\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 26, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/26\hfil Inverse spectral and inverse nodal problems] {Inverse spectral and inverse nodal problems for energy-dependent Sturm-Liouville equations with $\delta $-interaction} \author[M. Dzh. Manafov, A. Kablan \hfil EJDE-2015/26\hfilneg] {Manaf Dzh. Manafov, Abdullah Kablan} \dedicatory{In memory of M. G. Gasymov} \address{Manaf Dzh. Manafov \newline Faculty of Arts and Sciences, Department of Mathematics, Adiyaman University, \newline Adiyaman 02040, Turkey} \email{mmanafov@adiyaman.edu.tr} \address{Abdullah Kablan \newline Faculty of Arts and Sciences, Department of Mathematics, Gaziantep University, \newline Gaziantep 27310, Turkey} \email{kablan@gantep.edu.tr} \thanks{Submitted March 19, 2014. Published January 28, 2015.} \subjclass[2000]{34A55, 34B24, 34L05, 47E05} \keywords{Energy-dependent Sturm-Liouville equations; \hfill\break\indent inverse spectral and inverse nodal problems; point $\delta$-interaction} \begin{abstract} In this article, we study the inverse spectral and inverse nodal problems for energy-dependent Sturm-Liouville equations with $\delta$-interaction. We obtain uniqueness, reconstruction and stability using the nodal set of eigenfunctions for the given problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} We consider the boundary value problem (BVP) generated by the differential equation \begin{equation} -y''+q(x)y=\lambda ^2y, \quad x\in ( 0,\frac{\pi }{2} ) \cup ( \frac{\pi }{2},\pi ) \label{a1} \end{equation} with the boundary conditions \begin{equation} U(y):=y(0)=0,\quad V(y):=y'(\pi )=0 \label{a2} \end{equation} and at the point $x=\frac{\pi }{2}$ satisfying \begin{equation} \begin{gathered} y(\frac{\pi }{2}+0)=y(\frac{\pi }{2}-0)=y(\frac{\pi }{2}), \\ y'(\frac{\pi }{2}+0)-y'(\frac{\pi }{2}-0)=2\alpha \lambda y(\frac{\pi }{2}) \end{gathered} \label{a3} \end{equation} where $q(x)$ is a nonnegative real valued function in $L_2(0,\pi )$, $\alpha \neq \pm 1$ is real number and $\lambda $ is spectral parameter. Without loss of generality we assume that \begin{equation} \int_0^\pi q(x)dx=0. \label{a4} \end{equation} We denote the BVP \eqref{a1}, \eqref{a2} and \eqref{a3} by $L=L(q,\alpha )$. Notice that, we can understand problem \eqref{a1} and \eqref{a3} as studying the equation \begin{equation} y''+(\lambda ^2-2\lambda p(x)-q(x))y=0,\quad x\in (0,\pi) \label{a5} \end{equation} when $p(x)=\alpha \delta (x-\frac{\pi }{2})$, where $\delta (x)$ is the Dirac function (see \cite{Albeverio}). We consider the inverse problems of recovering $q(x)$ and $\alpha $ from the given spectral and nodal characteristics. Such problems play an important role in mathematics and have many applications in natural sciences (see, for example, monographs \cite{Freiling 1,Levitan,Marchenko,Poschel}). Inverse nodal problems consist in constructing operators from the given nodes (zeros) of eigenfunctions (see \cite{Cheng,Hold,Law,McLaughlin,Shen}). Discontinuous inverse problems (in various formulations) have been considered in \cite{Amirov,Freiling 2,Hryniv,Savchuk,Shepelsky, Shieh,Yang}. Sturm-Liouville