\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2015 (2015), No. 257, pp. 1--11.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2015 Texas State University.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2015/257\hfil BVPs with an integral constraint]
{Boundary value problems with an integral constraint}
\author[E. M. Mangino, E. Pascali \hfil EJDE-2015/257\hfilneg]
{Elisabetta M. Mangino, Eduardo Pascali}
\address{Elisabetta M. Mangino \newline
Dipartimento di Matematica e Fisica ``E. De Giorgi''\\
Universit\`a del Salento\\
I-73100 Lecce, Italy}
\email{elisabetta.mangino@unisalento.it}
\address{Eduardo Pascali\\
Dipartimento di Matematica e Fisica ``E.De Giorgi''\\
Universit\`a del Salento\\
I-73100 Lecce, Italy}
\email{eduardo.pascali@unisalento.it}
\thanks{Submitted April 13, 2015. Published October 2, 2015.}
\subjclass[2010]{34B15}
\keywords{Second order ODE; boundary condition; integral condition}
\begin{abstract}
We show the existence of solutions for a second-order ordinary differential
equation coupled with a boundary-value condition and an integral condition.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{corollary}[theorem]{Corollary}
\allowdisplaybreaks
\section{Introduction and preliminaries}
Ordinary differential equations are usually associated with further conditions,
such as prescribed initial or boundary values, periodicity etc.
(see e.g. \cite{A, PVS}). Apart from the previous ones, other classes of
problems where ordinary differential equations are coupled with more
elaborate conditions have been studied (see e.g. \cite{C, N,S, W, Z, Z1}
and the references quoted in the survey \cite{M}).
The aim in these cases is usually to get existence and uniqueness results
from the assigned conditions.
In the present note we investigate a problem in which a general
ordinary differential equation of the second order is coupled with a boundary
quasi-linearity condition and an integral condition. More precisely
we consider the problem
\begin{gather}
y''(x)=f(x, y(x), y'(x))\quad a\leq x\leq b \label{1a}\\
\alpha y(a) + \beta y(b)=\gamma, \label{1b}\\
\int_a^b y'(t)^2 dt=\delta,\label{1c}
\end{gather}
where $-\infty0$ and $f:[a,b]\times\mathbb{R}^2\to \mathbb{R}$ is a continuous
function such that
\begin{itemize}
\item[(H1)] There exist $\sigma_1, \sigma_2\in\mathbb{R}$ such that
$0<\sigma_1\leq f(x,u,v)\leq \sigma_2$
for all $(x,u,v)\in [a,b]\times\mathbb{R}^2$;
\item[(H2)] there exists $L_f>0$ such that for all
$x\in [a,b]$ and all $(u_1,v_1), (u_2,v_2) \in \mathbb{R}^2$, we have
\[
|f(x,u_1,v_1)-f(x,u_2,v_2)| \leq L_f(|u_1-u_2| + |v_1-v_2|).
\]
\end{itemize}
We will prove that, under some additional condition on $f$,
problem \eqref{1a}--\eqref{1c} has at least two solutions if
$\alpha+\beta\not=0$, while it has at least one solution if $\alpha+\beta=0$.
The main tool will be the classical Shaefer's Fixed Point Theorem
(see e.g. \cite[Chapter 9]{E}):
\begin{theorem}[Schaefer's theorem] \label{thm1.1}
Let $T$ be a continuous and compact mapping of a Banach space $X$ into itself,
such that the set
\[
\{ x \in X: x = \lambda T x \text{ for some } 0 \leq \lambda \leq 1 \}
\]
is bounded. Then $T$ has a fixed point.
\end{theorem}
We start with some preliminary observations.
\begin{lemma} \label{lem1.2}
If $y\in C^2[a,b]$ satisfies \eqref{1a} and \eqref{1c}, then
\begin{equation}
\begin{aligned}
\Delta(y)&:=\Big[ \int_a^b \int_a^t f(t,y(s),y'(s))ds dt \Big]^2 \\
&- (b-a) \Big[\int_a^b\Big[ \int_a^t f(t,y(s),y'(s))ds\Big]^2dt-\delta\Big]
\geq 0
\end{aligned} \label{Delta}
\end{equation}
and either for every $x\in [a,b]$,
\begin{align*}
y(x)&=y(a) - \frac{\int_a^b\int_a^t f(s, y(t), y'(s))\,ds\,dt
+ \sqrt{\Delta(y)}}{b-a}(x-a) \\
&\quad + \int_a^x\int_a^t f(s, y(s), y'(s))\,ds\,dt\,,
\end{align*}
or for every $x\in [a,b]$,
\begin{align*}
y(x)&=y(a) - \frac{\int_a^b\int_a^t f(s, y(s), y'(s))\,ds\,dt
- \sqrt{\Delta(y)}}{b-a}(x-a) \\
&\quad + \int_a^x\int_a^t f(s, y(s), y'(s))\,ds\,dt\,.
