\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb,mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 261, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/261\hfil Porous medium equation in Besov spaces] {Well-posedness and blowup criterion of generalized porous medium equation in \\ Besov spaces} \author[X. Zhou, W. Xiao, T. Zheng \hfil EJDE-2015/261\hfilneg] {Xuhuan Zhou, Weiliang Xiao, Taotao Zheng} \address{Xuhuan Zhou \newline Department of Mathematics, Zhejiang University, Hangzhou 310027, China} \email{zhouxuhuan@163.com} \address{Weiliang Xiao \newline chool of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, China} \email{xwltc123@163.com} \address{Taotao Zheng \newline Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, China} \email{taotzheng@126.com} \thanks{Submitted June 25, 2015. Published October 7, 2015.} \subjclass[2010]{35K15, 35K55, 35Q35, 76S05} \keywords{Generalized porous medium equation; well-posedness; \hfill\break\indent blowup criterion; Besov spaces} \begin{abstract} We study the generalized porous medium equation of the form $u_t+\nu \Lambda^{\beta}u=\nabla\cdot(u\nabla Pu)$ where $P$ is an abstract operator. We obtain the local well-posedness in Besov spaces for large initial data, and show the solution becomes global if the initial data is small. Also, we prove a blowup criterion for the solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{claim}[theorem]{Claim} \allowdisplaybreaks \section{Introduction} In this article, we study the equation in $\mathbb{R}^n$ of the form \begin{equation}\label{pme} \begin{gathered} u_t+\nu \Lambda^{\beta}u=\nabla\cdot(u\nabla Pu); \\ u(0,x)=u_0. \end{gathered} \end{equation} Here $u=u(t,x)$ ia a real-valued function, represents a density or concentration. The dissipative coefficient $\nu>0$ corresponds to the viscous case, while $\nu=0$ corresponds to the inviscid case. The fractional operator $\Lambda^{\beta}$ is defined by Fourier transform as $(\Lambda^{\beta}u)^{\wedge}=|\xi|^{\beta}\hat{u}$, and $P$ is an abstract operator. The general form of equation \eqref{pme} has good suitability in many cases. The simplest case $\nu=0$, $Pu=u$ comes from a model in groundwater infiltration, that is, $u_t=\Delta u^2$ (see \cite{bear01,vazquez01}). We call \eqref{pme} generalized porous medium equation (GPME) inspired by Caffarelli and V\'azquez \cite{caffarelli01}, in which they introduced the fractional porous medium flow (FPME) when $\nu=0$ and $Pu=\Lambda^{-2s}u,00$ such that if $\|u_0\|_{\dot{B}_{p,1}^{\frac np+\sigma-\beta+1}}< C_0$, then $T^*=\infty$; \item[(ii)] if $T^*<\infty$, then $\int_0^{T^*}\|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}dt=\infty$. \end{itemize} \end{theorem} \begin{remark} \label{rmk1.1} \rm In the case of aggregation equation, Wu and Zhang \cite{wu01} proved a similar result under the condition $\nabla K\in W^{1,1}$, $\beta\in (0,1)$. Corresponding to their case we prove same result for $\sigma=0$, that is $\nabla K\in L^1$, $\beta\in (1,2)$, and also a similar result for $\sigma=-1$; that is, $\nabla K\in \dot{W}^{1,1}$, $\beta\in (0,1)$. \end{remark} Throughout this article, $C$ denotes a positive constant that may differ line by line, the notation $A\lesssim B$ means $A\leq CB$, and $A\sim B$ denotes $A\lesssim B$ and $B\lesssim A$. \section{Preliminaries} Let us recall some basic knowledge on Littlewood-Paley theory and Besov spaces. Let $\mathscr{S}(\mathbb{R}^n)$ be the Schwartz class and $\mathscr{S}'$ be its dual space. Given $f\in\mathscr{S}(\mathbb{R}^n)$, we use its Fourier transform $\mathcal{F}f=\hat{f}$ as \[ \hat{f}=(2\pi)^{-n/2}\int_{\mathbb{R}^n}e^{-ix\cdot\xi}f(x)dx. \] Let $\varphi\in C_c^{\infty}(\mathbb{R}^n)$ be a radial real-valued smooth function such that $0\leq\varphi(\xi)\leq1$ and $$ \operatorname{supp} \varphi\subset\{\xi\in \mathbb{R}^n:\frac34 \leq|\xi|\leq\frac83\},\quad \sum_{j\in Z}\varphi(2^{-j}\xi)=1\ \text{for any}\ \xi\neq0. $$ We denote $\varphi_{_j}(\xi)=\varphi(2^{-j}\xi)$ and $\mathbb{P}$ the set of all polynomials. Setting $h=\mathcal{F}^{-1}\varphi$, we define the frequency localization operators as follows: \[ \Delta_ju=\varphi(2^{-j}D)u=2^{jn}\int_{\mathbb{R}^n}h(2^jy)u(x-y)dy, \quad S_jf=\sum_{k\leq j-1}\Delta_ku. \] \begin{definition}\label{def21} \rm For $s\in \mathbb{R},p,q\in[1,\infty]$, we define the homogeneous Besov space $\dot{B}_{p,q}^s$ as \begin{align*} \dot{B}_{p,q}^s=\{f\in \mathscr{S}'/\mathbb{P}:\|f\|_{\dot{B}_{p,q}^s} =\Big(\sum_{j\in\mathbb{Z}}2^{jsq}\|\Delta_jf\|_{L^p}^q\Big)^{1/q}<\infty\}. \end{align*} Here the norm changes normally when $p=\infty$ or $q=\infty$. \end{definition} \begin{definition}\label{def22} \rm In this paper, we need two kinds of mixed time-space norm defined as follows: For $s\in \mathbb{R},1\leq p,q\leq\infty,I=[0,T),T\in(0,\infty]$, and $X$ a Banach space with norm $\|\cdot\|_X$ where \begin{gather*} \|f(t,x)\|_{L^r(I;X)}:=\Big(\int_I\|f(\tau,\cdot)\|^r_{X}d\tau\Big)^{1/r}, \\ \|f(t,x)\|_{\mathcal{L}^r(I;\dot{B}_{p,q}^s)} :=\Big(\sum_{j\in\mathbb{Z}}2^{jsq}\|\Delta_jf\|^q_{L^r(I;L^p)}\big)^{1/q}. \end{gather*} By Minkowski' inequality, there holds \begin{equation} \label{estimate21} \begin{gathered} L^r(I;\dot{B}_{p,q}^s)\hookrightarrow \mathcal{L}^r(I;\dot{B}_{p,q}^s),\quad \text{if } r\leq q, \\ \mathcal{L}^r(I;\dot{B}_{p,q}^s)\hookrightarrow L^r(I;\dot{B}_{p,q}^s),\quad \text{if } r\geq q. \end{gathered} \end{equation} \end{definition} Now we state some basic properties about the homogeneous Besov spaces. \begin{proposition}[\cite{bahouri01}] \label{prop01} For $s\in\mathbb{R},1\leq p,q\leq\infty$, the following hold: \begin{itemize} \item[(i)] Let $\beta\in \mathbb{R}$, we have the equivalence of norms: $\|\Lambda^\beta f\|_{\dot{B}_{p,q}^s}\sim \|f\|_{\dot{B}_{p,q}^{s+\beta}}$. \item[(ii)] If $p_1\leq p_2,q_1\leq q_2$, then $\dot{B}_{p_1,q_1}^s\hookrightarrow \dot{B}_{p_2,q_2}^{s-n({1}/{p_1}-{1}/{p_2})}$. \item[(iii)] Let $1\leq p,q\leq\infty,s_1,s_2<\frac{n}{p}$ when $q>1$ (or $s_1,s_2\leq\frac{n}{p}$ when $q=1$), and $s_1+s_2>0$, there holds $$ \|uv\|_{\dot{B}_{p,q}^{s_1+s_2-\frac{n}{p}}} \leq C\|u\|_{\dot{B}_{p,q}^{s_1}}\|v\|_{\dot{B}_{p,q}^{s_2}}, $$ where $C>0$ be a constant depending on $s_1,s_2,p,q,n$. \end{itemize} \end{proposition} \begin{lemma}[Bernstein's inequalities \cite{chen01}]\label{bernstein} Set $\mathcal {B}$ to be a ball and $\mathcal {C}$ to be an annulus, and let $1\leq p\leq q\leq \infty$, $\alpha\in (\{0\}\cup\mathbb{N})^n$, then the following estimates hold: \begin{itemize} \item[(i)] If $\operatorname{supp}\widehat{f}\in 2^j\mathcal{B}$, $\beta+|\alpha|\geq0$, then $$ \|\Lambda^{\beta}D^{\alpha}f\|_{L^q}\leq C2^{j(\beta+|\alpha|+n(1/p-1/q))}\|f\|_{L^p}. $$ \item[(ii)] If $\operatorname{supp}\,\widehat{f}\in 2^j\mathcal{C}$, then \begin{gather*} C2^{j(\beta+|\alpha|)}\|f\|_{L^p}\leq\|\Lambda^{\beta}D^{\alpha}f\|_{L^p} \leq C'2^{j(\beta+|\alpha|)}\|f\|_{L^p}, \end{gather*} where $C\leq C'$ are positive constants independent of $j$. \end{itemize} \end{lemma} \begin{lemma}[\cite{bahouri01}] Let $\mathcal{C}$ ba an annulus. If $\operatorname{supp}\,\widehat{f}\subset2^j\mathcal{C}$, then positive constant $c>0$ exists such that for any $t>0$, there holds $$ \|e^{-t\Lambda^{\beta}}f\|_{L^p}\leq Ce^{-ct2^{j\beta}}\|f\|_{L^p}. $$ \end{lemma} \begin{lemma}[\cite{miao01}]\label{lem21} Let $s\in \mathbb{R}$ and $1\leq p\leq p_1\leq \infty$. Set $R_j:=(S_{j-1}v-v)\cdot \nabla \Delta_ju-[\Delta_j,v\cdot\nabla]u$. There exists a constant $C=C(n,s)$ such that \begin{align*} 2^{js}\|R_j\|_{L^{p}} &\leq C\Big(\sum_{|j-j'|\leq4}\|S_{j'-1}\nabla v\|_{L^{\infty}}2^{j's} \|\Delta_{j'}u\|_{L^p} \\ &\quad +\sum_{j'\geq j-3}2^{j-j'}\|\Delta_{j'}\nabla v\|_{L^{\infty}}2^{js} \|\Delta_{j}u\|_{L^p} \\ &\quad +\sum_{\substack{|j'-j|\leq4\\j''\leq j'-2}}2^{(j-j'') (s-1-\frac{n}{p_1})}2^{j'\frac{n}{p_1}} \|\Delta_{j'}\nabla v\|_{L^{p_1}}2^{j''s}\|\Delta_{j''}u\|_{L^{p}} \\ &\quad +\sum_{\substack{j'\geq j-3\\|j''-j'|\leq1}}2^{(j-j') (s+n\min(\frac{1}{p_1},\frac{1}{p'}))} 2^{j'\frac{n}{p_1}}(2^{j-j'}\|\Delta_{j'}\nabla v\|_{L^{p_1}}\\ &\quad +\|\Delta_{j'}\nabla\cdot v\|_{L^{p_1}}) 2^{j''s}\|\Delta_{j''}u\|_{L^p}\Big). \end{align*} \end{lemma} Now we recall a priori estimates needed in our proof. Consider the transport-diffusion equation \begin{equation} \label{TDnubeta} \partial_t u+v\cdot\nabla u+ \nu \Lambda^{\beta}u=f,\quad u(0,x)=u_0(x). \end{equation} \begin{lemma}[\cite{miao01}] \label{transport} Let $1\leq r_1\leq r\leq\infty,1\leq p\leq p_1\leq\infty$ and $1\leq q\leq\infty.$ Assume $s\in \mathbb{R}$ satisfies the following conditions: \begin{gather*} s<1+\frac{n}{p_1}\quad (\text{or } s\leq \frac {n}{p_1},\text{if}\ q=1), \\ s>-\min{(\frac{n}{p_1},\frac{n}{p'})}\quad (\text{or } s>-1-\min{(\frac{n}{p_1},\frac{n}{p'})}, \text{if}\operatorname{div} u=0). \end{gather*} There exists a positive constant $C=C(n,\beta,s,p,p_1,q)$ such that for any smooth solution $u$ of \eqref{TDnubeta} with $\nu\geq0$, the following a priori estimate holds: $$ \nu^{1/r}\|u\|_{\mathcal{L}_T^r\dot{B}_{p,q}^{s+\beta/r}} \leq Ce^{CZ(T)}\big(\|u_0\|_{\dot{B}_{p,q}^s} +\nu^{1/{r_1}-1}\|f\|_{\mathcal{L}_T^{r_1} \dot{B}_{p,q}^{s-\beta+\beta/{r_1}}}\big), $$ where $Z(T)=\int_0^T\|\nabla v(t)\|_{\dot{B}_{p_1,\infty}^{n/{p_1}} \cap L^{\infty}}dt$. \end{lemma} \section{Local and global well-posedness} In this section we prove our main theorem. We first rewrite \eqref{pme} as \begin{gather*} u_t+\Lambda^{\beta}u+v\cdot\nabla u=u(\Delta Pu); \\ v=-\nabla Pu; \\ u(0,x)=u_0. \end{gather*} \subsection*{Step 1: Approximate solutions} In this step we construct approximate equations, and prove the boundedness of the approximate solutions. Set $u^0=e^{-t\Lambda^{\beta}}u_0(x)$ and let $u^{m+1}$ be the solution of the linear equation \begin{equation}\label{linear} \begin{gathered} u^{m+1}_t+\Lambda^{\beta}u^{m+1}+v^m\cdot\nabla u^{m+1}=u^m(\Delta Pu^m); \\ v^m=-\nabla Pu^m; \\ u^{m+1}(0,x)=u_0. \end{gathered} \end{equation} Set $X=\dot{B}_{p,1}^{\frac np+\sigma-\beta}\cap \dot{B}_{p,1}^{\frac np+\sigma-\beta+1}$ and $Y=\dot{B}_{p,1}^{\frac np+\sigma}\cap \dot{B}_{p,1}^{\frac np+\sigma+1}$. It is easy to show $$ u^0\in \mathcal{L}^{\infty}(\mathbb{R}^+;X) \cap \mathcal{L}^{1}(\mathbb{R}^+;Y). $$ Now by induction, we deduce $u^m$ belongs to the same spaces. In fact, by Lemma \ref{transport} \begin{equation} \label{Linfty} \begin{split} &\|u^{m+1}\|_{\mathcal{L}_T^{\infty} \dot{B}_{p,1}^{n/p+\sigma-\beta+1}} +\|u^{m+1}\|_{\mathcal{L}_T^{1} \dot{B}_{p,1}^{n/p+\sigma+1}} \\ &\lesssim e^{c\int_0^T\|\nabla v^m(t)\|_{\dot{B}_{p,\infty}^{n/p} \cap L^{\infty}}dt} \big(\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta+1}}\\ &\quad +\|u^m(\Delta Pu^m)\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p+\sigma-\beta+1}}\big) \\ &\lesssim e^{c\int_0^T\|\nabla v^m(t)\|_{\dot{B}_{p,1}^{n/p}}dt} \big(\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta+1}}\\ &\quad +\|u^m\|_{L_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta+1}} \|\Delta Pu^m\|_{L_T^{1}\dot{B}_{p,1}^{n/p}}\big) \\ &\lesssim e^{c\|u^m\|_{L_T^1\dot{B}_{p,1}^{n/p+\sigma+1}}} \big(\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta+1}}\\ &\quad +\|u^m\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta+1}} \|u^m\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p+\sigma+1}}\big). \end{split} \end{equation} Similarly, we conclude that \begin{equation} \label{estimate03} \begin{split} &\|u^{m+1}\|_{\mathcal{L}_T^{\infty} \dot{B}_{p,1}^{n/p+\sigma-\beta}} +\|u^{m+1}\|_{\mathcal{L}_T^{1} \dot{B}_{p,1}^{n/p+\sigma}} \\ &\lesssim e^{c\|u^m\|_{L_T^1\dot{B}_{p,1}^{n/p+\sigma+1}}} \big(\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}} +\|u^m\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}} \|u^m\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p+\sigma+1}}\big). \end{split} \end{equation} Thus for all $m\in N$, we have $u^m\in \mathcal{L}^{\infty}(\mathbb{R}^+;X)\cap \mathcal{L}^{1}(\mathbb{R}^+;Y)$. \subsection*{Step 2: Uniform estimates} We prove the key uniform estimates during this step. Set $u_j:=\Delta_ju,\ f_j:=\Delta_j(u^m\Delta Pu^m)$. Then we can obtain \begin{claim}\label{claim01} There exists $T_1\leq T$, such that for all $t\in[0,T_1]$ \begin{align*} \|u^{m+1}\|_{\mathcal{L}_t^r\dot{B}_{p,1}^{s+\beta/r}} &\lesssim \sum_{j\in \mathbb{Z}} \big(1-e^{-ctr2^{j\beta}}\big)^{1/r}2^{js} \|u_{0,j}\|_{L^p}\\ &\quad +\sum_{j\in \mathbb{Z}}\int_0^t2^{js}\big(\|f_j\|_{L^p}+\|R_j\|_{L^p}\big)d\tau, \end{align*} where $R_j:=(S_{j-1}v^m-v^m)\cdot \nabla u_j^{m+1}-[\Delta_j,v^m\cdot\nabla]u^{m+1}$. \end{claim} We postpone the proof of this claim to the appendix. Taking $s=\frac np+\sigma-\beta+1$ and $\rho$ large enough such that $\sigma+1+\beta/{\rho}\leq\beta$. Then by Proposition \ref{prop01} with $s_1=n/p+\sigma+1-\beta+\beta/r,s_2=n/p-\beta/r$, there holds \[ \sum_{j\in \mathbb{Z}}\int_0^t2^{j(n/p+\sigma+1-\beta)}\|f_j\|_{L^p}d\tau \lesssim \|u^m\|_{L_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/{\rho}}} \|u^m\|_{L_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/{\rho}}}. \] Taking $\rho$ large enough and using Lemma \ref{lem21} with $s=n/p+1+\sigma-\beta,p_1=p$, \begin{align*} &\sum_{j\in \mathbb{Z}}\int_0^t2^{j(n/p+\sigma+1-\beta)}\|R_j\|_{L^p}d\tau\\ &\lesssim \|u^{m+1}\|_{L_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/{\rho}}} \|u^m\|_{L_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/{\rho}}}. \end{align*} Hence for $r\geq1$ and $\rho$ large enough, we have \begin{equation} \label{key} \begin{split} &\|u^{m+1}\|_{\mathcal{L}_t^r\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/r}}\\ &\lesssim \sum_{j\in \mathbb{Z}} \big(1-e^{-ctr2^{j\beta}}\big)^{1/r}2^{j(n/p+\sigma+1-\beta)} \|u_{0,j}\|_{L^p} \\ &\quad +\|u^{m}\|_{L_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/{\rho}}} \|u^m\|_{L_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/{\rho}}} \\ &\quad +\|u^{m+1}\|_{L_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/{\rho}}} \|u^m\|_{L_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/{\rho}}}. \end{split} \end{equation} Now by \eqref{key} with $r=\rho$ and the fact that $\big(1-e^{-ct\rho'2^{j\beta}}\big)^{1/\rho'} \leq\big(1-e^{-ct\rho2^{j\beta}}\big)^{1/\rho}$ for $\rho$ large, \begin{align*} &\|u^{m+1}\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}} +\|u^{m+1}\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}} \\ &\lesssim \sum_{j\in \mathbb{Z}} \big(1-e^{-ct\rho2^{j\beta}}\big)^{1/\rho}2^{j(n/p+\sigma+1-\beta)} \|u_{0,j}\|_{L^p} \\ &\quad +\|u^m\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}} \|u^m\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}} \\ &\quad +\|u^{m+1}\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}} \|u^m\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}}. \end{align*} By Lebesgue dominated convergence theorem, for $\rho<\infty$, we have \begin{align*} \lim_{t\mapsto0^+}\sum_{j\in \mathbb{Z}} \big(1-e^{-ct\rho2^{j\beta}}\big)^{1/\rho}2^{j(n/p+\sigma+1-\beta)} \|u_{0,j}\|_{L^p}=0. \end{align*} Now we set \begin{align*} T=\sup\big\{t>0:c\sum_{j\in \mathbb{Z}} \big(1-e^{-ct\rho2^{j\beta}}\big)^{1/\rho}2^{j(n/p+\sigma+1-\beta)} \|u_{0,j}\|_{L^p}\leq \eta\big\}, \end{align*} for some $\eta>0$ sufficiently small. By definition of $u^0,\forall t\leq T$, we have \begin{align*} \|u^0\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}}\leq \eta,\quad \|u^0\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}}\leq\eta. \end{align*} Choosing $\eta$ small enough such that $c\eta\leq1/2$, \begin{equation} \label{u^1} \|u^{1}\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}} +\|u^{1}\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}} \leq3\eta. \end{equation} If we assume that \eqref{u^1} holds for $u^m$ and further take $\eta$ small enough such that $3c\eta\leq1/3$, we obtain \begin{equation} \label{u^m} \|u^{m+1}\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}} +\|u^{m+1}\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}} \leq3\eta. \end{equation} Thus by induction, we prove the uniform boundedness \eqref{u^m} for some suitable $\eta$ and $\forall t\leq T$. Let $r=1$ in \eqref{key}, since $\big(1-e^{-ct2^{j\beta}}\big)\leq\big(1-e^{-ct\rho2^{j\beta}}\big)^{1/\rho}$, we have \begin{align*} \|u^{m+1}\|_{\mathcal{L}_t^1\dot{B}_{p,1}^{n/p+\sigma+1}} &\lesssim \sum_{j\in \mathbb{Z}} \big(1-e^{-ct\rho2^{j\beta}}\big)^{1/\rho}2^{j(n/p+\sigma+1-\beta)} \|u_{0,j}\|_{L^p} \\ &\quad +\|u^m\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}} \|u^m\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}} \\ &\quad +\|u^{m+1}\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-\beta+\beta/\rho}} \|u^m\|_{\mathcal{L}_t^{\rho'}\dot{B}_{p,1}^{n/p+\sigma+1-\beta/\rho}}. \end{align*} This and \eqref{u^m} imply \begin{align} \label{ul1} \|u^{m+1}\|_{\mathcal{L}_t^1\dot{B}_{p,1}^{n/p+\sigma+1}} \leq \eta+18c\eta^2\leq3\eta. \end{align} Next we prove that $u^m$ are uniformly bounded in $\mathcal{L}_t^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}$. In fact, by \eqref{Linfty} \begin{align*} \|u^{m+1}\|_{\mathcal{L}_t^{\infty} \dot{B}_{p,1}^{n/p+\sigma+1-\beta}} \leq ce^{1/3}\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} +\frac13e^{1/3}\|u^m\|_{\mathcal{L}_t^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}. \end{align*} By induction, we conclude \begin{equation} \label{estimate22} \begin{split} &\|u^{m}\|_{\mathcal{L}_t^{\infty} \dot{B}_{p,1}^{n/p+\sigma+1-\beta}}\\ &\leq \frac{1-(\frac{1}{3}e^{1/3})^m}{1-\frac{1}{3}e^{1/3}}c e^{1/3} \|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} +\frac{e^{m/3}}{3^m}\|u^0\|_{\mathcal{L}_t^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} \\ &\leq (3ce^{1/3}+1)\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}. \end{split} \end{equation} Thus approximate solutions are uniformly bounded in the space $\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma +1-\beta}\cap\mathcal{L}_T^1\dot{B}_{p,1}^{n/p+\sigma+1}$. Now we return to \eqref{estimate03} and by the uniform estimate \eqref{ul1} \begin{equation} \label{estimate04} \begin{split} &\|u^{m+1}\|_{\mathcal{L}_T^{\infty} \dot{B}_{p,1}^{n/p+\sigma-\beta}} +\|u^{m+1}\|_{\mathcal{L}_T^{1} \dot{B}_{p,1}^{n/p+\sigma}} \\ &\lesssim e^{c\|u^m\|_{L_T^1\dot{B}_{p,1}^{n/p+\sigma+1}}} \big(\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}} +\|u^m\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}} \|u^m\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p+\sigma+1}}\big) \\ &\leq ce^{1/3}\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}} +\frac13e^{1/3}\|u^m\|_{\mathcal{L}_t^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}}. \end{split} \end{equation} Hence, similarly to \eqref{estimate22}, by induction again, \begin{align*} \|u^{m}\|_{\mathcal{L}_t^{\infty} \dot{B}_{p,1}^{n/p+\sigma-\beta}} \leq (3ce^{1/3}+1)\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}}. \end{align*} Substituting this into \eqref{estimate04} we conclude \begin{align*} \|u^{m}\|_{\mathcal{L}_t^{1} \dot{B}_{p,1}^{n/p+\sigma}} &\leq (4ce^{1/3}+1)\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}}. \end{align*} Thus we conclude that $(u^m)_{m\in\mathbb{N}}$ is uniformly bounded in $\mathcal{L}_T^{\infty}X\cap \mathcal{L}_T^{1}Y$. \subsection*{Step 3: Strong convergence} Let $(m,k)\in\mathbb{N}^2,m>k$ and $u^{m,k}=u^m-u^k,v^{m,k}=v^m-v^k$. Then $u^{m,k}$ satisfies the equation \begin{gather*} \begin{aligned} &u^{m+1,k+1}_t+\Lambda^{\beta}u^{m+1,k+1}+v^k\cdot\nabla u^{m+1,k+1}\\ &=u^{m,k}(\Delta Pu^m) +u^{k}(\Delta Pu^{m,k})-v^{m,k}\cdot\nabla u^{m+1}; \end{aligned} \\ v^{m,k}=-\nabla Pu^{m,k}; \\ u^{m+1,k+1}(0,x)=0. \end{gather*} Set $U^{m+1,k+1}(T)=\|u^{m+1,k+1}\|_{\mathcal{L}_T^{\rho} \dot{B}_{p,1}^{n/p+\sigma-\beta/\rho'}} +\|u^{m+1,k+1}\|_{\mathcal{L}_T^{\rho'}\dot{B}_{p,1}^{n/p+\sigma-\beta/\rho}}$. Applying Lemma \ref{transport} with $s=n/p+\sigma-\beta$, there holds \begin{align} \label{umk} \begin{split} &U^{m+1,k+1}(T) \\ &\lesssim e^{c\|\nabla v^k\|_{L_T^1\dot{B}_{p,1}^{n/p}}} \big(\|u^{m,k}(\Delta Pu^m)\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p+\sigma-\beta}} \\ &\quad +\|u^{k}(\Delta Pu^{m,k})\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p +\sigma-\beta}} +\|v^{m,k}\cdot\nabla u^{m+1}\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p +\sigma-\beta}}\big). \end{split} \end{align} Now applying Proposition \ref{prop01} with $s_1=n/p-\beta/\rho,s_2=n/p+\sigma-{\beta}/{\rho'}$, \[ \|v^{m,k}\cdot\nabla u^{m+1}\|_{\mathcal{L}_T^{1}\dot{B}_{p,1}^{n/p+\sigma-\beta}} \lesssim \|u^{m,k}\|_{\mathcal{L}_T^{\rho'} \dot{B}_{p,1}^{n/p+\sigma-{\beta}/{\rho}}} \|u^{m+1}\|_{\mathcal{L}_T^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-{\beta}/{\rho'}}}. \] Similarly, for $\rho$ large enough such that $\sigma+1+\beta/{\rho}\leq\beta$, we conclude \begin{align*} U^{m+1,k+1}(T) &\lesssim e^{c\|\nabla v^k\|_{L_T^1\dot{B}_{p,1}^{n/p}}} \big(\|u^{m,k}\|_{\mathcal{L}_T^{\rho'} \dot{B}_{p,1}^{n/p+\sigma-{\beta}/{\rho}}} \|u^{m+1}\|_{\mathcal{L}_T^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-{\beta}/{\rho'}}} \\ &\quad +\|u^{k}\|_{\mathcal{L}_T^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-{\beta}/{\rho'}}} \|u^{m,k}\|_{\mathcal{L}_T^{\rho'} \dot{B}_{p,1}^{n/p+\sigma-{\beta}/{\rho}}}\\ &\quad +\|u^{m,k}\|_{\mathcal{L}_T^{\rho'}\dot{B}_{p,1}^{n/p+\sigma-{\beta}/{\rho}}} \|u^{m}\|_{\mathcal{L}_T^{\rho}\dot{B}_{p,1}^{n/p+\sigma+1-{\beta}/{\rho'}}}\big) \\ &\leq c\eta U^{m,k}(T). \end{align*} Choosing $\eta$ small enough such that $c\eta<1$ and by induction, we conclude that $\{u^m\}$ is a Cauchy sequence in ${\mathcal{L}_T^{\rho} \dot{B}_{p,1}^{n/p+\sigma-\beta/{\rho'}}} \cap{\mathcal{L}_T^{\rho'} \dot{B}_{p,1}^{n/p+\sigma-\beta/{\rho}}}$. So $u^m$ hence converges strongly to some $u$ in it. Now by taking $r=1$ and $r=\infty$ in \eqref{key}, respectively, and by passing to the limit into the approximation equation, we can get a solution to in $\mathcal{L}_T^{\infty}X\cap \mathcal{L}_T^{1}Y$. \subsection*{Step 4: Uniqueness} Let $u_1,u_2\in \mathcal{L}_T^{\infty}X\cap \mathcal{L}_T^{1}Y$ be two solutions of \eqref{pme} with the same initial data. Let $u_{1,2}=u_1-u_2$, then \begin{gather*} \partial_tu_{1,2}+\Lambda^{\beta}u_{1,2}+v_2\cdot\nabla u_{1,2}=u_{1,2}(\Delta Pu_1) +u_{2}(\Delta Pu_{1,2})-v_{1,2}\cdot\nabla u_{1}; \\ v_{1,2}=-\nabla Pu_{1,2}; \\ u_{1,2}(0,x)=0. \end{gather*} According to Lemma \ref{transport}, \begin{align*} &\|u_{1,2}\|_{\mathcal{L}_t^{\infty} \dot{B}_{p,\rho}^{n/p+\sigma-\beta}}\\ &\lesssim e^{c\|u_2\|_{L_t^1\dot{B}_{p,1}^{n/p+\sigma+1}}} \big(\|u_{1,2}(\Delta Pu_1)\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,\rho}^{n/p+\sigma-2\beta+\beta/\rho}} \\ &\quad+\|u_{2}(\Delta Pu_{1,2})\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,\rho}^{n/p+\sigma-2\beta+\beta/\rho}} +\|v_{1,2}\cdot\nabla u_{1}\|_{\mathcal{L}_t^{\rho}\dot{B}_{p,\rho}^{n/p+\sigma-2\beta+\beta/\rho}}\big). \end{align*} By a similar argument as in Step 3, we have \begin{align*} &\|u_{1,2}\|_{\mathcal{L}_t^{\infty} \dot{B}_{p,\rho}^{n/p+\sigma-\beta}}^{\rho}\\ &\lesssim e^{c\rho\|u_2\|_{L_T^1\dot{B}_{p,1}^{n/p+\sigma+1}}} \int_0^t\|u_{1,2}\|_{L_{\tau}^{\infty} \dot{B}_{p,\rho}^{n/p+\sigma-\beta}}^{\rho} \big(\|u_{1}(\tau)\|_{\dot{B}_{p,\rho}^{n/p+\sigma+1-\beta+\beta/\rho}}^{\rho} \\ &\quad+\|u_{2}(\tau)\|_{\dot{B}_{p,\rho}^{n/p+\sigma+1-\beta+\beta/\rho}}^{\rho}\big)d\tau. \end{align*} Since the inclusion $\dot{B}_{p,1}^s\subset \dot{B}_{p,\rho}^s$ holds for any $\rho\in[1,\infty]$. Thus the Minkowski's inequality and Gronwall's inequality give that $u_1=u_2,\forall t\in[0,T]$. \subsection*{Step 5: Continuity in time} For all $t,t'\in[0,T)$, we have \begin{align*} &\|u(t)-u(t')\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}}\\ &\leq \sum_{j\leq N}2^{j(n/p+\sigma-\beta)}\|u_j(t)-u_j(t')\|_{L^p} +2 \sum_{j>N}2^{j(n/p+\sigma-\beta)}\|u_j\|_{L_T^{\infty}L^p}. \end{align*} Since $u\in L_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}$, for any $\epsilon>0$, we can choose $N$ large enough such that \[ \sum_{j>N}2^{j(n/p+\sigma-\beta)}\|u_j\|_{L_T^{\infty}L^p}\leq \frac{\epsilon}{4}. \] On the other hand, \begin{align*} \sum_{j\leq N}2^{j(n/p+\sigma-\beta)}\|u_j(t)-u_j(t')\|_{L^p} &\leq |t-t'|\sum_{j\leq N}2^{j(n/p+\sigma-\beta)}\|\partial_tu_j\|_{L_T^{\infty}L^p} \\ &\leq |t-t'|2^{N\beta}\|\partial_tu\|_{\mathcal{L}_T^{\infty} \dot{B}_{p,1}^{n/p+\sigma-2\beta}}. \end{align*} Now write \begin{align*} u_t=-\Lambda^{\beta}u-v\cdot\nabla u+u(\Delta Pu) \quad \text{and} \quad v=-\nabla Pu. \end{align*} Obviously, we have \[ \|\Lambda^{\beta}u\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-2\beta}} \leq \|u\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}}. \] Applying Proposition \ref{prop01} with $s_1=n/p-\beta,s_2=n/p+\sigma-\beta$, \begin{align*} \|v\cdot\nabla u\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-2\beta}} \leq \|u\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}} \|u\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}. \end{align*} Similarly, we have \begin{align*} \|u(\Delta Pu)\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-2\beta}} \leq \|u\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}} \|u\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}. \end{align*} Thus for $|t-t'|\leq (2^{N\beta} \|\partial_tu\|_{\mathcal{L}_T^{\infty}\dot{B}_{p,1}^{n/p+\sigma-2\beta}})^{-1} \frac{\epsilon}{2}$, we conclude \[ \|u(t)-u(t')\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}} \leq \epsilon. \] Hence $u\in C([0,T);\dot{B}_{p,1}^{n/p+\sigma-\beta})$. Similarly we obtain $u\in C([0,T);\dot{B}_{p,1}^{n/p+\sigma+1-\beta})$. \subsection*{Step 6: Blowup criterion} We give a blowup criterion as follows: \begin{proposition} \label{prop3.1} Let $T^*$ denote the maximal time of existence of a solution $u$ in $C([0,T^*);X)\cap L^1([0,T^*);Y)$. If $T^*<\infty$, then \[ \int_0^{T^*}\|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}dt=\infty. \] \end{proposition} \begin{proof} Supposing $T^*<\infty$ and $\int_0^{T^*}\|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}dt<\infty$, and using Lemma \ref{transport} with $\rho=\infty$, we have \begin{align*} \|u\|_{\mathcal{L}_{T^*}^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} &\lesssim e^{c\int_0^{T^*}\|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}dt} \big(\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}\\ &\quad +\int_0^{T^*}\|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} \|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}dt\big). \end{align*} Hence by Gronwall's inequality we have \begin{align} \label{blowup01} \|u\|_{\mathcal{L}_{T^*}^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} \lesssim e^{c\int_0^{T^*}\|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}dt} \|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} < \infty. \end{align} By a similar argument there also holds \begin{align} \label{blowup02} \|u\|_{\mathcal{L}_{T^*}^{\infty}\dot{B}_{p,1}^{n/p+\sigma-\beta}} \lesssim e^{c\int_0^{T^*}\|u(t)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}dt} \|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma-\beta}} < \infty. \end{align} From Step 5, for all $t,t'\in[0,T^*)$, we have \begin{align*} \|u(t)-u(t')\|_{X}\to 0\quad \text{as}\quad t\to t'. \end{align*} This means that $u(t)$ satisfies the Cauchy criterion at $T^*$. So there exists an element $u^*$ in $X$ such that $u(t)\to u^*$ in $X$ as $t\to T^*$. Now set $u(T^*)=u^*$ and consider the equation with initial data $u^*$. By the well-posedness we obtain a solution existing on a larger time interval than $[0,T^*)$, which is a contradiction. \end{proof} \subsection*{Step 7: Global solution} To obtain global well-posedness for small initial data, it is sufficient to bound \begin{align*} F(t):=\int_0^t\|u(\tau)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}d\tau. \end{align*} Lemma \ref{transport} gives \[ \|u\|_{\mathcal{L}_{t}^{1}\dot{B}_{p,1}^{n/p+\sigma+1}} \lesssim e^{cF(t)} \big(\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} +\int_0^{t}\|u(\tau)\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} \|u(\tau)\|_{\dot{B}_{p,1}^{n/p+\sigma+1}}d\tau\big). \] A similar argument with \eqref{blowup01} gives \[ \|u\|_{\mathcal{L}_{t}^{\infty}\dot{B}_{p,1}^{n/p+\sigma+1-\beta}} \lesssim e^{cF(t)} \|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}. \] Hence we conclude \[ F(t)\leq Ce^{CF(t)}(1+F(t))\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}. \] Since $F(t)$ is continuous and $F(0)=0$, we obtain that: if the initial data satisfies $\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}<\frac{e^{-C}}{1+C}$, then \[ F(t)\leq Ce^{C^2}(1+C)\|u_0\|_{\dot{B}_{p,1}^{n/p+\sigma+1-\beta}}. \] By the blow-up criterion, the solution is global. \section{Appendix} We now give the proof of Claim \ref{claim01}. We list some lemmas which will be used in our proof. \begin{lemma}[\cite{danchin01}] \label{lemma42} Let $v$ be a smooth vector field, and $\psi_t$ be the solution to \[ \psi_t(x)=x+\int_0^tv(\tau,\psi_{\tau}(x))d\tau. \] Then for all $t\in \mathbb{R}^+$, the flow $\psi_t$ is a $C^1$ diffeomorphism over $\mathbb{R}^n$ and there holds \begin{gather*} \|\nabla\psi_t^{\pm1}\|_{L^{\infty}}\leq e^{V(t)}, \\ \|\nabla\psi_t^{\pm1}-Id\|_{L^{\infty}}\leq e^{V(t)}-1, \\ \|\nabla^2\psi_t^{\pm1}\|_{L^{\infty}}\leq e^{V(t)} \int_0^t\|\nabla^2v(\tau)\|_{L^{\infty}}e^{V(\tau)}d\tau, \end{gather*} where $V(t)=\int_0^t\|\nabla v(\tau)\|_{L^{\infty}}d\tau$. \end{lemma} \begin{lemma}[\cite{danchin01}]\label{lemma43} Let $\chi\in \mathscr{S}(\mathbb{R}^n)$. There exists a constant $C=C(\chi,n)$ such that for all $C^2$ diffeomorphism $\psi$ over $\mathbb{R}^n$ with inverse $\phi$, and for all $u\in\mathscr{S}',p\in[1,+\infty],(j,j')\in \mathbb{Z}^2$, \begin{align*} &\|\chi(2^{-j'}D)(\Delta_ju\circ\psi)\|_{L^p}\\ &\leq C\|J_{\phi}\|^{1/p}_{L^{\infty}}\|\Delta_ju\|_{L^p}(2^{-j}\|DJ_{\phi}\|_{L^{\infty}}\|J_{\psi}\|_{L^{\infty}} +2^{j'-j}\|D\phi\|_{L^{\infty}}). \end{align*} \end{lemma} \begin{lemma}[\cite{cannone01}] \label{lemma41} Let $v\in L_{loc}^1(\mathbb{R}^+;Lip)$ be a fixed vector field. For $j\in \mathbb{Z}$, set $u_j=\Delta_ju$, $\psi_j$ be the flow of the regularized vector field $S_{j-1}v$. Then for $u\in\dot{B}_{p,\infty}^{\beta}$ with $\beta\in[0,2)$, $p\in[1,\infty]$, there holds $$ \|\Lambda^{\beta}(u_j\circ\psi_j)-(\Lambda^{\beta}u_j)\circ\psi_j\|_{L^p} \leq Ce^{CV(t)}V^{1-\frac{\beta}{2}}(t)2^{j\beta}\|u_j\|_{L^p}, $$ and when $\beta=2$, $$ \|\Lambda^{2}(u_j\circ\psi_j)-(\Lambda^{2}u_j)\circ\psi_j\|_{L^p} \leq Ce^{CV(t)}V(t)2^{2j}\|u_j\|_{L^p}, $$ where $V(t)=\int_0^t\|\nabla v(\tau)\|_{L^{\infty}}d\tau$ and $C=C(\beta,p)>0$. \end{lemma} \begin{proof}[Proof of Claim \ref{claim01}] Applying $\Delta_j$ to \eqref{linear} we have \begin{align}\label{uniform01} \partial_t u_j^{m+1}+S_{j-1}v^m\cdot \nabla u_j^{m+1}+\Lambda^{\beta}u_j^{m+1} =f_j+R_j, \end{align} where $R_j:=(S_{j-1}v^m-v^m)\cdot \nabla u_j^{m+1}-[\Delta_j,v^m\cdot\nabla]u^{m+1}$. Let $\psi_j$ be the flow of the regularized vector field $S_{j-1}v^m$. Denote $\bar{u}_j:=u_j\circ\psi_j$, then \eqref{uniform01} becomes \begin{equation} \label{u_j} \partial_t\bar{u}_j^{m+1}+\Lambda^{\beta}\bar{u}_j^{m+1}=\bar{f}_j+\bar{R}_j+G_j, \end{equation} where $G_j:=\Lambda^{\beta}(u_j^{m+1}\circ\psi_j) -(\Lambda^{\beta}u_j^{m+1})\circ\psi_j.