\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \usepackage{subfigure} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 258, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/258\hfil $L^p$ estimates for Dirichlet-to-Neumann operator] {$L^p$ estimates for Dirichlet-to-Neumann operator and applications} \author[T. El Arwadi, T. Sayah \hfil EJDE-2015/258\hfilneg] {Toufic El Arwadi, Toni Sayah} \address{Toufic El Arwadi \newline Department of Mathematics and computer science, Faculty of Science, Beirut Arab university, P.O. Box: 11-5020, Beirut, Lebanon} \email{t.elarwadi@bau.edu.lb} \address{Toni Sayah \newline Research unit "EGFEM", Faculty of sciences, Saint-Joseph University, B.P. 11-514 Riad El Solh, Beirut 1107 2050, Lebanon} \email{toni.sayah@usj.edu.lb} \thanks{Submitted September 5, 2015. Published October 2, 2015.} \subjclass[2010]{47D06, 47A99, 35J15, 35M13, 65M60} \keywords{Dynamic boundary condition; Dirichlet-to-Neumann operator; \hfill\break\indent $L^p$ estimation; finite element method} \begin{abstract} In this article, we consider the time dependent linear elliptic problem with dynamic boundary condition. We recall the corresponding Dirichlet-to-Neumann operator on $\Gamma$ denoted by $-\Lambda_\gamma$. Then we show that when $\gamma=1$ near the boundary, $\Lambda_\gamma-\Lambda_1$ is bounded by $\gamma-1$ in $L^p(\Omega)$ norm. This result is a generalization of the bound with the $L^\infty(\Omega)$ norm and is applicable for comparing the Dirichlet to Neumann semigroup and the Lax semigroup. Finally, we present numerical experiments for validation of our results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Let $\Omega\subset\mathbb{R}^2$ be a bounded open set of class $C^2$, with boundary $\Gamma$, and let $]0, T[$ to denote an interval in $\mathbb{R}$ where $T\in (0,+\infty)$ is a fixed final time. We denote by $n(x)$ the unit outward normal vector at $x\in \Gamma$. We intend to work with the following time dependent linear elliptic problem with dynamic boundary condition: \begin{equation}\label{P} \begin{gathered} -\operatorname{div} \gamma(x) \nabla u(t,x) = 0 \quad \text{in } ]0,T[ \times \Omega,\\ \frac{\partial u}{\partial t}(t,x)+\gamma(x) n (x)\cdot\nabla u(t,x) = 0 \quad \text{on } ]0,T[ \times \Gamma,\\ u(0,x) = u_0 \quad \text{on }\Gamma, \end{gathered} \end{equation} where $\gamma \in L^\infty_+ (\Omega)$ and $u_0 \in H^{1/2}(\Gamma)$, and we suppose that there exists a real positive number $\beta$ such that \[ \beta^{-1}\leq \gamma(x) \leq \beta \quad \forall x \in \overline{\Omega}. \] The unknown is $u$ while $u_0$ is the initial condition at time $t=0$. The trace value of the solution $u(t,x)$ on $\Gamma$ is directly related to the elliptic Dirichlet-to-Neumann map. In fact, for a given $f$, $u^\gamma$ solves the Dirichlet problem \begin{equation} \begin{gathered} \operatorname{div}(\gamma\nabla u^\gamma) = 0\quad\text{in } \Omega, \\ u^\gamma = f\quad\text{on }\Gamma. \end{gathered} \label{DP} \end{equation} For any $f\in H^{1/2}(\Gamma)$, it is well known that the Dirichlet problem \eqref{DP} is uniquely solvable in $H^1(\Omega)$. We denote by $u^\gamma=L_\gamma f$ where the function $u^\gamma$ is called the $\gamma$-harmonic lifting of $f$ and the operator $L_\gamma$ is called the $\gamma$-harmonic lifting operator. If $u^\gamma$ and $\gamma$ are smooth, the Dirichlet-to-Neumann operator is defined by \begin{equation} \Lambda_\gamma f=(n.