\end{align*}
\end{lemma}
\begin{proof}
By integrating \eqref{1a}, we obtain
\begin{equation*}
y'(x)^2=y'(a)^2 + 2y'(a)\int_a^x f(t,y(t), y'(t))dt
+ \Big[ \int_a^x f(t,y(t),y'(t))dt\Big]^2.
\end{equation*}
Hence, by \eqref{1c}, $y'(a)$ is a solution of the equation
\begin{equation}\label{eq3}
\begin{aligned}
&z^2(b-a) + 2z\int_a^b\int_a^t f(s,y(s), y'(s))\,ds\,dt \\
&+ \int_a^b \Big[ \int_a^t f(s,y(s),y'(s))ds\Big]^2 dt-\delta=0.
\end{aligned}
\end{equation}
Therefore,
\begin{align*}
\Delta(y)&:= \Big[ \int_a^b \int_a^t f(s,y(s),y'(s))ds dt\Big]^2 \\
&- (b-a) \Big[\int_a^b\Big[ \int_a^t f(s,y(s),y'(s))ds\Big]^2dt-\delta\Big]
\geq 0
\end{align*}
and
\begin{equation}
y'(a)=\frac{-\int_a^b\int_a^t f(s, y(s), y'(s))\,ds\,dt
\pm \sqrt{\Delta(y)}}{b-a}. \label{y'}
\end{equation}
We obtain the assertion by observing that, if $y\in C^2[a,b]$ is a solution
of \eqref{1a}, then
\begin{equation}\label{equat}
y(x)=y(a)+y'(a)(x-a) + \int_a^x \int_a^t f(s, y(s),y'(s))\,ds\,dt.
\end{equation}
\end{proof}
\section{The case $\alpha+\beta=0$}
If $\alpha+\beta =0$, $\alpha\neq 0$ and
$y\in C^2[a,b]$ is a solution of \eqref{1a}--\eqref{1c}, then by \eqref{equat},
\[
y(b)=y(a) + y'(a)(b-a) + \int_a^b\int_a^t f(s, y(s), y'(s))ds
\]
and therefore, by \eqref{1b},
\begin{equation} \label{7}
y'(a)= -\frac{\gamma}{\alpha(b-a)} -\frac{1}{b-a}
\int_a^b\int_a^t f(s, y(s), y'(s))ds.
\end{equation}
But $y'(a)$ solves \eqref{eq3}, therefore comparing \eqref{y'} and \eqref{7},
we get that $\Delta(y)=\gamma=0$ and
\begin{equation*}
y'(a)= -\frac{1}{b-a}\int_a^b\int_a^t f(s, y(s), y'(s))ds.
\end{equation*}
Thus problem \eqref{1a}--\eqref{1c} turns into
\begin{gather} %{(P_0)\quad}
y''(x)=f(x, y(x), y'(x)),\quad a\leq x\leq b, \label{1a0}\\
y(a)= y(b), \label{1b0}\\
\int_a^b y'(t)^2 dt=\delta.\label{1c0}
\end{gather}
Integrating by parts \eqref{1c0}, we find that
\begin{align*}
\delta
&=\int_a^b y'(x)^2 dx\\
&= y(b)y'(b)-y(a)y'(a)-\int_a^b y(s)f(s, y(s), y'(s))ds \\
&= y(a)(y'(b)-y'(a))- \int_a^b y(s)f(s, y(s), y'(s)ds \\
&=y(a)\cdot \int_a^b f(s,y(s),y'(s))ds - \int_a^b y(s)f(s, y(s), y'(s))ds.
\end{align*}
Hence
\begin{equation*}
y(a)\cdot \int_a^b f(s, y(s), y'(s))ds=
\delta + \int_a^by(s) f(s, y(s), y'(s))ds
\end{equation*}
Assuming (H1), we obtain
\begin{equation*}
\int_a^b f(s, y(s), y'(s))ds\geq \sigma_1(b-a) > 0.
\end{equation*}
Therefore
\begin{equation*}
y(a)=\frac{\delta+ \int_a^by(s) f(s, y(s), y'(s))ds}{ \int_a^b f(s, y(s), y'(s))ds}
\end{equation*}
and
\begin{align*}
y(x)&=\frac{\delta + \int_a^by(s) f(s, y(s), y'(s))ds}{ \int_a^b f(s, y(s), y'(s))ds}
-\frac{x-a}{b-a}\int_a^b\int_a^t f(s, y(s), y'(s))ds\\
&\quad + \int_a^x\int_a^t f(s, y(s), y'(s))\,ds\,dt.
