\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 266, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/266\hfil Infinitely many sign-changing solutions] {Infinitely many sign-changing solutions for concave-convex elliptic problem with nonlinear boundary condition} \author[L. Wang, P. Zhao \hfil EJDE-2015/266\hfilneg] {Li Wang, Peihao Zhao} \address{Li Wang \newline School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China} \email{lwang10@lzu.edu.cn} \address{Peihao Zhao\newline School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China} \email{zhaoph@lzu.edu.cn} \thanks{Submitted August 30, 2015. Published October 16, 2015.} \subjclass[2010]{35J60, 47J30, 58E05} \keywords{Nonlinear boundary condition; concave-convex; invariant sets; \hfill\break\indent sign-changing solutions} \begin{abstract} In this article, we study the existence of sign-changing solutions to \begin{gather*} -\Delta u+u =|u|^{p-1}u\quad \text{in } \Omega \\ \frac{\partial u}{\partial n}=\lambda |u|^{q-1}u\quad \text{on }\partial \Omega \end{gather*} with $00$. By using a combination of invariant sets and Ljusternik-Schnirelman type minimax method, we obtain two sequences of sign-changing solutions when $p$ is subcritical and one sequence of sign-changing solutions when $p$ is critical. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In this article we study the existence of infinitely many sign-changing solutions to the nonlinear Neumann problem \begin{equation}\label{q1} \begin{gathered} -\Delta u+u =|u|^{p-1}u,\quad \text{in } \Omega \\ \frac{\partial u}{\partial n}=\lambda |u|^{q-1}u,\quad \text{on } \partial \Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega$, $N>2$, $\frac{\partial}{\partial n}$ denotes the outward normal derivative and $00$. The existence of sign-changing solutions has been studied extensively in recent years. For the Dirichlet problem \begin{align}\label{P} \begin{gathered} -\Delta u=f(u) \quad\text{in }\Omega \\ u=0 \quad\text{on }\partial\Omega \end{gathered} \end{align} the authors in \cite{Bartsch:96} considered that for $f\in C^{1}(\mathbb{R})$, $f(0)=0$ and $ \lim_{u\to\infty}f'(u)<\lambda_1<\lambda_20$, the authors in \cite{Schechter:10,Sun:14} proved that \eqref{P} has also infinitely many sign-changing solutions. We can look for more examples in \cite{Bartsch:96,Bartsch:01,Bartsch:00,Bartsch:99} and references therein. Problems with nonlinear boundary condition of form \eqref{q1} appear in a nature way when one considers the Sobolev trace embedding $H^{1}(\Omega)\hookrightarrow L^{q}(\partial \Omega)$ and conformal deformations on Riemannian manifolds with boundary, see \cite{Escobar:90,Escobar:92}. In \cite{Garcia:04}, Garcia et al considered problem \eqref{q1}. For subcritical case, $00$ such that if $0<\lambda<\lambda_{0}$, equation \eqref{q1} has infinitely many solutions with negative energy; and for $00$, such that for $0<\lambda<\Lambda$, there exists at least two positive solutions for \eqref{q1}, for $\lambda=\Lambda$, at least one positive solution, and no positive solution for $\lambda>\Lambda$. Kajikiya et al \cite{Kajikiya:14} studied the problem \begin{equation}\label{q2} \begin{gathered} -\Delta u+u =f(x,u)\quad \text{in }\Omega, \\ \frac{\partial u}{\partial n}=g(x,u),\quad \text{on } \partial \Omega. \end{gathered} \end{equation} and proved that the problem has two sequences of solutions, if $f(x,u)$ and $g(x,u)$ satisfying that in a neighborhood of $u=0$, one of $f(x,u)$ and $g(x,u)$ is locally sublinear, and at infinity, one of them is locally superlinear, and they showed that one sequence of the solutions converges to 0, the other diverges to infinity. Inspired by \cite{Garcia:04,Kajikiya:14}, we consider the existence of sign-changing solutions of problem \eqref{q1}. The main part of our work is that \eqref{q1} has two sequence of sign-changing solutions under the subcritical and concave case. In this sense, the work of the present paper extends the results of \cite{Garcia:04,Kajikiya:14} partially. In section 2, we give the main results of the paper. In section 3, we establish the invariant sets of pseudo gradient. In section 4, we proof the theorems. \section{Main results} In this section, we state the main results and some preliminaries. We call $u$ a weak solution of \eqref{q1} if $u\in H^{1}(\Omega)$ and it satisfies \eqref{q1} in the distribution sense, i.e. $$ \int_{\Omega}(\nabla u\nabla v+uv)dx=\int_{\Omega}|u|^{p-1}uvdx +\lambda\int_{\partial\Omega}|u|^{q-1}uvd\sigma, $$ for any $v\in ~H^{1}(\Omega)$. Here $d\sigma$ denotes the surface measure on $\partial \Omega$. Throughout this paper, the norm of $H^{1}(\Omega)=W^{1,2}(\Omega)$ is defined by $$ \|u\|:=\Big(\int_{\Omega}(|\nabla u|^{2}+u^{2})dx\Big)^{1/2}, $$ and the $H^{1}(\Omega)$ inner product of $u$ and $v$ by $$ (u,v):=\int_{\Omega}(\nabla u\nabla v+uv)dx. $$ We state the main result as follows. \begin{theorem}\label{the2.1} For $00$, there exist at least two sequences of sign-changing solutions of \eqref{q1}, one converges to 0 in $H^{1}(\Omega)$, and the other diverges to infinity. \end{theorem} \begin{theorem}\label{the2.2} For $00$, there exists at least one sequence of sign-changing solutions of \eqref{q1} which converges to 0 in $H^{1}(\Omega)$. \end{theorem} Now, we state some results we will need in the following sections. Next lemma is Lemma 6.1 in \cite{Garcia:04}. \begin{lemma}\label{l2.1} For $00$ such that for $\lambda\leq\Lambda$, then \eqref{q1} has a minimal positive solution $u^{+}$ and a maximal negative solution $u_{-}$. \end{lemma} If $\lambda>\Lambda$, \eqref{q1} has no positive and negative solutions, by the results in \cite{Kajikiya:14} as we mentioned above, we know the existence of two sequences of solutions that are sign-changing solutions. Hence, we only need to prove the results in Theorem \ref{the2.1} under the condition $0<\lambda\leq\Lambda$. Throughout the paper, we assume that $\lambda\leq\Lambda$. For \eqref{q1} the minimal positive solution and the maximal negative solution satisfying $u^{+}=-u^{-}$. The following lemma is a variant of \cite[Lemma 3.2]{Liu:2001} and we can also look for \cite[Lemma 2.4]{Liu:2005}. \begin{lemma}\label{l2.2} Let $H$ be a Hilbert space, $D_1$ and $D_2$ be two closed convex subsets of $H$, and $I\in C^{1}(H,\mathbb{R})$. Suppose $I'(u)=u-A(u)$ and $A(D_{i})\subset D_{i}$ for $i=1,2$. Then there exists a pseudo gradient vector field $V$ of $I$ in the form $V(u)=u-B(u)$ with $B$ satisfying $B(D_{i})\subset \operatorname{int}(D_{i})$ if $A(D_{i})\subset \operatorname{int}(D_{i})$ for $i=1,2$, and $V$ is odd if $I$ is even and $D_1=-D_2$. \end{lemma} We refer to \cite{Kajikiya:14} for the following priori estimates. \begin{lemma}\label{l2.3} Let $f(x,s)$ and $g(x,s)$ satisfy: \begin{itemize} \item[(1)] $|f(x,s)|\leq C(|s|^{p}+1)$, \item[(2)] $|g(x,s)|\leq C(|s|^{q}+1)$ with $00$. We first note that because of the sublinear term on the boundary, any neighborhoods of the positive (and negative) cones are no longer invariant sets of the gradient flow. We give a construction inspired by \cite{Liu:2005}. Let $e_1\in H^{1}(\Omega)$ be the first eigenfunction associated with the first eigenvalue $\lambda_1$ of the eigenvalue problem \begin{equation} \label{3.1} \begin{gathered} -\Delta u+u =0 \quad \text{in }\Omega \\ \frac{\partial u}{\partial n}=\lambda u \quad \text{on } \partial \Omega \end{gathered} \end{equation} such that $\max_{\Omega} e_1(x)\leq s_{0}$, in which $00$ such that \begin{gather*} A((D^{\pm})_{\epsilon})\subset \operatorname{int}((D^{\pm})_{\epsilon})\quad \text{for all }0<\epsilon<\epsilon_{0}, \\ \eta^{t}((D^{\pm})_{\epsilon})\subset \operatorname{int}((D^{\pm})_{\epsilon})\quad \text{for all }t\geq 0,\; 0<\epsilon<\epsilon_{0}, \end{gather*} \end{theorem} \begin{proof} We only prove the result for the positive one, the other case follows analogously. For $u\in H^{1}(\Omega)$, we denote \[ v=Au, \quad v_1=\max\{e_1,v\}. \] Then $\operatorname{dist}(v,D^{+})\leq \|v-v_1\|$ which implies $\operatorname{dist}(v,D^{+})\cdot\|v-v_1\|\leq \|v-v_1\|^{2}$ and \begin{align*} \|v-v_1\|^{2} &= (v-e_1,v-v_1) \\ &=\int_{\Omega}\nabla (v-e_1)\cdot\nabla(v-v_1)+(v-e_1)(v-v_1)dx\\ &=\int_{\Omega}(-\Delta (v-e_1)+v-e_1)(v-v_1)dx +\int_{\partial\Omega}(\lambda|u|^{q-1}u-\lambda_1e_1) (v-v_1)d\sigma\\ &=\int_{\Omega}(|u|^{p-1}u)(v-v_1)dx +\int_{\partial\Omega}(\lambda|u|^{q-1}u-\lambda_1e_1) (v-v_1)d\sigma\\ &=: I_1+I_2. \end{align*} Note that \begin{align*} I_1&\leq\int_{\{u<0\}\cap\Omega}(v_1-v)(-|u|^{p-1}u)dx \leq \int_{\{u<0\}\cap\Omega}(v_1-v)(e_1-|u|^{p-1}u)dx\\ & \leq C_{p}\int_{\{u<0\}\cap\Omega}(v_1-v)(e_1-u)^{p}dx. \end{align*} On $\{u<0\}\cap\Omega$, we have $u\leq e_1$, hence \begin{align*} \|e_1-u\|^{p}_{L^{p+1}((u<0)\cap\Omega)} & =\inf_{w\in D^{+}}\|w-u\|^{p}_{L^{p+1}((u<0)\cap\Omega)} \\ &\leq \inf_{w\in D^{+}}\|w-u\|^{p}_{L^{p+1}(\Omega)}\leq C_{p}dist^{p}(u,D^{+}), \end{align*} and $I_1\leq C\|v-v_1\|\operatorname{dist}^{p} (u,D^{+})$. Here $C_{p}$ and $C$ are constants which are relevant to $p$ and $e_1$, and may change from line to line. Note that \begin{align*} I_2 & \leq \int_{\partial\Omega\cap\{\lambda|u|^{q-1}u<\lambda_1e_1\}} (\lambda_1e_1-\lambda|u|^{q-1}u)(v_1-v)d\sigma\\ &=\Big(\int_{\partial\Omega\cap\{\lambda(\frac{e_1}{2})^{q}<\lambda|u|^{q-1} u<\lambda_1e_1\}}+ \int_{\partial\Omega\cap\{u\leq\frac{e_1}{2}\}}\Big) (\lambda_1e_1-\lambda|u|^{q-1}u)(v_1-v)d\sigma. \end{align*} If $\lambda(e_1/2)^{q}>\lambda_1e_1$, the