$ \par Applying $\Delta_k$ on the equivalent integral equation of \eqref{u_j}, we have \begin{equation} \label{integ} \begin{split} &\|\Delta_k\bar{u}_j^{m+1}(t)\|_{{L^p}}\\ &\lesssim e^{-ct2^{k\beta}}\|\Delta_k u_{0,j}\|_{L^p} \\ &\quad +\int_0^te^{-c(t-\tau)2^{k\beta}}\big(\|\Delta_k \bar{f}_j\|_{L^p} +\|\Delta_k \bar{R}_j\|_{L^p} +\|\Delta_k G_j\|_{L^p}\big)d\tau. \end{split} \end{equation} Lemma \ref{lemma41} implies \[ \|\Delta_k G_j(t)\|_{L^p}\lesssim e^{cV(t)}V^{1-\beta/2}(t) 2^{j\beta}\|u_j^{m+1}\|_{L^p}, \] with $V(t)=\int_0^t\|\nabla v^m(\tau)\|_{L^{\infty}} d\tau$. From Bernstein inequality and Lemma \ref{lemma42} \[ \|\Delta_k \bar{f}_j\|_{L^p}\lesssim 2^{-k}\|\nabla\Delta_k\bar{f}_j\|_{L^p} \lesssim 2^{-k}\|(\nabla f_j)\circ \psi_j\|_{L^p} \|\nabla \psi_j\|_{L^{\infty}} \lesssim 2^{j-k}e^{cV(t)}\|f_j\|_{L^p}. \] A similarly argument implies \[ \|\Delta_k\bar{R}_j(t)\|_{L^p} \lesssim 2^{j-k}e^{cV(t)}\|R_j\|_{L^p}. \] Taking the $L^r$ norm over $[0,t]$ on \eqref{integ} and plugging the above estimates give \begin{equation} \label{Lr norm 1} \begin{split} 2^{j(s+\beta/r)}\|\Delta_k \bar{u}_j^{m+1}\|_{L_t^rL^p} &\lesssim 2^{(j-k)\beta/r} (1-e^{-ctr2^{k\beta}})^{1/r} 2^{js} \|\Delta_k u_{0,j}\|_{L^p} \\ &+2^{j(s+\beta/r)} 2^{(j-k)\beta} e^{cV(t)} V^{1-\beta/2}(t) \|u_j^{m+1}\|_{L_t^rL^p} \\ &+2^{(j-k)(1+\beta/r)} e^{cV(t)} \int_0^t2^{js}\big(\|f_j\|_{L^p}+\|R_j\|_{L^p}\big)d\tau. \end{split} \end{equation} Let $M_0\in \mathbb{Z}$ to be fixed later. Decomposing \[ u_j^{m+1}=S_{j-M_0}\bar{u}_j^{m+1} \circ \psi_j^{-1} + \sum_{k\geq j-M_0}\Delta_k\bar{u}_j^{m+1} \circ \psi_j^{-1}. \] For all $t\in[0,T]$, there holds \begin{equation} \label{decomp} \|u_j^{m+1}\|_{L_t^rL^p}\lesssim e^{cV(t)}\big(\|S_{j-M_0}\bar{u}_j^{m+1}\|_{L_t^rL^p} +\sum_{k\geq j-M_0}\|\Delta_k\bar{u}_j^{m+1}\|_{L_t^rL^p}\big). \end{equation} By Lemma \ref{lemma42} and Lemma \ref{lemma43}, \begin{equation} \label{Lr norm 2} \|S_{j-M_0}\bar{u}_j^{m+1}\|_{L_t^rL^p} \lesssim e^{cV(t)}\big(e^{cV(t)}-1+2^{-M_0}\big)\|u_j^{m+1}\|_{L_t^rL^p}. \end{equation} Since $\Delta_ku_{0,j}=0$ for $|k-j|\geq2$ and $e^{cV(t)}-1+2^{-M_0}\lesssim e^{-c'V(t)}2^{-M_0}$, multiplying \eqref{decomp} by $2^{j(s+\beta/r)}$ and using \eqref{Lr norm 1} and \eqref{Lr norm 2}, we obtain \begin{align*} 2^{j(s+\beta/r)}\|u_j^{m+1}\|_{L_t^rL^p} &\lesssim e^{cV(t)} 2^{M_0\beta/r} \big(1-e^{-ctr2^{j\beta}}\big)^{1/r} 2^{js} \|u_{0,j}\|_{L^p} \\ &\quad +e^{cV(t)} 2^{j(s+\beta/r)} \big(2^{-M_0}+2^{M_0\beta} V^{1-\beta/2}(t)\big)\|u_j^{m+1}\|_{L_t^rL^p} \\ &\quad +e^{cV(t)} 2^{M_0(1+\beta/r)} \int_0^t2^{js} \big(\|f_j\|_{L^p}+\|R_j\|_{L^p}\big)d\tau. \end{align*} Now we choose $M_0$ to be the unique integer such that $2c2^{-M_0}\in(1/8,1/4]$ and $T_1\leq T$ be the largest real number such that \[ cV(T_1)\leq \min \big(\ln 2, (\frac{2^{-M_0\beta}}{8c^{\beta/2}})^{\frac{2}{2-\beta}}\big). \] Thus for $t\in[0,T_1]$, \[ 2^{j(s+\beta/r)}\|u_j^{m+1}\|_{L_t^rL^p} \lesssim \big(1-e^{-ctr2^{j\beta}}\big)^{1/r}2^{js}\|u_{0,j}\|_{L^p} +\int_0^t2^{js}\big(\|f_j\|_{L^p}+\|R_j\|_{L^p}\big)d\tau. \] Taking the $l^1$-norm we conclude that \begin{align*} & \|u^{m+1}\|_{\mathcal{L}_t^r\dot{B}_{p,1}^{s+\beta/r}}\\ &\lesssim \sum_{j\in \mathbb{Z}} \big(1-e^{-ctr2^{j\beta}}\big)^{1/r}2^{js} \|u_{0,j}\|_{L^p} +\sum_{j\in \mathbb{Z}}\int_0^t2^{js}\big(\|f_j\|_{L^p}+\|R_j\|_{L^p}\big)d\tau. \end{align*} \end{proof} \subsection{Acknowledgments} This research was supported by the NNSF of China under grant 11271330. \begin{thebibliography}{99} \bibitem{bahouri01} H. Bahouri, J.-Y. Chemin, R. Danchin; \emph{Fourier Analysis and Nonlinear Partial Differential Equations}, Springer-Verlag, Berlin, Heidelberg, 2011. \bibitem{bear01} J. Bear; \emph{Dynamics of Fluids in Porous Media}, Dover, New York, 1972. \bibitem{bertozzi01} A. L. Bertozzi, J. Brandman; \emph{Finite-time blow-up of $L^{\infty}$-weak solutions of an aggregation equation}, Commun. Math. Sci., 8 (2010), 45-65. \bibitem{bertozzi02} A. L. Bertozzi, J. A. Carrillo, T. Laurent; \emph{Blow-up in multidimensional aggregation equations with mildly singular interaction kernels}, Nonlinearity, 22 (2009), 683-710. \bibitem{bertozzi03} A. L. Bertozzi, T. Laurent, J. Rosado, \emph{$L^p$ theory for the multidimensional aggregation equation}, Comm. Pur. Appl. Math., 64 (2011),45-83. \bibitem{bertozzi04} A. L. Bertozzi, T. Laurent; \emph{Finite-Time blow up of solutions of an aggregation equation in $R^n$}, Comm. Math. Phys., 274 (2007), 717-735. \bibitem{biler01} P. Biler, C. Imbert, G. Karch; \emph{Barenblatt profiles for a nonlocal porous medium equation}, C. R. Math. Acad. Sci. Paris, 349 (2011), 641-645. \bibitem{biler02} P. Biler, C. Imbert, G. Karch; \emph{The nonlocal porous medium equation: Barenblatt profiles and other weak solutions}, Arch. Ration. Mech. Anal., 215 (2015), 497-529. \bibitem{biler03} P. Biler, G. Karch; \emph{Blowup of solutions to generalized Keller-Segel model}, J. Evol. Equ., 10 (2010), 