\end{align*}
As a consequence, we easily obtain the following characterization of
the solutions of \eqref{1a0}--\eqref{1c0}.
\begin{lemma}\label{le3}
Assume that {\rm (H1)} holds.
Then $y\in C^2[a,b]$ is a solution of \eqref{1a0}--\eqref{1c0} if and only if
$y\in C^1[a,b]$ and for every $x\in [a,b]$
\begin{align*}
y(x)&=\frac{\delta +\int_a^by(s) f(s, y(s), y'(s))ds}
{ \int_a^b f(s, y(s), y'(s))ds}
- \frac{x-a}{b-a}\int_a^b\int_a^t f(s, y(s), y'(s))ds \\
&\quad + \int_a^x\int_a^t f(s, y(s), y'(s))\,ds\,dt.
\end{align*}
\end{lemma}
We consider now the following assumptions:
\begin{itemize}
\item[(H1')] There exists $\sigma_3>0$ such that $|uf(x,u,v)|\leq \sigma_3$
for all $(x,u,v)\in [a,b]\times\mathbb{R}^2$.
\item[(H2)'] There exists $L>0$ such that fore all $x\in [a,b]$ and all
$(u_1,v_1), (u_2,v_2) \in \mathbb{R}^2$,
\[
|u_1f(x,u_1,v_1)-u_2f(x,u_2,v_2)| \leq L(|u_1-u_2| + |v_1-v_2|).
\]
\end{itemize}
\begin{theorem}\label{th2}
If {\rm (H1), (H2), (H1'), (H2')} hold, then there exists at least
one solution of \eqref{1a0}--\eqref{1c0}.
\end{theorem}
\begin{proof}
Consider the map $T:C^1[a,b]\to C^1[a,b]$ defined by
\begin{align*}
T y(x)&= \frac{\delta +\int_a^by(s) f(s, y(s), y'(s))ds}{ \int_a^b f(s, y(s),
y'(s))ds} + \frac{x-a}{b-a}\int_a^b\int_a^t f(s, y(s), y'(s))ds \\
&\quad+ \int_a^x\int_a^t f(s, y(s), y'(s))\,ds\,dt.
\end{align*}
By Lemma \ref{le3}, a function $y\in C^2[a,b]$ is a solution of
\eqref{1a0}--\eqref{1c0} if and only if $y\in C^1[a,b]$ is a fixed point of $T$.
Observe that for every $y\in C^1[a,b]$ and every $x\in [a,b]$:
\begin{gather*}
(Ty)'(x)= \frac{1}{b-a}\int_a^b\int_a^t f(s, y(s), y'(s))ds + \int_a^x f(s,y(s), y'(s))ds\\
(Ty)''(x)=f(x, y(x), y'(x)),
\end{gather*}
hence for every $x\in [a,b]$,
\begin{gather}
|Ty(x)| \leq \frac{\delta + \sigma_3(b-a)}{\sigma_1(b-a)}
+ \sigma_2 (b-a)^2\label{T1} \\
|(Ty)'(x)| \leq \frac{3}{2}(b-a)\sigma_2\label{T2}\\
|(Ty)''(x)|\leq \sigma_2.
\end{gather}
Moreover, for every $y, z\in C^1[a,b]$, $x\in [a,b]$:
\begin{align*}
& |Ty(x)-Tz(x)| \\
&\leq \Big| \bigg(\Big(\delta+ \int_a^by(s) f(s, y(s), y'(s))ds\Big)
\int_a^b f(s, z(s), z'(s))ds \\
&\quad -\Big(\delta +\int_a^bz(s) f(s, z(s), z'(s))ds\Big)
\int_a^b f(s, y(s), y'(s))ds \bigg)\\
&\quad \div \Big(\int_a^b f(s, y(s), y'(s))ds
\int_a^b f(s, z(s), z'(s))ds\Big) \Big| +L_f (b-a)^2\|y-z\|_{C^1} \\
&\leq \frac{\delta L_f}{(b-a)\sigma_1^2} \|y-z\|_{C^1}
+ \frac{ L_f\sigma_3 + L\sigma_2}{\sigma_1^2} \|y-z\|_{C^1}
+ L_f (b-a)^2\|y-z\|_{C^1}
\end{align*}
and
\begin{equation*}
|(Ty)'(x)-(Tz)'(x)|\leq \frac 3 2 L_f (b-a) \cdot \|y-z\|_{C^1},
\end{equation*}
hence
\[
\|Ty-Tz\|_{C^1} \leq \Big[\frac{ L_f\sigma_3 + L\sigma_2}{\sigma_1^2}
+ L_f\Big( \frac 3 2 (b-a) + (b-a)^2+ \frac{\delta}{(b-a)\sigma_1^2}\Big)\Big]
\|y-z\|_{C_1}.
