}, 22(5):880--881, 1977. \bibitem{mahmudov2005controllability} N. I. Mahmudov, S. Zorlu; \newblock Controllability of semilinear stochastic systems. \newblock {\em International Journal of Control}, 78(13):997--1004, 2005. \bibitem{balachandran2007controllability} K. Balachandran, S. Karthikeyan; \newblock Controllability of stochastic integrodifferential systems. \newblock {\em International Journal of Control}, 80(3):486--491, 2007. \bibitem{balachandran2008controllability} K. Balachandran, S. Karthikeyan; \newblock Controllability of nonlinear it{\^o} type stochastic integrodifferential systems. \newblock {\em Journal of the Franklin Institute}, 345(4):382--391, 2008. \bibitem{yang2001impulsive} Tao Yang; \newblock {\em Impulsive control theory}, volume 272. \newblock Springer, 2001. \bibitem{bainov1993impulsive} Drumi Dimitrov Bainov, Pavel S. Simeonov; \newblock {\em Impulsive differential equations: periodic solutions and applications}, volume~66. \newblock CRC Press, 1993. \bibitem{balachandran2009existence} Krishnan Balachandran, F. Paul Samuel; \newblock Existence of solutions for quasilinear delay integrodifferential equations with nonlocal conditions. \newblock {\em Electronic Journal of Differential Equations}, 2009(06):1--7, 2009. \bibitem{lakshmikantham1989theory} Vangipuram Lakshmikantham, Ba{\u\i}; \newblock {\em Theory of impulsive differential equations}. \bibitem{yang2006exponential} Zhiguo Yang, Daoyi Xu, Li Xiang; \newblock Exponential p-stability of impulsive stochastic differential equations with delays. \newblock {\em Physics Letters A}, 359(2):129--137, 2006. \bibitem{liu2007existence} Bin Liu, Xinzhi Liu, Xiaoxin Liao; \newblock Existence and uniqueness and stability of solutions for stochastic impulsive systems. \newblock {\em Journal of Systems Science and Complexity}, 20(1):149--158, 2007. \bibitem{sivasundaram2008controllability} S. Sivasundaram. Josaphat Uvah; \newblock Controllability of impulsive hybrid integro-differential systems. \newblock {\em Nonlinear Analysis: Hybrid Systems}, 2(4):1003--1009, 2008. \bibitem{xu2007exponential} Daoyi Xu, Zhiguo Yang, Zhichun Yang; \newblock Exponential stability of nonlinear impulsive neutral differential equations with delays. \newblock {\em Nonlinear Analysis: Theory, Methods \& Applications}, 67(5):1426--1439, 2007. \bibitem{sakthivel2009controllability} R. Sakthivel, N. I. Mahmudov, Sang-Gu Lee; \newblock Controllability of non-linear impulsive stochastic systems. \newblock {\em International Journal of Control}, 82(5):801--807, 2009. \bibitem{karthikeyan2009controllability} S. Karthikeyan, K. Balachandran; \newblock Controllability of nonlinear stochastic neutral impulsive systems. \newblock {\em Nonlinear Analysis: Hybrid Systems}, 3(3):266--276, 2009. \bibitem{zabczyk1981controllability} Jerzy Zabczyk; \newblock Controllability of stochastic linear systems. \newblock {\em Systems \& Control Letters}, 1(1):25--31, 1981. \bibitem{ehrhardt1982controllability} M. Ehrhardt, W. Kliemann; \newblock Controllability of linear stochastic systems. \newblock {\em Systems \& Control Letters}, 2(3):145--153, 1982. \bibitem{mahmudov2001controllability} Nazim I. Mahmudov; \newblock Controllability of linear stochastic systems. \newblock {\em Automatic Control, IEEE Transactions on}, 46(5):724--731, 2001. \bibitem{mahmudov2003controllability} N. I. Mahmudov, S. Zorlu; \newblock Controllability of non-linear stochastic systems. \newblock {\em International Journal of Control}, 76(2):95--104, 2003. \bibitem{murge1986explosion} M. G. Murge, B. G. Pachpatte; \newblock Explosion and asymptotic behavior of nonlinear ito type stochastic integrodifferential equations. \newblock {\em Kodai mathematical journal}, 9(1):1--18, 1986. \end{thebibliography} \end{document}