\gamma\nabla u^\gamma)|_{\Gamma}\,. \end{equation} In another words $\Lambda_\gamma=n\cdot\gamma\nabla L_\gamma$ (see for instance \cite{EmSh}). We can extend $\Lambda_\gamma$ uniquely to an operator $\Lambda_\gamma\in \mathcal{L}(H^{1/2}(\Gamma),H^{-\frac{1}{2}}(\Gamma))$. If we denote its part in $L^2(\Gamma)$ again by $\Lambda_\gamma$, we define the Dirichlet-to-Neumann operator as an unbounded operator with domain \begin{equation} D(\Lambda_\gamma)=\{f\in H^{1/2}(\Gamma); \Lambda_\gamma f\in L^2(\Gamma)\}. \end{equation} The Dirichlet-to-Neumann operator $\Lambda_\gamma$ is positive, self adjoint and a first order pseudo-analytic operator (see for instance \cite{TaylorI:98} and \cite{TaylorII:98}). By Lummer-Phillips theorem, $-\Lambda_\gamma$ generates a $C_0$ semigroup denoted by $e^{-t\Lambda_\gamma}$ in $L^2(\Gamma)$ (see \cite{s9}). For the existence and the uniqueness of the solution of problem \eqref{P}, we refer to \cite[Theorem 1.1, page 169]{s9}. \begin{theorem} \label{thm1.2} If $\Gamma$ is of class $C^2$, $\gamma$ is of class $C^\alpha$ ($\alpha >2$), and for each $u_0 \in L^2(\Gamma)$, problem \eqref{P} has a unique solution $u:[0,+\infty)\to H^1(\Omega)$ satisfying: \begin{enumerate} \item $u \in C([0,+\infty);H^1(\Omega))\cap L^2([0,+\infty);H^1(\Omega))$; \item $u|_\Gamma \in C([0,+\infty);L^2(\Gamma))\cap C^1([0,+\infty);L^2(\Gamma))$; \item $n.\nabla u \in C([0,+\infty);L^2(\Gamma))$. \end{enumerate} \end{theorem} By taking the trace of the solution to \eqref{P} and denoting it by $u(t,.)|_{\Gamma}$, the Dirichlet-to-Neumann semigroup $e^{-t\Lambda_\gamma}u_0$ is defined by \begin{equation} (e^{-t\Lambda_\gamma}u_0)(x)=u(t,x)|_{\Gamma}, \quad x\in\Gamma\,. \end{equation} \begin{remark} \label{rmk1.2} \rm Lax introduced an explicit representation for the Dirichlet-to-Neu\-mann semigroup for $\gamma=1$ and $\Omega=B(0,1)$. The Lax semigroup is defined by \begin{equation} (e^{-t\Lambda_1}u_0)(x)=u^1(e^{-t}x) \quad \text{for } x\in \partial B(0,1), \end{equation} where $u^1=L_1f$ is the harmonic lifting of $f$ (see \cite{Lax}). For $\Omega\neq B(0,1)$ there is no explicit representation of the Dirichlet to Neumann semigroup (see \cite{EmSh}). This motivate several authors to construct families of approximation via Chernoff's theorem (see \cite{EmSh,CEES}). Here an important question arises: what is the effect of the support of $\gamma$ on the comparison of the general Dirichlet-to-Neumann semigroup $e^{-t\Lambda_\gamma}$ and the Lax semigroup? \end{remark} In \cite{CoKnSi}, the authors showed that for $\gamma=1$ near the boundary, the distance $\|\Lambda_\gamma-\Lambda_1\|_{\mathcal{L}(H^{1/2}(\Gamma), H^s(\Gamma))}$ is bounded by $\|\gamma-1\|_{L^\infty(\Omega)}$ for any $s\in \mathbb{R}$. The assumption $\gamma=1$ near the boundary has multiple physical applications, in particular it is usually used in