\]
Thus $T$ is continuous on $C^1[a,b]$.
We prove that $T$ is also compact.
Let $(y_n)$ be a sequence in $C^1[a,b]$.
Then $((Ty_n)')_n$ is a bounded sequence of continuous functions such that
$((Ty_n)'')_n$ is also bounded.
By Ascoli-Arzel\`a's theorem there exists a subsequence $(y_{k_n})_n$
such that $((Ty_{k_n})')_n$ is uniformly convergent on $[a,b]$.
On the other hand, $(Ty_n)_n$ is a bounded sequence in $C^1[a,b]$, hence,
passing to a subsequence if necessary, we can assume that $(Ty_{k_n}(a))_n$
is convergent. It follows that $(Ty_{k_n})_n$ converges in $C^1[a,b]$.
Thus, observing that the set
\[
\{y\in C^1[a,b]: y=\lambda Ty \text{ for some } \lambda\in [0,1]\}
\]
is clearly bounded by \eqref{T1} and \eqref{T2}, by Schaefer's theorem,
$T$ has a fixed point.
\end{proof}
An immediate application of the Schauder's Fixed Point Theorem gives
the following result.
\begin{corollary} If
\[
\frac{ L_f\sigma_3 + L\sigma_2}{\sigma_1^2} + L_f\Big( \frac 3 2 (b-a)
+ (b-a)^2+ \frac{\delta}{(b-a)\sigma_1^2}\Big)<, 1
\]
then problem \eqref{1a0}--\eqref{1c0} has a unique solution in $C^2[a,b]$.
\end{corollary}
\section{The case $\alpha+\beta\not=0$}
The main result of this section is the following Theorem.
\begin{theorem}\label{th1}
If $\alpha+\beta\not=0$, {\rm (H1)} and {\rm (H2)} hold and
\begin{itemize}
\item[(H3)]
$(3\sigma_1^2-4\sigma_2^2)(b-a)^3 + 12\delta> 0$,
\end{itemize}
then there exist at least two solutions to \eqref{1a}--\eqref{1c}.
\end{theorem}
We need first some lemmas about $\Delta(y)$, defined for every
$y\in C^1[a,b]$ as in \eqref{Delta}.
\begin{lemma}\label{Deltay}
If {\rm (H1), (H2)} hold, then for every $y\in C^1[a,b]$,
\begin{equation}\label{est1}
\begin{aligned}
M_1&:=\frac{ (3\sigma_1^2-4\sigma_2^2)(b-a)^4 + 12\delta(b-a)}{12}\\
&\leq \Delta(y)
\leq M_2:=\frac{(3\sigma_2^2-4\sigma_1^2)(b-a)^4+ 12\delta(b-a)}{12}
\end{aligned}
\end{equation}
and for every $y,z\in C^1[a,b]$,
\begin{equation}\label{est1a}
|\Delta(y)-\Delta(z)| \leq \frac 7 6 \sigma_2L (b-a)^4 \|y-z\|_{C^1}.
\end{equation}
\end{lemma}
\begin{proof}
By (H1), it holds that
\begin{align*}\Delta(y) &
\geq \sigma_1^2\Big[ \int_a^b (t-a)dt\Big]^2 + \delta (b-a)
- (b-a) \sigma_2^2 \int_a^b(t-a)^2dt \\
&= \sigma_1^2 \frac{(b-a)^4}{4} + \delta(b-a) -\sigma_2^2\frac{(b-a)^4}{3}\\
&= \frac{ (3\sigma_1^2-4\sigma_2^2)(b-a)^4 + 12\delta(b-a)}{12}.
\end{align*}
On the other hand,
\begin{equation*}
\Delta(y) \leq \sigma_2^2 \frac{(b-a)^4}{2} + \delta (b-a)
- \sigma_1^2 \frac{(b-a)^4}{3}
= \frac{(3\sigma_2^2-4\sigma_1^2)(b-a)^4+ 12\delta(b-a)}{12}.
