\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 268, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/268\hfil Existence of infinitely many solutions] {Existence of infinitely many solutions for perturbed Kirchhoff type elliptic problems with Hardy potential} \author[M. Xu, C. Bai \hfil EJDE-2015/268\hfilneg] {Mei Xu, Chuanzhi Bai} \address{Mei Xu \newline Department of Mathematics, Huaiyin Normal University, Huai, Jiangsu 223300, China} \email{13952342299@163.com} \address{Chuanzhi Bai (Corresponding author) \newline Department of Mathematics, Huaiyin Normal University\\ Huai, Jiangsu 223300, China} \email{czbai@hytc.edu.cn} \thanks{Submitted May 23, 2015. Published October 16, 2015.} \subjclass[2010]{35J40, 58E05} \keywords{Infinitely many solutions; critical points theory; Hardy potential; \hfill\break\indent $p$-biharmonic type operators} \begin{abstract} In this article, by using critical point theory, we show the existence of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic problems with Hardy potential. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} This article concerns the existence of infinitely many weak solutions for the $p$-biharmonic equation with Hardy potential of Kirchhoff type \begin{equation}\label{eq1.1} \begin{gathered} M \Big(\int_{\Omega} |\Delta u|^p dx\Big) \Delta_p^2 u - \frac{a}{|x|^{2p}} |u|^{p-2} u = \lambda f(x, u) + \mu g(x, u) \quad \text{in } \Omega \\ u = \Delta u = 0 \quad \text{on } \partial \Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^N$ ($N \ge 3$) containing the origin and with smooth boundary $\partial \Omega$, $1 < p < \frac{N}{2}$, $\Delta_p^2 u = \Delta(|\Delta u|^{p-2} \Delta u)$ is an operator of fourth order, the so-called $p$-biharmonic operator, $\lambda, \mu$ are two positive parameters, $M : [0, +\infty[ \to \mathbb{R}$ is a continuous function, and $f, g : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ are two continuous functions. Kirchhoff \cite{K} first introduced a model given by the equation \begin{equation}\label{eq1.2} \rho \frac{\partial^2 u}{\partial t^2} - \Big(\frac{\rho_0}{h} + \frac{E}{2L} \int_0^L |\frac{\partial u}{\partial x}|dx\Big) \frac{\partial^2 u}{\partial x^2} = 0, \end{equation} which extends the classical D'Alembert's wave equation by considering the effects of the changes in the length of the strings during the vibrations. After that, many authors studied the following nonlocal elliptic boundary value problem \begin{equation}\label{eq1.3} \begin{gathered} - M \Big(\int_{\Omega} |\nabla u|^2 dx\Big) \Delta u(x) = f(x, u) \quad \text{in } \Omega \\ u = 0 \quad \text{on } \partial \Omega. \end{gathered} \end{equation} Problems like this are called the Kirchhoff type problems. In recent years, many interesting results for problem of Kirchhoff type were obtained \cite{A, Fi, Ha, He, L, M, W}. Recently, using the variational methods, Graef, Heidarkham and Kong \cite{Gr} studied the existence of at least three weak solutions to the Kirchhoff-type problem \begin{equation}\label{eq1.4} \begin{gathered} - K \Big(\int_{\Omega} |\nabla u|^2 dx\Big) \Delta u(x) = \lambda f(x, u) + \mu g(x, u) \quad \text{in } \Omega \\ u = \Delta u = 0 \quad \text{on } \partial \Omega. \end{gathered} \end{equation} In \cite{F1}, using variational methods and critical point theory, Ferrara, Khademloo and Heidarkhani established the multiplicity results of nontrivial and nonnegative solutions for the following perturbed fourth-order Kirchhoff type elliptic problem \begin{equation}\label{eq1.5} \begin{gathered} \Delta_p^2 u - [M(\int_{\Omega} |\nabla u|^p dx)]^{p-1} \Delta_p u + \rho |u|^{p-2} u = \lambda f(x, u) \quad \text{in } \Omega \\ u = \Delta u = 0 \quad \text{on } \partial \Omega. \end{gathered} \end{equation} On the other hand, singular elliptic problems have been intensively studied in recent years, see for example, \cite{G2, G1, R} and the references. Ferrara and Molica Basic \cite{F2} studied