the EIT (electrical Impedance Tomography) community (see \cite{MSS}). In this article, we compare the general Dirichlet-to-Neumann semigroup $e^{-t\Lambda_\gamma}$ to the Lax semigroup. We start by comparing $\Lambda_\gamma$ to $\Lambda_1$ for $\gamma=1$ near the boundary. In particular we show that $\|\Lambda_\gamma-\Lambda_1\|_{\mathcal{L}(H^{1/2}(\Gamma), H^s(\Gamma))}$ is bounded by $\|\gamma-1\|_{L^p(\Omega)}$ for all $s\in \mathbb{R}$ and $p>2$. As a straightforward consequence, we show that for the particular case where $\Omega =B(0,1)$, $\|e^{-t\Lambda_\gamma}u_0-e^{-t\Lambda_1}u_0\|_{L^2(\Gamma)}$ is also bounded by $\|\gamma-1\|_{L^p(\Omega)}$. At the end we give a numerical example which justify our theoretical results. We suppose that $u_0 \in H^{1/2}(\Gamma)$ and introduce the following variational problem in the sense of distributions on $]0, T [$: Find $u(t,.) \in H^1(\Omega)$ such that, \begin{equation} \label{V} \begin{gathered} u(0)=u_0 \quad \text{on }\Gamma, \\ \int _{\Omega} \gamma(x) \nabla u(t,x) \nabla v(x)\,dx + \frac{d}{d t} \big( \int_{\Gamma} u(t,s)v(s)\,ds \big)=0, \quad \forall v \in H^1(\Omega). \end{gathered} \end{equation} \begin{theorem}[\cite{ElDiSa}] \label{thm1.3} If $u \in L^2(0,T;H^1(\Omega))$ and $u|_\Gamma \in L^\infty(0,T;L^2(\Gamma))$, then problem \eqref{P} is equivalent to the variational problem \eqref{V}. Furthermore, we have the bound \[ \|\nabla u\|_{L^2(0,\tau,L^2(\Omega)^2)}^2 + \|u(\tau,.) \|_{L^2(\Gamma)}^2 \le c \|u_0\|_{L^2(\Gamma)}^2, \] where $c$ is a positive constant and $\tau \in ]0,T]$. \end{theorem} \section{Main result} To avoid the complexity of notations, we denote by $\|\cdot\|_{1/2,s}:=\|\cdot\|_{\mathcal{L}(H^{1/2}(\Gamma),H^s(\Gamma))}$. As it was proved in \cite{CEES}, the distance between the General Dirichlet-to-Neumann semigroup $e^{-t\Lambda_\gamma}$ and the Lax semigroup $e^{-t\Lambda_1}$ with respect to the $L^2(\Gamma)$ topology depends directly on the distance $\gamma$ to 1 with respect to the $L^\infty(\Omega)$ topology. However, as it was proved in \cite{Toufic}, the support of $\gamma-1$ plays an important role in the comparison of the Dirichlet-to-Neumann maps. In this section, we show that when $\|\gamma-1\|_{L^p(\Omega)}$, $p>2$, tends to zero and $\gamma=1$ near $\Gamma$, the general Dirichlet-to-Neumann semigroup $e^{-t\Lambda_\gamma}$ tends to the Lax semigroup $e^{-t\Lambda_1}$. In particular for $t\in ]0,T]$, the following estimate holds, \begin{equation}\label{semi} \|e^{-t\Lambda_\gamma}u_0-e^{-t\Lambda_1}u_0\|_{L^2(\Gamma)} \leq C(T)\|\gamma-1\|_{L^p(\Omega)}\|u_0\|_{H^{1/2}(\Gamma)}. \end{equation} Like the $L^\infty$ estimate (see \cite{CEES}), it is clear that this estimate is a straightforward consequence of the following lemma. \begin{lemma} \label{lem2.1} Let $\gamma\in L_+^\infty(\Omega)$ be a positive conductivity satisfying $\gamma=1$ near $\Gamma$. Then for $p>2$ and for all $s\in \mathbb{R}$, the following estimate holds: \begin{equation}\label{dtn} \|\Lambda_\gamma-\Lambda_1\|_{1/2,s}\leq C_2\|\gamma-1\|_{L^p(\Omega)} \end{equation} where the constant $C_2$ depends on $s, \Omega$ and $\beta$. \end{lemma} \begin{proof} For $\gamma=1$ near the boundary, the operator $\Lambda_\gamma-\Lambda_1$ is a smoothing operator, i.e. it acts from $H^{1/2}(\Gamma)$ to $H^s(\Gamma)$ for all values of $s\in \mathbb{R}$. Depending on the values of $s$, the proof is divided into three steps. \smallskip \noindent\textbf{Step 1:} $s\leq -\frac{1}{2}$. Since $H^{-1/2}(\Gamma)$ is continuously embedded in $H^s(\Gamma)$, \begin{equation}\label{lone} \|(\Lambda_\gamma-\Lambda_1)f\|_{H^s(\Gamma)}\leq C\|(\Lambda_\gamma-\Lambda_1)f\|_{H^{-1/2}(\Gamma)}. \end{equation} As shown in \cite{Toufic}, the following estimate holds for $p>1$, \begin{equation}\label{ltwo} \|(\Lambda_\gamma-\Lambda_1)f\|_{H^{-1/2}(\Gamma)}\leq C\|\gamma-1\|_{L^{2p}(\Omega)}\|f\|_{H^{1/2}(\Gamma)}. \end{equation} The estimate \eqref{dtn} follows by combining \eqref{lone} and \eqref{ltwo}. \smallskip \noindent\textbf{Step 2:} $ s\geq \frac{3}{2}$. First, we recall the following estimate (proved in \cite{CoKnSi} for $m= \frac{1}{2})$: \begin{equation}\label{phim} \|(\Lambda_\gamma-\Lambda_1)f\|_{H^{3/2}(\Gamma)} \leq C\|u^\gamma-u^1\|_{H^1(\Omega)}. \end{equation} Since \begin{gather*} \operatorname{div} (\gamma\nabla u^\gamma)=0 \quad \text{in } \Omega, \\ \Delta u^1=0 \quad \text{in } \Omega, \\ u^\gamma=u^1=f \quad \text{on } \Gamma. \end{gather*} It is clear that $(u^\gamma-u^1)\in H_0^1(\Omega)$ solves the homogenous Dirichlet problem \begin{gather*} \operatorname{div}(\gamma\nabla( u^\gamma-u^1)) = -\operatorname{div}((\gamma-1)\nabla u^1)\quad\text{in }\Omega, \\ u^\gamma-u^1 = 0\quad\text{on }\Gamma. \end{gather*} Since $u^1\in H^1(\Omega)$ and $(\gamma-1)\in L_+^\infty(\Omega)$, it follows that $\operatorname{div}((\gamma-1)\nabla u^1)\in H^{-1}(\Omega)$. From standard estimates for linear elliptic boundary-value problems, the following estimate holds \begin{equation}\label{estim} \|u^\gamma-u^1\|_{H^1(\Omega)}\leq C\|\operatorname{div}((\gamma-1)\nabla u^1)\|_{H^{-1}(\Omega)}. \end{equation} By denoting $\rho=\operatorname{supp}(\gamma-1)$ and using the divergence theorem, one gets \begin{align*} &\|\operatorname{div}((\gamma-1)\nabla u^1)\|_{H^{-1}(\Omega)}\\ &= \sup_{v\in H_0^1;\|v\|_{H^1(\Omega)}\leq 1}| \langle \operatorname{div}((\gamma-1)\nabla u^1),v\rangle |\\ &= \sup_{v\in H_0^1;\|v\|_{H^1(\Omega)}\leq 1} \big|\int_{\rho}(\gamma-1)\nabla u^1\nabla v dx\big|\\ &\leq \sup_{v\in H_0^1;\|v\|_{H^1(\Omega)}\leq 1} \Big(\int_{\rho}(\gamma-1)^2|\nabla u^1|^2dx\Big)^{1/2}\Big(\int_\rho |\nabla v|^2\Big)^{1/2}. \end{align*} Since $\|v\|_{H^1(\Omega)}\leq 1$ we get (see \cite{Toufic}) \begin{gather*} \int_\rho |\nabla v|^2dx \leq 1\,,\\ \int_\rho |\nabla u^1|^{2q'}dx <\infty \quad \text{for } q'> 1. \end{gather*} Now we are able to apply the Holder inequality and we deduce that for $(p',q')\in ]1,\infty[^2$ such that $1/p'+1/q'=1$, \begin{equation}\label{hmone} \|\operatorname{div}((\gamma-1)\nabla u^1)\|_{H^{-1}(\Omega)} \leq \Big(\int_\rho(\gamma-1)^{2p'}\Big)^{\frac{1}{2p'}} \Big(\int_\rho|\nabla u^1|^{2q'}\Big)^{\frac{1}{2q'}}. \end{equation} In \cite{Toufic}, the following estimate was proved, \begin{equation}\label{normlp} \Big(\int_\rho |\nabla