\end{equation*}
Moreover,
\begin{align*}
&|\Delta(y)-\Delta(z)| \\
&\leq \Big| \Big[ \int_a^b \int_a^t f(s,y(s),y'(s))ds dt\Big]^2
- \Big[\int_a^b \int_a^t f(s,z(s),z'(s))ds dt\Big]^2\Big| \\
&\quad +(b-a) \Big| \int_a^b\Big[ \int_a^t f(s,z(s),z'(s))ds\Big]^2dt
- \int_a^b\Big[ \int_a^t f(s,y(s),y'(s))ds\Big]^2dt\Big| \\
&= \Big| \int_a^b\int_a^t[f(s,y(s),y'(s))- f(s, z(s), z'(s))]\,ds\,dt
\Big|\\
&\quad\times \Big| \int_a^b\int_a^x[f(s,y(s),y'(s))+ f(s, z(s), z'(s))]\,ds\,dt\Big|
\\
&\quad +(b-a) \Big| \int_a^b\Big[ \int_a^t[f(s,y(s),y'(s))- f(s, z(s), z'(s))]ds\Big]\\
&\quad\times \Big[\int_a^t[f(s,y(s),y'(s))+ f(s, z(s), z'(s))]ds\Big]
dt\Big| \\
&\leq \Big(\sigma_2L_f \frac{(b-a)^4}{2} + \frac{2}{3}\sigma_2 L_f (b-a)^4g\Big)
\|y-z\|_{C^1}\\
&= \frac 7 6 \sigma_2L_f (b-a)^4 \|y-z\|_{C^1}.
\end{align*}
\end{proof}
As immediate consequence we have the lemma.
\begin{lemma}\label{Ai}
Assume that {\rm (H1), (H2), (H3)} hold, and
for every $y\in C^1[a,b]$ define
\begin{gather}
A_1(y)= \frac{-\int_a^b\int_a^x f(t, y(t), y'(t))\,dt\,dx+\sqrt{\Delta(y)}}{b-a}\\
A_2(y) = \frac{-\int_a^b\int_a^x f(t, y(t), y'(t))\,dt\,dx-\sqrt{\Delta(y)}}{b-a}
\end{gather}
Then, for $i=1,2$, for every $y,z\in C^1[a,b]$,
\begin{gather}\label{est2}
|A_i(y)| \leq \frac{1}{b-a}\Big[ \sigma_2\frac{(b-a)^2}{2} + \sqrt{M_2} \Big] \\
\label{est2a}
|A_i(y)-A_i(z)| \leq L_f(b-a)\Big[\frac{1}{2}+\frac{7\sigma_2}{12\sqrt{M_1} }
(b-a)^2\Big] \|y-z\|_{C^1} ,
\end{gather}
where $M_1$ and $M_2$ are defined in Lemma \ref{Deltay}.
\end{lemma}
\begin{proof}
First observe that $A_1$ and $A_2$ are well-defined on $C^1[a,b]$,
since $\Delta(y)\geq 0$ for every $y\in C^1[a,b]$ by Lemma \ref{Deltay} and (H3).
For every $y\in C^1[a,b]$ and $i=1,2$, by \eqref{est1}, we have
\begin{align*}
|A_i(y)|
&\leq \frac{1}{b-a}\Big( \Big|\int_a^b\int_a^t f(s, y(s), y'(s))
\,ds\,dt\Big| +|\sqrt{ \Delta_i(y)} | \Big) \\
&\leq
\frac{1}{b-a}\Big( \sigma_2\frac{(b-a)^2}{2} + \sqrt{M_2}\Big).
\end{align*}
Moreover, by \eqref{est1a}, for every $y,z\in C^1[a,b]$,
\begin{align*}
&|A_i(y)-A_i(z)|\\
&= \Big| \frac{-\int_a^b\int_a^t \left[f(s, y(s), y'(s))- f(s, z(s),z'(s))\right]
\,ds\,dt\pm \left( \sqrt{\Delta(y)}- \sqrt{\Delta(z)} \right) } {b-a}
\Big| \\
&\leq \frac{1}{b-a}\Big[ L_f\|y-z\|_{C^1} \frac{(b-a)^2}{2}
+ \frac{\vert \Delta(y)-\Delta(z)\vert}{|\sqrt{\Delta(y)}
+\sqrt{\Delta(z)}|} \Big] \\
&\leq \frac{1}{b-a}\Big[ L_f\|y-z\|_{C^1} \frac{(b-a)^2}{2}
+ \frac{\vert \Delta(y)-\Delta(z)\vert}{2\sqrt{M_1}}\Big] \\
& \leq \frac{1}{b-a}\Big[ L_f\|y-z\|_{C^1} \frac{(b-a)^2}{2}
+ \frac{7}{12\sqrt{M_1} } \sigma_2L_f(b-a)^4 \|y-z\|_{C^1}\Big].