first term above vanishing, this can be done by choose $s_{0}$ small enough such that $s_{0}^{1-q}\leq\frac{\lambda}{\lambda_12^{q}}$. On $\partial\Omega\cap\{u\leq\frac{e_1}{2}\}$, we have \[ \lambda_1e_1-\lambda|u|^{q-1}u\leq C_{r}(e_1-u)^{r}, \] where $r\in(1,\frac{N}{N-2})$. \begin{align*} \|e_1-u\|^{r}_{L^{r+1}(\{u<\frac{e_1}{2}\}\cap\partial\Omega)} & =\inf_{w\in D^{+}} \|w-u\|^{r}_{L^{r+1}(\{u<\frac{e_1}{2}\}\cap\partial\Omega)} \\ &\leq \inf_{w\in D^{+}}\|w-u\|^{r}_{L^{r+1}(\partial\Omega)} \leq C_{r} \operatorname{dist} ^{r}(u,D^{+}). \end{align*} Hence, $I_2\leq C\|v-v_1\| \operatorname{dist}^{r} (u,D^{+})$. \[ \operatorname{dist}(v,D^{+})\cdot\|v-v_1\| \leq C\|v-v_1\|(\operatorname{dist}^{r} (u,D^{+})+ \operatorname{dist}^{p} (u,D^{+})) \] Then we can choose $\epsilon_{0}$ small, such that for $\epsilon<\epsilon_{0}$, \[ \operatorname{dist}(v,D^{+})<\operatorname{dist}(u,D^{+})\quad\text{for } u\in D^{+}_{\epsilon}. \] The first conclusion in Theorem \ref{the3.1} is proved, the second part is a consequence of the first one as shown in \cite{Liu:2001} via Lemma \ref{l2.2} above. \end{proof} \section{Proof of main results} Let us start with a more abstract setting. Consider $I\in C^{1}(X,\mathbb{R})$ where $X$ is a Banach space. $V$ is a pseudo gradient vector field of $I$ such that $V$ is odd if $I$ is even, and consider \begin{gather*} \frac{d}{dt}\sigma(t,u) =-V(\sigma), \\ \sigma(0,u)=u\in X. \end{gather*} To construct nodal solution by using the combination of invariant sets and minimax method, we need a deformation lemma in the presence of invariant sets. We have the following deformation lemma which follows from \cite[Lemma 5.1]{Liu:2005} (see also \cite[Lemma 2.4]{Li:02}). \begin{lemma}\label{l4.1} Assume $I$ satisfies the $(PS)$-condition, and $c\in \mathbb{R}$ is fixed, $W=\partial W\cup \operatorname{int}(W)$ is an invariant subset such that $\sigma(t,\partial W)\subset$int$(W)$ for $t>0$. Define $K_{c}^{1}:=K_{c}\cap W$, $K_{c}^{2}:=K_{c}\cap(X\backslash W)$, where $K_{c}:=\{u\in X:~I'(u)=0,I(u)=c\}$. Let $\delta>0$, be such that $(K_{c}^{1})_{\delta}\subset W$ where $(K_{c}^{1})_{\delta}=\{u\in X:\operatorname{dist}(u,K_{c}^{1})<\delta\}$. Then there exists an $\varepsilon_{0}>0$ such that for any $0<\varepsilon<\varepsilon_{0}$, there exists $\eta\in C([0,1]\times X,X)$ satisfying: \begin{itemize} \item[(1)] $\eta(t,u)=u$ for $t=0$ or $u\notin I^{-1}(c-\varepsilon_{0},c+\varepsilon_{0})\backslash(K_{c}^{2})_{\delta}$. \item[(2)] $\eta(1,I^{c+\varepsilon}\cup W\backslash (K_{c}^{2})_{3\delta})\subset I^{c-\varepsilon}\cup W$ and $\eta(1,I^{c+\varepsilon}\cup W)\subset I^{c-\varepsilon}\cup W$ if $K_{c}^{2}=\emptyset$. \item[(3)] $\eta(t,\cdot)$ is a homeomorphism of X for $t\in [0,1]$. \item[(4)] $\|\eta(t,u)-u\|\leq \delta$, for any $(t,u)\in [0,1]\times X$. \item[(5)] $I(\eta(t,\cdot))$ is non-increasing. \item[(6)] $\eta(t,W)\subset~W$ for any $t\in[0,1]$. \item[(7)] $\eta(t,\cdot)$ is odd if I is even and if W is symmetric with respect to $0$. \end{itemize} \end{lemma} Set \begin{gather*} \Sigma:=\{A\subset H^{1}(\Omega)\backslash 0: A \text{ is closed and }A=-A\}, \\ \Gamma_{k}:=\{A\subset