u^1|^{2q'}\Big)^{\frac{1}{2q'}}\leq C\|u^1\|_{H^1(\Omega)}. \end{equation} By denoting $p=2p'$, combining the energy estimate $\|u^1\|_{H^1(\Omega)}\leq C\|f\|_{H^{1/2}(\Gamma)}$ and \eqref{normlp}, we deduce $$ \|\operatorname{div}((\gamma-1)\nabla u^1)\|_{H^{-1}(\Omega)}\leq C\|\gamma-1\|_{L^{p}(\Omega)}\|f\|_{H^{1/2}(\Gamma)}. $$ Finally \[ \|(\Lambda_\gamma-\Lambda_1)f\|_{\frac{3}{2}}\leq C\|\gamma-1\|_{L^{p}(\Omega)}\|f\|_{H^{1/2}(\Gamma)}. \] \noindent\textbf{Step 3:} $ -1/2< s\leq 3/2$. In this case we have $s=(1-\theta)(-\frac{1}{2})+\theta(3/2)$ for $\theta \in ]0,1]$; so the space $H^s(\Gamma)$ is an interpolation space of $H^{-1/2}(\Gamma)$ and $H^{3/2}(\Gamma)$. In other words, $H^s(\Gamma)=[H^{-1/2}(\Gamma),H^{3/2}(\Gamma)]_\theta$ (See \cite{Lions}). By applying the interpolation inequality we deduce $$ \|(\Lambda_\gamma-\Lambda_1)f\|_{H^s(\Gamma)}\leq C\|(\Lambda_\gamma-\Lambda_1)f\|_{H^{-\frac{1}{2}}(\Gamma)} ^\theta\|(\Lambda_\gamma-\Lambda_1)f\|_{H^{3/2}(\Gamma)}^{1-\theta} $$ Finally, by using the estimates of step 1 and step 2, we deduce \eqref{dtn} for $ -1/2< s\leq 3/2$. \end{proof} \begin{theorem} \label{thm2.2} For $\gamma=1$ near $\Gamma$ such that $\gamma\in C^2(\Omega)$, and $u_0 \in H^{1/2}(\Gamma)$, there exists a constant $C(T)$ depending on $\beta$, $u_0$, and $T$ such that : \begin{equation}\label{semi2} \|e^{-t\Lambda_\gamma}u_0-e^{-t\Lambda_1}u_0\|_{L^2(\Gamma)}\leq C(T)\|\gamma-1\|_{L^p(\Omega)}. \end{equation} \end{theorem} The estimate in the above theorem follows directly from \eqref{dtn}, see \cite{CEES}. We omit its proof. \section{The discrete problem} For the rest of this article, we assume that $\partial \Omega$ is a polyhedron. To describe the time discretization with an adaptive choice of local time steps, we introduce a partition of the interval $[0,T]$ into equal subintervals $I_n=[t_{n-1},t_{n}]$, $1\le n \le N$, such that $0=t_0 \le t_1 \le \dots \le t_N=T$. We denote by $\tau$ the length of the subintervals $I_n$. Now, we describe the space discretization. Let $(\mathcal{T}_{h})_h$ be a regular triangulation of $\Omega$. $(\mathcal{T}_{h})_h$ is a set of non degenerate elements which satisfies: \begin{itemize} \item for each $h$, $\bar{\Omega}$ is the union of all elements of $\mathcal{T}_{h}$; \item the intersection of two distinct elements of $\mathcal{T}_{h}$, is either empty, a common vertex, or an entire common edge; \item the ratio of the diameter of an element $\kappa$ in $\mathcal{T}_{h}$ to the diameter of its inscribed circle is bounded by a constant independent of $n$ and $h$. \end{itemize} As usual, $h$ denotes the maximal diameter of the elements of all $\mathcal{T}_{h}$. For each $\kappa$ in $\mathcal{T}_{h}$, we denote by $P_1(\kappa)$ the space of restrictions to $\kappa$ of polynomials with two variables and total degree at most one. For a given triangulation $\mathcal{T}_{h}$, we define by $X_{h}$ a finite dimensional space of functions such that their restrictions to any element $\kappa$ of $\mathcal{T}_h$ belong to a space of polynomials of degree one. In other words, \[ X_{h}=\{v_n^h\in C^0(\overline{\Omega}), \,\, v_hh|_{\kappa}\, \text{is