\end{align*}
\end{proof}
\begin{proof}[Proof of Theorem \ref{th1}]
Observe first that if $\alpha+\beta\not=0$ and $y \in C^2[a,b]$
is a solution of \eqref{1a}, \eqref{1b}, then
\begin{equation}
\begin{aligned}
y(x)
&=y'(a)(x-a) + \int_a^x\int_a^t f(s, y(s), y'(s)\,ds\,dt \\
&\quad +\frac{1}{\alpha+\beta}
\Big[ \gamma - \beta y'(a)(b-a) - \beta \int_a^b\int_a^t f(s, y(s), y'(s))\,ds\,dt
\Big]
\end{aligned}\label{eqa0}
\end{equation}
By comparing \eqref{eqa0} with \eqref{y'} and by Lemma \ref{Ai}, we obtain
that for $i=1$ or $i=2$,
\begin{equation}
\begin{aligned}
y(x)&=A_i(y)(x-a) + \int_a^x\int_a^t f(s, y(s), y'(s)\,ds\,dt \\
&\quad +\frac{1}{\alpha+\beta}\Big[ \gamma - \beta A_i(y)(b-a)
- \beta \int_a^b\int_a^t f(s, y(s), y'(s))\,ds\,dt\Big]
\end{aligned} \label{eqa1}
\end{equation}
It is immediate to prove that, conversely, if $y\in C^1[a,b]$
satisfies \eqref{eqa1}, then $y\in C^2[a,b]$ and $y$ is a solution
of \eqref{1a}--\eqref{1c}.
Thus $y\in C^2[a,b]$ is a solution of \eqref{1a}--\eqref{1c} if and
only if $y$ is a fixed point of one of the operators
$T_i:C^1[a,b]\to C^1[a,b]$, $i=1,2$
defined by
\begin{align*}
T_iy&=A_i(y)(x-a) + \int_a^x\int_a^t f(s, y(s), y'(s)\,ds\,dt \\
&\quad +\frac{1}{\alpha+\beta}\Big[ \gamma - \beta A_i(y)(b-a)
- \beta \int_a^b\int_a^t f(s, y(s), y'(s)\,ds\,dt\Big]
\end{align*}
Observe that for every $y\in C^1[a,b]$ and every $x\in [a,b]$,
\begin{gather*}
(T_iy)'(x)= A_i(y) + \int_a^xf(s,y(s), y'(s))ds\\
(T_iy)''(x)=f(x,y(x), y'(x)).
\end{gather*}
By Lemma \ref{Ai} we get that $T_i:C^1[a,b]\to C^1[a,b]$ is bounded.
Moreover, if $y,z\in C^1[a,b]$ and $x\in [a,b]$,
\begin{align*}
|T_iy(x)-T_iz(x)|
&\leq \Big( 1 +| \frac{\beta}{\alpha+\beta}|\Big)
\Big( |A_i(y)-A_i(z)|(b-a) + \frac{L_f}{2}(b-a)^2\|y-z\|_{C^1}\Big) \\
&\leq \Big( 1 +| \frac{\beta}{\alpha+\beta}|\Big) L_f(b-a)^2
\Big[1+\frac{7\sigma_2}{12\sqrt{M_1} }(b-a)^2 \Big] \|y-z\|_{C^1},
\end{align*}
while
\begin{align*}
|(T_iy)'(x)-(T_iz)'(x)|
&\leq |A_i(y)-A_i(z)| + L_f(b-a)\|y-z\|_{C^1} \\
&\leq L_f(b-a)\Big[\frac{3}{2}+\frac{7\sigma_2}{12\sqrt{M_1} } (b-a)^2\Big]
\|y-z\|_{C^1} .
\end{align*}
Thus $T_i$ is Lipschitz continuous with Lipschitz constant:
\begin{equation} \label{eq:5}
\begin{aligned}
L_{a,b}&= \Big( 1 +| \frac{\beta}{\alpha+\beta}|\Big)
L_f(b-a)^2\big[1+\frac{7\sigma_2}{12\sqrt{M_1} }(b-a)^2 \big] \\
&\quad + L_f(b-a)\big[\frac{3}{2}+\frac{7\sigma_2}{12\sqrt{M_1} } (b-a)^2\big] .
\end{aligned}
\end{equation}
With the same argument as in the proof of Theorem \ref{th2},
we can prove that $T_i$ is compact and that, by Schaefer's fixed point theorem,
$T_i$ has a fixed point.
\end{proof}
\begin{corollary}
For every $a\in\mathbb{R}$, $\alpha, \beta,\gamma, \delta\in\mathbb{R}$ such that
$\alpha+\beta\not=0$, for every $\sigma_1, \sigma_2>0, L_f>0$ such that
(H2), (H1) hold, there exists $b>a$ such that the problem
\eqref{1a}--\eqref{1c} has two solutions in $C^2[a,b]$.