H^{1}(\Omega)\backslash 0: A \text{is closed, symmetric},\, \gamma(A)\geq k\} \end{gather*} where $\gamma(A)$ denotes the Krasnoselskii's genus of the set $A$. We refer to \cite{Struwe:90} for the following properties of genus. \begin{lemma} Let $A,B \in \Gamma_{k}$, and $h\in C(H^{1}(\Omega),H^{1}(\Omega))$ be an odd map. Then \begin{itemize} \item[(1)] $A\subset B\Rightarrow~\gamma(A)\leq\gamma(B)$; \item[(2)] $\gamma(A\cup B)\leq \gamma(A)+\gamma(B)$; \item[(3)] $\gamma(A)\leq \gamma(h(A))$; \item[(4)] If $A$ is compact, there exists an $N\in \Gamma_{k}$ such that $A\subset \operatorname{int}(N)\subset N$ and $\gamma(A)=\gamma(N)$; \item[(5)] If $F$ is a linear subspace of $H^{1}(\Omega)$ with $\dim F=$n, $A\subset F$ is bounded, open and symmetric, and $0\in A$, then $\gamma(\partial_{F}A)=n$; \item[(6)] Let $W$ be a closed linear subspace of $H^{1}(\Omega)$ whose codimension is finite. If $\gamma(A)$ is greater than the codimension of $W$, then $A\cap W\neq \emptyset$. \end{itemize} \end{lemma} We choose an even function $h\in C^{\infty}_{0}(\mathbb{R})$ such that $h(s)=1$ for $|s|\leq 1$, $h(s)=0$ for$|s|\geq 2$, $0\leq h\leq 1$; defining \begin{gather}\label{tran4.1} f(s):=s|s|^{p-1}h(s),~~g(s)=s|s|^{q-1}h(s); \\ \widetilde{I}(u)=\frac{1}{2}\|u\|^{2}-\int_{\Omega}F(u)dx -\int_{\partial \Omega}G(u)d\sigma,\nonumber \end{gather} in which $F(u)=\int_{0}^{u}f(s)ds$, $G(u)=\int_{0}^{u}g(s)ds$, both of them are bounded. Assume $(\lambda_{i},e_{i})$ is the eigenvalue and corresponding eigenfunction of \eqref{3.1}, and $E_{m}=\operatorname{span}\{e_1,\cdots,e_{m}\}$. Then the following lemma is obvious. \begin{lemma}\label{l4.2} $\widetilde{I}\in C^{1}(H^{1}(\Omega),\mathbb{R})$, \begin{itemize} \item[(1)] for all $m\in \mathbb{N}$, there exists a $\rho>0$, such that $\sup_{E_{m}\cap\partial B_{\rho}}\widetilde{I}(u)<0$, where $\partial B_{\rho}:=\{u\in H^{1}(\Omega):\|u\|=\rho\}$, \item[(2)] $\widetilde{I}$ is even, bounded from blow, and the (PS)-condition holds, $\widetilde{I}(0)=0$; \end{itemize} \end{lemma} The following lemma is similar to \cite[Lemma 5.3]{Liu:2005}. \begin{lemma}\label{l4.3} For any $\rho>0$, let $B_{\rho}=\{u\in H^{1}(\Omega),\|u\|\leq \rho\}$. Then \[ \operatorname{dist}(\partial B_{\rho}\cap E_1^{\bot}, D^{+}\cup D^{-})>0. \] \end{lemma} \begin{proof} Assume on the contrary, that there exists $(u_{n})\in D^{+}$, $v_{n}\in \partial B_{\rho}\cap E_1^{\bot}$, such that $\|u_{n}-v_{n}\|\to 0$. Then $(u_{n},e_1)=(u_{n}-v_{n},e_1)+(v_{n},e_1)\to 0$, as $n\to \infty$. But, since $u_{n}\geq e_1$, we have $$ (u_{n},e_1)=\lambda_1\int_{\partial\Omega}u_{n}e_1 \geq\lambda_1\int_{\partial\Omega}e_1^{2}d\sigma\neq 0, $$ a contradiction. \end{proof} \subsection*{Proof of Theorems} We essentially follow from \cite{Liu:2005}, see also \cite{Bartsch:05} and \cite{Rabinowitz:86}. \smallskip \noindent\textbf{Part 1.