affine for all }\kappa \in \mathcal{T}_{h} \}. \] We note that for each $h$, $X_{h}\subset H^1(\Omega)$. The full discrete implicit scheme associated with the problem \eqref{V} is as follows: \noindent Given ${u}^{n-1}_h \in X_{h}$, find $u^n_h$ with values in $X_{h}$ such that for all $v_h \in X_h$ we have: \begin{equation}\label{Vh} \int_\Omega \gamma(x) \nabla u^n_h \nabla v_h dx + \int_\Gamma \frac{u_h^{n} - { u}_h^{n-1}}{\tau_{n}} \, v_h d\sigma = 0. \end{equation} by assuming that $u_h^0$ is an approximation of $u(0)$ in $X_{h}$. \begin{remark} \label{rmk3.1} \rm It is a simple exercise to prove existence and uniqueness of the solution of problem \eqref{Vh} as a consequence of discrete problem of Poisson's equation with a Robin condition. \end{remark} \begin{theorem} \label{thm3.2} For each $m=1,\dots ,N$, the solution $u_{h}^m$ of the problem \eqref{Vh} satisfies \begin{equation}\label{numbound} \|u_{h}^{m}\|_{0,\Gamma}^2+\sum_{n=1}^{m}\tau_{n}|u_{h}^{n}|_{1,\Omega}^2\leq c \|u_h^0\|_{0,\Gamma}^2, \end{equation} \end{theorem} \begin{remark} \label{rmk3.3} \rm In \cite{ElDiSa}, we establish optimal \emph{a priori} and \emph{a posteriori} error estimates for the problem \eqref{Vh} an shown numerical results of validation. \end{remark} \section{Numerical results} \begin{figure}[ht] \begin{center} \subfigure[$\operatorname{Err}_u^n$ with respect to the iteration numbers for $\gamma^1_{5,3/4}$, ($\operatorname{Err}^4_\gamma=0.86$)] {\includegraphics[width=0.45\textwidth]{fig1a} } % F1_erru_alpha_5_rho_3s4_p_4.pdf \quad \subfigure[$\operatorname{Err}_u^n$ with respect to the iteration numbers for $\gamma^2_{10,3/4}$, ($\operatorname{Err}^4_\gamma=1.14$)] {\includegraphics[width=0.45\textwidth]{fig1b}} % F2_erru_alpha_10_rho_3s4_p_4.pdf \\ \subfigure[$\operatorname{Err}_u^n$ with respect to the iteration numbers for $\gamma^3_{e^8,1/2}$, ($\operatorname{Err}^4_\gamma=0.84$)] {\includegraphics[width=0.45\textwidth]{fig1c}} % F3_erru_alpha_e8_rho_1s2_p_4.pdf \end{center} \caption{$\operatorname{Err}_u^n$ with respect to the iteration numbers for different functions $\gamma^i_{\alpha,\rho}$, $i=1,2,3$.} \label{fig1} \end{figure} To validate the theoretical results, we present several numerical simulations using the FreeFem++ software (see \cite{hecht}). We choose $T=3$, \[ u(0,x,y) = \frac{x^2-y^2}{2} + y + \frac{1}{2}, \] and the function $\gamma$ as (see \cite{JMSS}) % \begin{equation}\label{gamma} \gamma^i_{\alpha,\rho}(x) = (\alpha F_{i,\rho}(|x|) + 1)^2, i=1,2,3, \end{equation} where the function $F_{i,\rho} \in C^4(\mathbb{R})$ satisfies $F_{i,\rho}(x) = 0$ for $|x| > \rho$ and for $|x| \le \rho$ takes one of the following three forms: \begin{gather}\label{exemp1} F_{1,\rho}(x) = (x^2 - \rho^2)^4 (1.5 - \cos \frac{3 \pi x}{2 \rho}), \\ \label{exemp2} F_{2,\rho}(x) = (x^2 - \rho^2)^4 \cos \frac{3 \pi x}{2 \rho}, \\ \label{exemp3} F_{3,\rho}(x) = e^{ -\frac{2(x^2+\rho^2)}{(x+\rho)^2(x-\rho)^2} }. \end{gather} We consider the two-dimensional unit circle. In fact, the mesh corresponding to $\Omega$ is a polygon and we introduce here a geometrical approximation. Nevertheless, the numerical results given in the