spectral problems with potentials depending on the spectral parameter arise in various models quantum and classical mechanics. There $\lambda ^2$ is related to the energy of the system, this explaining the term ``energy-dependent'' in \eqref{a5}. The non-linear dependence of equation \eqref{a5} on the spectral parameter $\lambda $ should be regarded as a spectral problem for a quadratic operator pencil. The inverse spectral and nodal problems for energy-dependent Schr\"{o}dinger operators with $p(x)\in W_2^{1}(0,1)$ and $q(x)\in L_2[0,1]$ and with Robin boundary conditions was discussed in \cite{Buterin}, \cite{Gsymov}. Such problems for separated and nonseparated boundary conditions were considered (see \cite{Akhtyamov,Geseinov,Yurko2} and the references therein). The inverse scattering problem for equation \eqref{a5} with eigenparameter-dependent boundary condition on the half line solved in \cite{Manafov}. In this article we obtain some results on inverse spectral and inverse nodal problems and establish connections between them. \section{Inverse spectral problems} In this section we study so-called incomplete inverse problem of recovering the potential $q(x)$ from a part of the spectrum BVP $L$. The technique employed is similar to those used in \cite{Hochstadt,Ramm}. Similar problems for the Sturm-Liouville and Dirac operators were formulated and studied in \cite{Mochizuki 1,Mochizuki 2}. Let $y(x)$ and $z(x)$ be continuously differentiable functions on the intervals $(0,\pi/2)$ and $(\pi/2,\pi )$. Denote $\langle y,z\rangle :=yz'-y'z$. If $y(x)$ and $z(x)$ satisfy the matching conditions \eqref{a3}, then \begin{equation} \langle y,z\rangle _{x=\frac{\pi }{2}-0}=\langle y,z\rangle _{x=\frac{\pi }{2}+0} \label{b1} \end{equation} i.e. the function $\langle y,z\rangle $ is continuous on $( 0,\pi ) $. Let $\varphi (x,\lambda )$ be solution of equation \eqref{a1} satisfying the initial conditions $\varphi (0,\lambda )=0$, $\varphi '(0,\lambda)=1$ and the matching condition \eqref{a3}. Then $U(\varphi )=0$. Denote \begin{equation} \Delta (\lambda ):=-V(\varphi )=-\varphi '(\pi ,\lambda ). \label{b2} \end{equation} By \eqref{b1} and the Liouville's formula (see \cite[p.83]{Coddington}), $\Delta (\lambda )$ does not depend on $x$. The function $\Delta (\lambda )$ is called characteristic function on $L$. \begin{lemma} \label{lem1} The eigenvalues of the BVP $L$ are real, nonzero and simple. \end{lemma} \begin{proof} Suppose that $\lambda $ is an eigenvalue BVP $L$ and that $y(x,\lambda )$ is a corresponding eigenfunction such that $\int_0^\pi | y(x,\lambda )| ^2dx=1$. Multiplying both sides of \eqref{a1} by $\overline{y(x,\lambda )}$ and integrate the result with respect to $x$ from $0$ to $\pi$: \begin{equation} -\int_0^\pi y''(x,\lambda )\overline{ y(x,\lambda )}dx+\int_0^\pi q(x)| y(x,\lambda )| ^2dx=\lambda ^2\int_0^\pi | y(x,\lambda )| ^2dx \label{b3} \end{equation} Using the formula of integration by parts and the conditions \eqref{a2} and \eqref{a3} we obtain \[ \int_0^\pi y''(x,\lambda )\overline{y(x,\lambda )}dx =-2\alpha \lambda | y(0,\lambda )| ^2-\int_0^\pi | y'(x,\lambda)| ^2dx. \] It follows from this and \eqref{b3} that \begin{equation} \lambda ^2+B(\lambda )\lambda +C(\lambda )=0, \label{b4} \end{equation} where \begin{gather*} B(\lambda )=-2\alpha .