247-262. \bibitem{blanchet01} A. Blanchet, J. A. Carrillo, N. Masmoudi; \emph{Infinite time aggregation for the critical Patlak-Keller-Segel model in $R^2$}, Comm. Pure Appl. Math., 61 (2008), 1449-1481. \bibitem{bodnar01} M. Bodnar, J. J. L. Velazquez; \emph{An integro-differential equation arising as a limit of incividual cell-based models}, J. Differential Equations, 222 (2006), 341-380. \bibitem{caffarelli01} L. Caffarelli, J. L. V\'azquez; \emph{Nonlinear porous medium flow with fractional potential pressure}. Arch. Ration. Mech. Anal., 202 (2011), 537每565. \bibitem{caffarelli02} L. Caffarelli, J. L. V\'azquez; \emph{Asymptotic behaviour of a porous medium equation with fractional diffusion}, Discrete Contin. Dyn. Syst., 29 (2011), 1393每1404. \bibitem{caffarelli03} L. Caffarelli, F. Soria, J. L. V\'azquez; \emph{Regularity of solutions of the fractional porous medium flow}, J. Eur. Math. Soc., (JEMS) 15 (2013), 1701每1746. \bibitem{carrillo01} J. A. Carrillo, R. J. McCann, C. Villani, \emph{Contractions in the $2$-Wasserstein length space and thermalization of granular media}, Arch. Rat. Mech. Anal., 179 (2006), 217-263. \bibitem{cannone01} M. Cannone, C. Miao, G. Wu; \emph{On the inviscid limit of the two-dimensional Navier-Stokes equations with fractional diffusion}, Adv. Math. Sci. Appl., 18 (2008), 607-624. \bibitem{chen01} Q. Chen, C. Miao, Z. Zhang; \emph{A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation}, Comm. Math. Phys., 271 (2007), 821-838. \bibitem{chen02} Q. Chen, Z. Zhang; \emph{Global well-posedness of the 2D critical dissipative quasi-geostrophic equation in the Triebel-Lizorkin spaces}, Nonlinear Anal., 67 (2007), 1715-1725. \bibitem{constantin01} P. Constantin, A. J. Majda, E. Tabak; \emph{Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar}, Nonlinearity, 7 (1994), 1495-1533. \bibitem{danchin01} R. Danchin; \emph{Uniform estimates for transport-diffusion equations}, J. Hyperbolic Differ. Equ., 4 (2007), 1-17. \bibitem{holm01} D. Holm, V. Putkaradze; \emph{Formation of clumps and patches in self-aggregation of finite-size particles}, Physics D, 220 (2006), 183-196. \bibitem{huang01} Y. Huang, A. L. Bertozzi; \emph{Self-similar blowup solutions to an aggregation equation in $R^N$}, SIAM J. Appl. Math., 70 (2010), 2582-2603. \bibitem{karch01} G. Karch, K. Suzuki; \emph{Blow-up versus global existence of solutions to aggregation equations}, Appl. Math. (Warsaw), 38 (2011), 243-258. \bibitem{laurent01} T. Laurent; \emph{Local and global existence for an aggregation equation}, Comm. Partial Differential Equations, 32 (2007), 1941-1964. \bibitem{li01} D. Li, J. Rodrigo; \emph{Finite-time singularities of an aggregation equation in $\mathcal{R}^n$ with fractional dissipation}, Commun. Math. Phys., 287 (2009), 687-703. \bibitem{li02} D. Li, J. Rodrigo; \emph{Wellposedness and regularity of solutions of an aggregation equation}, Rev. Mat. Iberoam., 26 (2010), 261-294. \bibitem{li03} D. Li, X. Zhang; \emph{Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels}, Commun. Pure Appl. Anal., 9 (2010), 1591每1606. \bibitem{lin01} F. Lin, P. Zhang, \emph{On the hydrodynamic limit of Ginzburg-Landau wave vortices}, Comm. Pure Appl. Math., 55 (2002), 831每856. \bibitem{miao01} C. Miao, G. Wu; \emph{Global well-posedness of the critical Burgers equation in critical Besov spaces}, J. Differential Equations, 247 (2009), 1673每1693. \bibitem{serfaty01} S. Serfaty, J. L. V\'azquez; \emph{A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators}, Calc. Var. Partial Differential Equations, 49 (2014), 1091每1120. \bibitem{stan01} D. Stan, F. del Teso, J. L. V\'azquez, \emph{Finite and infinite speed of propagation for porous medium equations with fractional pressure}, C. R. Math. Acad. Sci. Paris, 352 (2014), 123每128. \bibitem{topaz01} C. M. Topaz, A. L. Bertozzi, M. A. Lewis; \emph{A nonlocal continuum moder for biological aggregation}, Bulletin of Mathematical Biology, 68 (2006), 1601-1623. \bibitem{vazquez01} J. L. V\'azquez; \emph{The Porous Medium Equation. Mathematical theory}. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, Oxford, 2007. \bibitem{vazquez02} J. L. V\'azquez; \emph{Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators}, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857每885. \bibitem{wang01} H. Wang, Z. Zhang; \emph{A frequency localized maximum principle applied to the 2D quasi-geostrophic equation}, Comm. Math. Phys., 301 (2011), 105-129. \bibitem{wu01} G. Wu, Q. Zhang; \emph{Global well-posedness of the aggregation equation with supercritical dissipation in Besov spaces}, ZAMM Z. Angew. Math. Mech., 93 (2013), 882-894. \bibitem{yamazaki01} K. Yamazaki; \emph{Global well-posedness of the transport equation with nonlocal velocity in Besov spaces with critical and supercritical dissipation}, Nonlinearity, 24 (2011), 2047-2062. \bibitem{yuan01} B. Yuan, J. Yuan, \emph{Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces}; J. Differential Equations, 246 (2009), 4405每4422. \bibitem{zhou01} X. Zhou, W. Xiao, J. Chen; \emph{Fractional porous medium and mean field equations in Besov spaces}, Electron. J. Differential Equations, 2014 (2014), 1-14. \end{thebibliography} \end{document}