the existence of solutions for the elliptic problem with Hardy potential \begin{equation}\label{eq1.6} \begin{gathered} - \Delta_p u = \mu \frac{|u|^{p-2} u}{|x|^p} + \lambda f(x, u) \quad \text{in } \Omega \\ u = \Delta u = 0 \quad \text{on } \partial \Omega. \end{gathered} \end{equation} Huang and Liu \cite{Hu} studied the sign-changing solutions for $p$-biharmonic equations with Hardy potential \begin{equation}\label{eq1.7} \begin{gathered} \Delta_p^2 u - \frac{a}{|x|^{2p}} |u|^{p-2} u = f(x, u) \quad \text{in } \Omega \\ u = \Delta u = 0 \quad \text{on } \partial \Omega, \end{gathered} \end{equation} by using the method of invariant sets of descending flow. Motivated by the papers \cite{ F1, F2, B1, B2, B3, Gr, Hu}, in this paper, we look for the existence of infinitely many solutions of problem \eqref{eq1.1}. Precisely, under appropriate hypotheses on the nonlinear term $f, g$, the existence of two intervals $\Lambda$ and $J$ such that, for each $\lambda \in \Lambda$ and $\mu \in J$, BVP \eqref{eq1.1} admits a sequence of pairwise distinct solutions is proved. Our analysis is mainly based on a recent critical point theorem in \cite{Bo}. This article is organized as follows. In section 2, we present some necessary preliminary facts that will be needed in the paper. In section 3, we establish our main two existence results. \begin{remark} \label{rmk1.1} \rm If $M(\cdot) \equiv 1$, then Kirchhoff type problem \eqref{eq1.1} reduces to the $p$-biharmonic equation with Hardy potential \begin{gather*} \Delta_p^2 u - \frac{a}{|x|^{2p}} |u|^{p-2} u = \lambda f(x, u) + \mu g(x, u), \quad \text{in } \Omega \\ u = \Delta u = 0, \quad \text{on } \partial \Omega. \end{gather*} \end{remark} \section{Preliminaries} Let $X$ be the space $W^{2, p}(\Omega) \cap W_0^{1, p}(\Omega)$ endowed with the norm $$ \|u\| = \Big(\int_{\Omega} |\Delta u|^p dx\Big)^{1/p}. $$ We recall Rellich inequality \cite{D}, which says that \begin{equation}\label{eq2.1} \int_{\Omega} \frac{|u(x)|^p}{|x|^{2p}} dx \le \frac{1}{H} \int_{\Omega} |\Delta u|^p dx, \end{equation} where the best constant is \begin{equation}\label{eq2.2} H = \Big(\frac{(p-1)N(N-2p)}{p^2}\Big)^p. \end{equation} Define the functionals $\Phi, \Psi : X \to \mathbb{R}$ by \begin{equation}\label{eq2.3} \begin{gathered} \Phi(u) = \frac{1}{p} \widehat{M}(\|u\|^p) - \frac{a}{p} \int_{\Omega} \frac{|u(x)|^p}{|x|^{2p}} dx, \\ \Psi(u) = \int_{\Omega} \left[F(x, u(x)) + \frac{\mu}{\lambda} G(x, u(x))\right] dx, \end{gathered} \end{equation} where \begin{gather*} \widehat{M}(t) = \int_0^t M(s) ds, \quad t \ge 0, \\ F(x, t) = \int_0^t f(x, \xi) d \xi, \quad G(x, t) = \int_0^t g(x, \xi) d \xi, \quad (x, t) \in \Omega \times \mathbb{R}. \end{gather*} In this article, we assume that the following condition holds, \begin{itemize} \item[(H1)] $M : [0, +\infty[ \to \mathbb{R}$ is a continuous function. And there are two positive constants $m_0$, $m_1$ such that \begin{equation}\label{eq2.4} m_0 \le M(t) \le m_1, \quad \forall t \ge 0. \end{equation} \end{itemize} It is easy to show that the functionals $\Phi$ and $\Psi$ are well defined and continuously Gateaux differentiable and whose derivative are \begin{equation}\label{eq2.5} \begin{aligned} \Phi'(u)(v) &= M \Big(\int_{\Omega} |\Delta u(x)|^p dx\Big) \int_{\Omega} |\Delta u(x)|^{p-2} \Delta u(x) \Delta v(x) dx \\ &\quad - a \int_{\Omega} \frac{|u(x)|^{p-2}}{|x|^{2p}} u(x) v(x)dx, \end{aligned} \end{equation} and \begin{equation}\label{eq2.6} \Psi'(u)(v) = \int_{\Omega} [f(x, u(x)) + \frac{\mu}{\lambda} g(x, u(x))] v(x) dx, \end{equation} for every $u, v \in X$. Set $p^* = \frac{pN}{N-p}$. By the Sobolev embedding theorem there exist a positive constant $c$ such that $$ \|u\|_{L^{p^*}(\Omega)} \le c \|u\|, \quad \forall u \in X, $$ where \begin{equation}\label{eq2.7} c:= \pi^{-\frac{1}{2}} N^{-\frac{1}{p}} \Big(\frac{p-1}{N-p}\Big)^{1-\frac{1}{p}} \Big[\frac{\Gamma(1+\frac{N}{2}) \Gamma(N)}{\Gamma(\frac{N}{p}) \Gamma(N+1-\frac{N}{p})}\Big]^{1/N}, \end{equation} see, for