end of this section show that this approximation has not a major influence. The considered mesh contains $15542$ triangles with $m=300$ segments on the boundary $\Gamma$. Thus, the mesh step size is $ h=\frac{2\pi }{m}$. We choose a time step $\tau=h$ and we consider the numerical scheme \eqref{Vh}. We denote by $u_{h,\gamma}^n$ the solution of problem \eqref{Vh} for a given $\gamma$ and $u_{h,1}^n$ the solution of the same problem for $\gamma=1$. We define the errors \begin{gather*} \operatorname{Err}_u^n = \|u_{h,\gamma}^n - u_{h,1}^n \|_{L^2(\Gamma)}, \\ \operatorname{Err}_u = \max_{1\le i \le N} \operatorname{Err}_u^i, \\ \operatorname{Err}^p_\gamma = \|\gamma - 1 \|_{L^p(\Omega)}. \end{gather*} We choose $p=4$ and followed \cite{JMSS} for the choice of $\rho$ and $\alpha$. Figures \ref{fig1}(a)-(c) show the evolution of $\operatorname{Err}_u^n$ with respect to the iteration numbers for the three cases of $\gamma$. It is easy to check that all this curves are bounded and smaller than the corresponding $\operatorname{Err}_\gamma^4$. For example, Figure \ref{fig1}(b) represents the error $\operatorname{Err}_\gamma^u$ for the second function $\gamma^2_{10,3/4}$ with a maximum of $0.0309$ which is smaller the corresponding $\operatorname{Err}_u^4 = 1.14$. To show the dependency of this errors with $\rho$, in an other word where it equals to $1$ in a neighborhood of $\Gamma$ (the neighborhood depends on $\rho$), table \ref{fgh} shows $\operatorname{Err}_u$ and $\operatorname{Err}^4_\gamma$ with respect to $\rho$ for the functions $\gamma^1_{5,\rho}$ and $\gamma^2_{10,\rho}$, and for $T=1$ and $p=4$. We remark that $\operatorname{Err}_u$ is always smaller than $\operatorname{Err}^4_\gamma$ in all the considered cases. \begin{table}[htb] \scriptsize \caption{$\operatorname{Err}_u$ and $\operatorname{Err}^4_\gamma$ with respect to $\rho$ for the three cases of $\gamma$: $\gamma^1_{5,\rho}$ and $\gamma^2_{10,\rho}$.} \label{fgh} \renewcommand{\arraystretch}{1.5} \begin{center} \begin{tabular} {|l|*{10}{c|}} \hline $\gamma^1_{5,\rho}$ &\multicolumn{9}{r}{}& \\ \hline $\rho$ & 0.5 & 0.55 & 0.6 & 0.65 & 0.7 & 0.75 & 0.8 & 0.85 & 0.9 & 0.95 \\ \hline $\operatorname{Err}_u$ & 0.002 & 0.005 & 0.012 & 0.026 & 0.053 & 0.098 & 0.169 & 0.267 & 0.391 & 0.537 \\ \hline $\operatorname{Err}_\gamma$ & 0.022 & 0.051 & 0.109 & 0.2232 & 0.44 & 0.855 & 1.65 & 3.23 & 6.37 & 12.72\\ \hline \end{tabular} \\ \medskip \begin{tabular} {|l|*{10}{c|}} \hline $\gamma^2_{10,\rho}$ &\multicolumn{9}{r}{}& \\ \hline $\rho$ & 0.5 & 0.55 & 0.6 & 0.65 & 0.7 & 0.75 & 0.8 & 0.85 & 0.9 & 0.95 \\ \hline $\operatorname{Err}_u$ & 0.0002 & 0.0007 & 0.0018 & 0.0047 & 0.01182 & 0.02999 & 0.077 & 0.200 & 0.4833 & 0.5680\\ \hline $\operatorname{Err}_\gamma$ & 0.0263 & 0.0601 & 0.1301 & 0.2716 & 0.5574 & 1.1440 & 2.3757 & 5.0105 & 10.6903 & 22.8861\\ \hline \end{tabular} \end{center} \end{table} To show the dependency with $p$, we consider for example the functions $\gamma^1_{5,3/4}$ and $\gamma^3_{e^8,1/2}$ and we study the errors for different values of $p>2$. Figures \ref{fig2}(a) and \ref{fig2}(b) show $\operatorname{Err}^p_\gamma$ with respect to $p$. We