\end{corollary}
\begin{proof}
First observe that
\[
\lim_{b\to a^+} (3\sigma_1^2-4\sigma_2^2)(b-a)^3 + 12\delta =\delta> 0,
\]
thus $b$ can be chosen in such a way that (H3) is satisfied. Moreover,
considering the Lipschitz constant $L_{a,b}$ in \eqref{eq:5} and observing that
$$
M_1=\frac{ (3\sigma_1^2-4\sigma_2^2)(b-a)^4 + 12\delta(b-a)}{12}\sim \delta (b-a)
\quad \text{as } b\to a^+,
$$
we obtain $\lim_{b\to a^+} L_{a,b}= 0$.
Thus we can choose $b$ in such a way that $T_1$ and $T_2$ are
contractions from $C^1[a,b]$ into itself and therefore have a unique
fixed point.
\end{proof}
We conclude this article pointing out some problems that can be approached
with similar considerations.
\begin{remark} \rm
Consider the problem
\begin{gather*}
y''(x)=f(x, y(x), y'(x))\quad a\leq x\leq b \\
\alpha y(a) + \beta y(b)=\gamma \\
\int_a^b \exp(y'(t))dt=\delta,
\end{gather*}
where $-\infty0$, $\alpha+\beta\not=0$, and $f:[a,b]\times\mathbb{R}^2\to \mathbb{R}$ continuous.
Then
\[
y'(x)=y'(a)+\int_a^x f(s, y(s), y'(s))ds
\]
hence
\[
\delta=\exp(y'(a)) \int_a^b \exp\Big(\int_a^x f(s, y(s), y'(s))ds\Big)dx.
\]
Thus
\[
y'(a)=\log\Big(\frac{\delta}{ \int_a^b
\exp\left(\int_a^t f(s, y(s), y'(s))ds\right)dt}\Big).
\]
It is immediate to prove that $y\in C^2[a,b]$ is a solution of the problem
if and only if $y\in C^1[a,b]$ and $y$ is a fixed point of the operator
$T:C^1[a,b]\to C^1[a,b]$ defined by
\begin{align*}
Ty(x)
&=- \frac{\beta}{\alpha+\beta}(b-a)
\log\Big(\frac{\delta}{ \int_a^b \exp\left(\int_a^x f(s, y(s), y'(s))ds\right)dx}
\Big) \\
&\quad - \frac{\beta}{\alpha+\beta} \int_a^b \int_a^x f(s, y(s), y'(s))ds\\
&\quad + (x-a)\log\Big(\frac{\delta}{ \int_a^b
\exp\left(\int_a^x f(s, y(s), y'(s))ds\right)dx}\Big) \\
&\quad + \int_a^x\int_a^tf(s, y(s), y'(s))ds + \frac{\gamma}{\alpha+\beta}.
\end{align*}
\end{remark}
\begin{remark} \rm
The approach we have used for the case $\alpha + \beta=0$ can be used also to
study the case $\alpha+\beta\not=0$. Indeed
if we integrate by parts condition \eqref{1c},
we find that
\begin{align*}
\delta&=\int_a^b y'(x)^2 dx\\
&= y(b)y'(b)-y(a)y'(a)-\int_a^b y(s)f(s, y(s), y'(s)ds \\
&= \frac{\gamma-\alpha y(a)}{\beta}
y'(b) - y(a)y'(a)- \int_a^b y(s)f(s, y(s), y'(s)ds \\
&=\frac{\gamma-\alpha y(a)}{\beta} \Big(y'(a)+ \int_a^b f(s,y(s),y'(s))ds\Big)
- y(a)y'(a)\\
&\quad - \int_a^b y(s)f(s, y(s), y'(s)ds.