| y(0,\lambda )| ^2,\\ C(\lambda )=-\int_0^\pi q(x)| y(x,\lambda )| ^2dx-\int_0^\pi | y'(x,\lambda )| ^2dx. \end{gather*} Thus the eigenvalue $\lambda $ of the BVP $L$ is a root of the quadratic equation \eqref{b4}. Therefore, $B^2(\lambda )-4C(\lambda )>0$. Consequently, the equation \eqref{b4} has only real roots. Let us show that $\lambda _0$ is a simple eigenvalue. Assume that this is not true. Suppose that $y_1(x)$ and $y_2(x)$ are linearly independent eigenfunctions corresponding to the eigenvalue $\lambda _0$. Then for a given value of $\lambda _0$, each solution $y_0(x)$ of \eqref{a5} will be given as linear combination of solutions $y_1(x)$ and $y_2(x)$. Moreover it will satisfy boundary conditions \eqref{a2} and conditions \eqref{a3} at the point $x=\pi/2$. However it is impossible. \end{proof} \begin{lemma} \label{lem2} The BVP $L$ has a countable set of eigenvalues $\{\lambda _n\}_{n\geq 1}$. Moreover, as $n\to \infty $, \begin{equation} \lambda _n:=n-\frac{\theta }{\pi }+\frac{1}{2(\pi n-\theta )} (w_0+(-1)^{n-1}w_1)+o( \frac{1}{n}) , \label{b5} \end{equation} where \begin{equation} \tan \theta =\frac{1}{\alpha },\quad w_0=\int_0^\pi q(t)dt,\quad w_1=\frac{\alpha }{\sqrt{1+\alpha ^2}} \Big( \int_0^{\pi/2} q(t)dt-\int_{\pi/2}^{\pi} q(t)dt\Big) . \label{b55} \end{equation} \end{lemma} \begin{proof} Let $\tau :=\operatorname{Im}\lambda $. For $| \lambda |\to \infty $ uniformly in $x$ one has (see \cite[Chapter 1]{Yurko1}) \begin{gather} \varphi (x,\lambda )=\frac{\sin \lambda x}{\lambda }-\frac{\cos \lambda x}{ 2\lambda ^2}\int_0^x q(t)dt+o\Big( \frac{1}{ \lambda ^2}\exp (| \tau | x)\Big) ,\quad x<\frac{\pi }{2}, \label{b6} \\ \label{b7} \begin{aligned} &\varphi (x,\lambda )\\ &= \frac{1}{\lambda }\Big( \sqrt{1+\alpha ^2}\cos (\lambda x+\theta )+\alpha \cos \lambda (\pi -x)\Big) +\sqrt{1+\alpha ^2} \frac{\sin (\lambda x+\theta )}{2\lambda ^2} \int_0^x q(t)dt \\ &\quad +\alpha \frac{\sin \lambda (\pi -x)}{2\lambda ^2} \Big(\int_0^{\pi/2} q(t)dt -\int_{\pi/2}^x q(t)dt\Big) +o\Big( \frac{1}{\lambda ^2}\exp (| \tau | x)\Big) ,\quad x>\frac{\pi }{2} \end{aligned} \\ \varphi '(x,\lambda ) =\cos \lambda x+\frac{\sin \lambda x}{2\lambda }\int_0^x q(t)dt+o\Big( \frac{1}{\lambda }\exp (| \tau | x)\Big) ,\quad x<\frac{\pi }{2} \label{b8}\\ \label{b9} \begin{aligned} &\varphi '(x,\lambda )\\ &=-\sqrt{1+\alpha ^2}\sin (\lambda x+\theta)+\alpha \sin \lambda (\pi -x) +\sqrt{1+\alpha ^2}\frac{\cos (\lambda x+\theta )}{2\lambda } \int_0^x q(t)dt \\ &\quad -\alpha \frac{\cos \lambda (\pi -x)}{2\lambda } \Big(\int_0^{\pi/2} q(t)dt -\int_{\pi /2}^x q(t)dt\Big) +o\Big( \frac{1}{\lambda }\exp (| \tau | x)\Big) ,\quad x>\frac{\pi }{2} \end{aligned} \end{gather} It follows from \eqref{b9} that as $| \lambda | \to \infty $ \begin{equation} \label{b10} \begin{aligned} \Delta (\lambda ) &=\sqrt{1+\alpha ^2}\sin (\lambda \pi +\theta )-\sqrt{ 1+\alpha ^2}\frac{\cos (\lambda \pi +\theta )}{2\lambda } \int_0^{\pi} q(t)dt \\ &\quad +\frac{\alpha }{2\lambda }\Big( \int_0^{\pi /2}q(t)dt -\int_{\pi /2}^{\pi} q(t)dt\Big) +o\Big( \frac{1 }{\lambda }\exp (| \tau | x)\Big) . \end{aligned} \end{equation} Using \eqref{b10} and Rouch\'e's theorem, by the well-known method (see \cite{Freiling 1}) one has that as $n\to \infty $, \[ \lambda _n:=n-\frac{\theta }{\pi }+\frac{1}{2(\pi n-\theta )} (w_0+(-1)^{n-1}w_1)+o( \frac{1}{n}) . \] \end{proof} Together with $L$ we consider a BVP $\tilde{L}=\tilde{L}(\tilde{q},\alpha )$ of the same form but with different coefficient $\tilde{q}$. The following theorem has been proved in \cite{Horvarth} for the Sturm-Liouville equation. We show it also holds for \eqref{a1}-\eqref{a3}. \begin{theorem} \label{thm1} If for any $n\in\mathbb{N}\cup \{0\}$, \[ \lambda _n=\tilde{\lambda}_n,\quad \langle y_n,\tilde{y}_n\rangle_{x=\frac{\pi }{2} -0}=0, \] then $q(x)=\tilde{q}(x)$ almost everywhere (a.e) on $(0,\pi )$. \end{theorem} \begin{proof} Since \begin{gather*} -y''(x,\lambda )+q(x)y(x,\lambda )=\lambda ^2y(x,\lambda ), \quad -\tilde{y}''(x,\lambda )+\tilde{q}(x)\tilde{y}(x,\lambda )=\lambda ^2\tilde{y}(x,\lambda ), \\ y(0,\lambda )=0,\quad y'(0,\lambda )=1, \quad \tilde{y}(0,\lambda )=0,\quad \tilde{y}'(0,\lambda )=1, \end{gather*} it follows from \eqref{b1} that \begin{equation} \int_0^{\pi/2} r(x)y(x,\lambda )\tilde{y}(x,\lambda)dx =\langle y,\tilde{y}\rangle_{x=\frac{\pi }{2}-0} \label{b11} \end{equation} where $r(x)=q(x)-\tilde{q}(x)$. Since $\langle y_n,\tilde{y}_n\rangle_{x=\frac{\pi }{2}-0}=0$ for $n\in \mathbb{N}\cup \{0\}$, it follows from \eqref{b11} that \begin{equation} \int_0^{\pi/2} r(x)y(x,\lambda _n)\tilde{y} (x,\lambda _n)dx=0,\quad n\in \mathbb{N}\cup \{0\}. \label{b12} \end{equation} For $x\leq \pi /2$ the following representation holds (see \cite{Levitan,Marchenko}); \[ y(x,\lambda )=\frac{\sin \lambda x}{\lambda }+\int_0^x K(x,t) \frac{\sin \lambda x}{\lambda }dt, \] where $K(x,t)$ is a continuous function which does not depend on $\lambda $. Hence \begin{equation} 2\lambda ^2y(x,\lambda )\tilde{y}(x,\lambda ) =1-\cos 2\lambda x-\int_0^x V(x,t)\cos 2\lambda tdt, \label{b13} \end{equation} where $V(x,t)$ is a continuous function which does not depend on $\lambda $. Substituting \eqref{b13} into \eqref{b12} and taking the relation \eqref{a4} into account, we calculate \[ \int_0^{\pi/2} \Big( r(x)+\int_x^{\pi/2} V(t,x)r(x)dt\Big) \cos 2\lambda _nxdx=0, \quad n\in \mathbb{N}\cup \{0\}, \] which implies from the completeness of the function cosine, that \[ r(x)+\int_x^{\pi/2} V(t,x)r(x)dt=0\quad \text{a.e. on } [ 0,\frac{\pi }{2}] . \] But this equation is a homogeneous Volterra integral equation and has only the zero solution, it follows that $r(x)=0$ a.e. on $[0,\frac{\pi }{2}]$. To prove that $q(x)=\tilde{q}(x)$ a.e. on $[\pi/2,\pi ]$ we will consider the supplementary problem $\hat{L}$; \begin{gather*} -y''(x,\lambda )+q_1(x)y(x,\lambda )=\lambda ^2y(x,\lambda ),\quad q_1(x)=q(\pi -x),\quad 0\frac{\pi }{2}. \end{aligned} \end{gather} For the BVP $L$ an analog of Sturm's oscillation theorem is true. More precisely, the eigenfunction $y_n(x)$ has exactly $(n-1)$ (simple) zeros inside the interval $(0,\pi ):$ $0