remark that the corresponding curves increase with $p$ starting from $0.75$ for Figure \ref{fig2}(a) and from $0.34$ for the Figure \ref{fig2}(b), whereas the values of $\operatorname{Err}_u$ are $0,03$ for the first case $\gamma^1_{5,3/4}$ and $0.08$ for the third one $\gamma^3_{e^8,1/2}$. \begin{figure}[htb] \begin{center} \subfigure[$\operatorname{Err}^p_\gamma$ with respect to $p$ for $\gamma^1_{5,3/4}$] {\includegraphics[width=0.45\textwidth]{fig2a}} % Errgamma_F1_alpha_10_rho_3s4_different_p.pdf} \quad \subfigure[$\operatorname{Err}^p_\gamma$ with respect to $p$ $\gamma^3_{e^8,1/2}$] {\includegraphics[width=0.45\textwidth]{fig2b}} %Errgamma_F3_alpha_e8_rho_1s2_different_p.pdf} \end{center} \caption{$\operatorname{Err}^p_\gamma$ with respect to $p$ for the first and the third function $\gamma^i_{\alpha,\rho},i=1,3$.} \label{fig2} \end{figure} We remark that all the numerical results validate the theoretical estimates. \subsection*{Acknowledgments} The authors want to thank the anonymous referees for their careful reading of the orignal manuscript and for their suggestions. \begin{thebibliography}{9} \bibitem{CEES} M. A. Cherif, T. El Arwadi, H. Emamirad, J. M. Sac-\'ep\'ee; \emph{Dirichlet-to-Neumann semigroup acts as a magnifying glass}, Semigroup Forum, 88 (3), pp. 753-767 (2014). \bibitem{CoKnSi} H. Cornean, K. Knudsen, S. Siltanen; \emph{Towards a d-bar reconstruction method for three-dimensional EIT}, J. Inv. Ill-Posed Problems, 14, pp. 111-134, (2006). \bibitem{Toufic} T. El Arwadi; \emph{Error estimates for reconstructed conductivities via the Dbar method.} Num. Func. Anal. Optim 33 (1), pp.21-38, (2012). \bibitem{ElDiSa} T. El Arwadi, S. Dib, T.Sayah; \emph{A Priori and a Posteriori Error Analysis for a Linear Elliptic Problem with Dynamic Boundary Condition.} Journal of Applied Mathematics \& Information Sciences, 6 (9), doi :10.12785/amis/100121, (2015), pp 2205-3317. \bibitem{EmSh} H. Emamirad, M. Sharifitabar; \emph{On Explicit Representation and Approximations of Dirichlet-to-Neumann Semigroup}, Semigroup Forum, 86 (1), pp. 192-201 (2013). \bibitem{hecht} F. Hecht; \emph{New development in FreeFem++}, Journal of Numerical Mathematics, 20, pp. 251-266 (2012). \bibitem{Lax} P. D. Lax; \emph{Functional Analysis}, Wiley Inter-science, New-York, 2002. \bibitem{Lions} J. L. Lions, E. Magenes; \emph{Non Homogeneous Boundary Value Problems and Applications}, Vol. 1, Springer, 1972. \bibitem{JMSS} Jennifer L. Mueller, Samuli Siltanen; \emph{Direct Reconstructions of Conductivities from Boundary Measurements}, SIAM J. Sci. Comput., 24(4), pp. 1232-1266 (2003) \bibitem{MSS} Jennifer L. Mueller, Samuli Siltanen; \emph{Linear and Nonlinear Inverse Problems with Practical Applications}, \emph{SIAM 2012}. \bibitem{TaylorI:98} M. E. Taylor; \emph{Partial Differential Equations II: Qualitative Studies of Linear Equations.}, Springer-Verlag, New-York. 1998. \bibitem{TaylorII:98} M. E. Taylor; \emph{Pseudodifferential Operators}, Princeton University Press, New Jersey. 1998. \bibitem{s9}I. I. Vrabie; \emph{$C_0$-Semigroups and Applications}, North-Holland, Amsterdam, 2003. \end{thebibliography} \end{document}