\end{align*}
Hence
\begin{align*}
&y(a)\Big[ (\alpha+\beta)y'(a) + \alpha\int_a^b f(s, y(s), y'(s))ds\Big] \\
&= -\beta\delta +\gamma y'(a) -\beta \int_a^by(s) f(s, y(s), y'(s))ds
\end{align*}
If
\begin{equation*} (\alpha+\beta)y'(a) + \alpha\int_a^b f(s, y(s), y'(s))ds\not=0
\end{equation*}
then
\begin{equation*}
y(a)=\frac{-\beta\delta +\gamma y'(a)
-\beta \int_a^by(s) f(s, y(s), y'(s))ds}{ (\alpha+\beta)y'(a)
+ \alpha\int_a^b f(s, y(s), y'(s))ds}
\end{equation*}
and therefore
\begin{align*}
y(x)&=\frac{-\beta\delta +\gamma y'(a) -\beta \int_a^by(s) f(s, y(s), y'(s))ds}
{ (\alpha+\beta)y'(a) + \alpha\int_a^b f(s, y(s), y'(s))ds}
+y'(a)(x-a) \\
&\quad + \int_a^x\int_a^t f(s, y(s), y'(s))ds
\end{align*}
As a consequence, we easily obtain that
for $y\in C^1[a,b]$ such that
\begin{equation*}
(\alpha+\beta)y'(a) + \alpha\int_a^b f(s, y(s), y'(s))ds\not=0,
\end{equation*}
the following conditions are equivalent:
\begin{itemize}
\item[(i)] $y\in C^2[a,b]$ is a solution of \eqref{1a}--\eqref{1c}
\item[(ii)] $y\in C^1[a,b]$ and either for $i=1$ or $i=2$,
\begin{align*}
y(x)&=\frac{-\beta\delta +\gamma A_i(y)
-\beta \int_a^by(s) f(s, y(s), y'(s))ds}{ (\alpha+\beta)A_i(y)
+ \alpha\int_a^b f(s, y(s), y'(s))ds} \\
&\quad+ A_i(y)(x-a) + \int_a^x\int_a^t f(s, y(s), y'(s))ds.
\end{align*}
\end{itemize}
Anyway, with this approach one has to require additional conditions on $f$
such as (H1') and (H2').
\end{remark}
\begin{remark} \rm
Similar results can be obtained if \eqref{1c} is replaced with
\[
\int_a^b [ \alpha(x)[y'(x)]^2 + \beta(x) y'(x)+ \gamma(x)]dx=\delta\in\mathbb{R}
\]
with suitable conditions on the functions $\alpha, \beta, \gamma$ and on $\delta$.
Moreover it could be of interest the study of systems such as
\begin{gather*}
y^{(n)}(x) =f(x, y(x), y'(x), \dots,y^{(n-1)}(x)), \quad a\leq x\leq b,\\
\alpha y(a)+\beta y(b)=\gamma\\
\int_a^b y'(x)^2 dx=\delta_1\\
\int_a^b y''(x)^2 dx=\delta_2\\
\dots\\
\int_a^b y^{(n-1)}(x) dx=\delta_n
\end{gather*}
or analogous problems.
\end{remark}
\begin{thebibliography}{00}
\bibitem{A} H. Amann;
\emph{Ordinary Differential Equations. An Introductions to Nonlinear
Analysis}, De Gruyter Studies in Mathematics 13. Walter De Gruyter,
Berlin-New York, 1990.
\bibitem{C} S. Cinquini;
\emph{Problemi di valori al contorno per equazioni differenziali di ordine $n$},
Ann. R. Scuola Norm. Sup. Pisa, (2) 9, 61-77, 1940.
\bibitem{E} L. C. Evans;
\emph{Partial Differential Equations. Second Edition},
Graduate Studies in Mathematics 19, AMS, 2010.
\bibitem{M} J. Mawhin;
\emph{Nonlinear boundary value problems and periodic solutions of ordinary
differential equations: the Italian legacy}, in
International Meeting on Differential Equations and Applications (Firenze 1993),
Technoprint, Bologna, 1995, 1-33.
\bibitem{PVS} L. C. Piccinini, G. Stampacchia, G. Vidossich;
\emph{Ordinary Differential Equations in $\mathbb{R}^n$ (Problems and Methods)},
Springer Verlag, New York, 1984.
\bibitem{N} O. Nicoletti;
\emph{Sulle condizioni iniziali che determinano gli integrali delle equazioni
differenziali ordinarie}, Atti della R. Accademia delle Scienze di Torino,
t. XXXIII, 746–759, 1897--1898.
\bibitem{S} C. Severini;
\emph{Sopra gli integrali delle equazioni dtfferenzali
ordinarie del $2^{\circ}$ ordine con valori prestabiliti in due punti dati;
Atti della R. Accademia delle Scienze di Torino}, t. XL , 1035–1040, 1904-1905.
\bibitem{W} W. M. Whyburn;
\emph{Differential equations with general boundary conditions}.
Bull. Ann. Math. Soc. 48, 692--704, 1942.
\bibitem{Z} G. Zwirner;
\emph{Sull'equazione $\frac{\partial^2z}{\partial x\partial y}
=f(x,y,z, \frac{\partial z}{\partial y})$}, Ann. Univ. di Ferrara,
sez. VII, N.S., {\bf 1}, 1--7, 1952.
\bibitem{Z1} G. Zwirner;
\emph{Un criterio d'esistenza relativo a un problema al contorno per
un'equazione differenziale ordinaria d'ordine $n$}. Atti Acc. Ital., Rendic.
classe Sc.Fis. Mat. Nat., (7) 3, 217--222, 1942.
\end{thebibliography}
\end{document}