} In this part, we will prove that for $00$ such that for all $\lambda>0$, $$ \sup_{B_{R}^{c}\cap E_{m}}I(u)<0. $$ where $B_{R}^{c}:=H^{1}(\Omega)\backslash B_{R}$. \end{lemma} From Theorem \ref{the3.1} we can choose an $\epsilon>0$ small enough such that $(D^{\pm})_{\epsilon}$ are invariant sets. Set W=$\overline{(D^{+})_{\epsilon}}\cup\overline{(D^{-})_{\epsilon}}$, $S=H^{1}(\Omega)\backslash W$ contains only sign-changing solutions. Set \[ G_{m}=\{h\in C(B_{R}\cap E_{m},H^{1}(\Omega)):h\text{ is odd and $h=$id on }\partial B_{R}\cap E_{m} \}, \] in which $R$ is determined in Lemma \ref{l4.4}. \[ \widetilde{\Gamma}_{j}=\{h(\overline{B_{R}\cap E_{m}\backslash Y}): h\in G_{m}, \,\forall m\geq j,\, Y=-Y, \text{ closed, } \gamma(Y)\leq m-j\},\quad j\geq 2. \] From \cite{Ambrosetti:73} and\cite{Liu:2005}, we know that $\widetilde{\Gamma}_{j}$ satisfying the following properties: \begin{itemize} \item[(1')] $\widetilde{\Gamma}_{j}\neq \emptyset$ for all $j\geq 2$. \item[(2')] $\widetilde{\Gamma}_{j+1}\subset \widetilde{\Gamma}_{j}$ for all $j\geq 2$. \item[(3')] if $\sigma\in C(H^{1}(\Omega),H^{1}(\Omega))$ is odd and $\sigma=id$ on $\partial B_{R}\cap E_{m}$, then $\sigma(A)\in \widetilde{\Gamma}_{j}$ if $A\in \widetilde{\Gamma}_{j}$. \item[(4')] if $A\in \widetilde{\Gamma}_{j}$, $Z=-Z$, closed, and $\gamma(Z)\leq s-\infty. $$ Then from the definition of $\widetilde{c}_{j}$ and (2') we have $-\infty<\widetilde{c}_2\leq \widetilde{c}_{3}\leq \cdots\leq\widetilde{c}_{j}\leq\cdots<\infty$. We claim that if $c:=\widetilde{c}_{j}=\cdots=\widetilde{c}_{j+k}$ for some $2\leq j\leq j+k$ with $k\geq 0$, then $\gamma(K_{c}\cap S)\geq k+1$. Before we prove this claim, we first show that $\widetilde{c}_{j}\to \infty$, as $j\to\infty$. We need the following lemma. \begin{lemma} The constant $\widetilde{c}_{j}$ is independent of the choice of $R(m)$ as long as $R(m)$ is chosen to satisfy Lemma \ref{l4.4} for which $m\geq j$. \end{lemma} The above lemma is well known, see for instance \cite[Lemma 4.9]{Kajikiya:10}. And we can choose $R(m)$ such that $R(m)\to \infty$, as $m\to \infty$. This part follows by \cite{Kajikiya:14}. Let $W_{m}:=\{\sum_{i=m}^{\infty}t_{i}w_{i}:\sum_{i=m}^{\infty}t_{i}^{2}<\infty\}$ and $w_{m}$ is the eigenfunction of the Neumann Laplacian equation: \[ -\Delta w= \mu w \quad \text{in } \Omega,\quad \frac{\partial w}{\partial n}=0\quad\text{on }\partial \Omega. \] $W_{j}$ is a closed linear subspace of $H^{1}(\Omega)$ whose codimension is equal to $j-1$, we have: $$ h(\overline{B_{R}\cap E_{m}\backslash Y})\cap \partial B_{r}\cap W_{j} \neq \emptyset, $$ for $h\in G_{m}$, $\gamma(Y)\leq m-j$, and $00$ such that for $0<\epsilon<\epsilon_{0}$, there exists an $\eta\in C([0,1]\times H^{1}(\Omega),H^{1}(\Omega))$ satisfying (1)-(7) of Lemma \ref{l4.1}. Then $$ \eta(1,I^{c+\epsilon}\cup W\backslash N)\subset (I^{c-\epsilon}\cup W). $$ Choose $A\in \widetilde{\Gamma}_{j+k}$ such that $$ \sup_{A\cap S}I(u)\leq c+\epsilon, $$ Then by (4') above $\overline{A\backslash N}\in \widetilde{\Gamma}_{j}$ hence $\eta(1,\overline{A\backslash N})\in \widetilde{\Gamma}_{j}$. Then $$ c\leq\sup_{\eta(1,\overline{A\backslash N})}I(u)\leq\sup_{(I^{c-\epsilon}\cup W) \cap S}\leq c-\epsilon, $$ contradiction. Hence $\gamma(K_{c}\cap S)\geq k+1$. Now we finish the proof. \begin{thebibliography}{99} \bibitem{Ambrosetti:73} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and application}, J. Funct. Anal., \textbf{14} (1973), 349-381. \bibitem{Bartsch:05} T. Bartsch, Z. Liu, T. Weth; \emph{Nodal solutions of a p-Laplacian equation}, Proc. London Math. Soc., \textbf{91} (2005), 129-152. \bibitem{Bartsch:96} T. Bartsch, Z. Wang; \emph{On the existence of sign-changing solutions for semilinear Dirichlet problems}, Topol. Methods Nonlinear Anal., \textbf{7} (1996), 115-131. \bibitem{Bartsch:01} T. Bartsch; \emph{Critical point theory on partially ordered hilbert spaces}, J. Funct. Anal., \textbf{186}(2001), 117-152. \bibitem{Bartsch:00} T. Bartsch, K. Chang, Z. Wang; \emph{On the Morse indices of sign changing solutions of nonlinear elliptic problems}, Math. Z., \textbf{233} (2000), 655-677. \bibitem{Bartsch:99} T. Bartsch, K. Chang, Z. Wang; \emph{Sign changing solutions of nonlinear Schr\"odinger equations}, Topol. Methods Nonlinear Anal., \textbf{13} (1999), 191-198. \bibitem{Escobar:90} J. F. Escobar; \emph{Uniqueness theorems on conformal deformations of metrics}, Sobolev inequalities, and eigenvalue estimate, Comm. Pure Appl. Math., \textbf{43} (1990), 857-883. \bibitem{Escobar:92} J. F. Escobar; \emph{Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature}, Ann. of Math., \textbf{136} (1992), no \textbf{2}, 1-50. \bibitem{Garcia:04} J. Garcia-Azorero, I. Peral, J. D. Rossi; \emph{A convex-concave problem with a nonlinear boundary condition}, J. Diff. Eqns., \textbf{198} (2004), 91-128. \bibitem{Kajikiya:14} R. Kajikiya, D. Naimen; \emph{Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boudary conditions}, Comm. Pure. Appl. Anal., \textbf{13} (2014) no\textbf{4}, 1593-1612. \bibitem{Kajikiya:05} R. Kajikiya; \emph{A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations}, J. Funct. Anal., \textbf{225} (2005), 352-370. \bibitem{Kajikiya:10} R. Kajikiya; \emph{Superlinear elliptic equations with singular coefficients on the boundary}, Nonlinear Anal., \textbf{73} (2010), 2117-2131. \bibitem{Li:02} S. Li, Z. Wang; \emph{Ljusternik-Schnirelman theory in partially ordered Hilbert spaces}, Trans. Am. Math. Soc., \textbf{354} (2002), 3207-3227. \bibitem{Liu:2001} Z. Liu, J. Sun; \emph{Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations}, J. Diff.Eqns., \textbf{127} (2001), 257-299. \bibitem{Liu:2005} Z. Liu, F. A. van Heerden, Z. Wang; \emph{Nodal type bound states of Schr\"odinger equations via invariant set and minimax methods}, J. Diff. Eqns., \textbf{214} (2005), 358-390. \bibitem{Rabinowitz:86} P. H. Rabinowitz; \emph{Minimax Methods in Critical Point Theory with Applications to Differential Equations}, CBMS Regional Conference Series in Mathematics, vol.\textbf{65} American Mathematical Society, Providence, RI, 1986. \bibitem{Struwe:90} M. Struwe; \emph{Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems}, Springer, Berlin, New York, 1990. \bibitem{Schechter:10} M. Schechter, W. Zhou; \emph{On the Brezis-Nirenberg problem}, Arch. Rational Mech.Anal., \textbf{197} (2010), 337-356. \bibitem{Sun:14} J. Sun, S. Ma; \emph{Infinitely many sign-changing solutions for the Brezis-Nirenberg problem}, Comm. Pure Appl. Anal., \textbf{13} (2014) no \textbf{6}, 2317-2330. \end{thebibliography} \end{document}