instance, \cite{T}. Fixing $q \in [1, p^*)$, again from the Sobolev embedding theorem, there exists a positive constant $c_q$ such that \begin{equation}\label{eq2.8} \|u\|_{L^q(\Omega)} \le c_q \|u\|, \quad \forall u \in X. \end{equation} Thus, the embedding $X \hookrightarrow L^q(\Omega)$ is compact. By \eqref{eq2.7}, as a simple consequence of H\"older's inequality, one has the upper bound \begin{equation}\label{eq2.9} c_q \le \pi^{-\frac{1}{2}} N^{-1/p} \Big(\frac{p-1}{N-p}\Big)^{1-\frac{1}{p}} \Big[\frac{\Gamma(1+\frac{N}{2}) \Gamma(N)}{\Gamma(\frac{N}{p}) \Gamma(N+1-\frac{N}{p})}\Big]^{1/N} |\Omega|^{\frac{p^*-q}{p^* q}}, \end{equation} where $|\Omega|$ denotes the Lebesgue measure of the open set $\Omega$. Our main tools is an infinitely many critical points theorem \cite{Bo} which is recalled below. \begin{theorem}\label{thm:2.1} Let $X$ be a reflexive real Banach space; $\Phi, \Psi : X \to \mathbf{R}$ be two Gateaux differentiable functionals such that $\Phi$ is sequentially weakly lower semicontinuous, strongly continuous, and coercive and $\Psi$ is sequentially weakly upper semicontinuous. For every $r > \inf_X \Phi$, let us put \begin{gather*} \varphi(r) = \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\sup _{v \in \Phi^{-1}(]-\infty, r[)} \Psi(v) - \Psi(u)}{r - \Phi(u)} ,\\ \gamma = \liminf _{r \to + \infty} \varphi(r), \quad \delta = \liminf _{r \to (\inf_X \Phi)^+} \varphi(r). \end{gather*} Then, one has \begin{itemize} \item[(i)] If $\gamma < + \infty$ then, for each $\lambda \in ]0, \frac{1}{\gamma}[$, the following alternative holds: either the functional $\Phi - \lambda \Psi$ has a global minimum, or there exists a sequence $\{u_n\}$ of critical points (local minima) of $\Phi - \lambda \Psi$ such that $\lim_{n \to + \infty} \Phi(u_n) = + \infty$. \item[(ii)] If $\delta < + \infty$ then, for each $\lambda \in ]0, \frac{1}{\delta}[$, the following alternative holds: either there exists a global minimum of $\Phi$ which is a local minimum of $\Phi - \lambda \Psi$, or there exists a sequence $\{u_n\}$ of pairwise distinct critical points (local minima) of $\Phi - \lambda \Psi$, with $\lim_{n \to + \infty} \Phi(u_n) = \inf_X \Phi$, which weakly converges to a global minimum of $\Phi$. \end{itemize} \end{theorem} \section{Main results} Pick $s > 0$ such that $B(0, s) \subset \Omega$, where $B(0, s)$ denotes the ball with center at $0$ and radius of $s$. Let \begin{equation}\label{eq3.1} L = \frac{2 \pi^{N/2}}{\Gamma \left(\frac{N}{2}\right)} \int_{\frac{s}{2}}^s |\frac{12 (N+1)}{s^3} r - \frac{24 N}{s^2} + \frac{9(N - 1)}{s} \frac{1}{r}|^p r^{N-1} dr. \end{equation} \begin{theorem}\label{thm:3.1} Suppose that {\rm (H1)} and $0 < a < m_0 H$ hold (with $H$ is as in \eqref{eq2.2}). Also assume \begin{itemize} \item[(H2)] $f \in C(\overline{\Omega} \times \mathbb{R})$, and $F(x, t) \ge 0$ for every $(x, t) \in \Omega \times [0, +\infty[$; \item[(H3)] There exists $s > 0$ as considered in \eqref{eq3.1} such that, if we put $$ \alpha := \liminf _{t \to + \infty} \frac{ \sup_{\|\xi\|_{L^q(\Omega)} \le t} \int_{\Omega} F(x, \xi) dx}{t^p}, \quad \beta := \limsup _{t \to + \infty} \frac{\int_{B(0,s/2)} F(x, t/h) dx}{t^p}, $$ one has \begin{equation}\label{eq3.2} \alpha < R \beta, \end{equation} where $R = \frac{(m_0 H - a) h^p}{m_1 H L c_q^p}$ (constants $h > 1$, $c_q$ and $L$ are as in \eqref{eq2.8} and \eqref{eq3.1}, respectively). \end{itemize} Then, for every $\lambda \in \Lambda := \frac{m_0 H - a}{p H c_q^p} \left]\frac{1}{R \beta}, \frac{1}{\alpha}\right[$ and for every $g \in C(\overline{\Omega} \times \mathbb{R})$ such that \begin{itemize} \item[(H4)] $G(t, u) \ge 0$, for all $(t,u) \in \overline{\Omega} \times [0, + \infty[$, and $$ G_{\infty} := \limsup_{t \to +\infty} \frac{ \sup_{\|\xi\|_{L^q(\Omega)} \le t} \int_{\Omega} G(x, \xi) dx}{t^p}, $$ \end{itemize} if we put \begin{equation}\label{eq3.3} \mu^* =\begin{cases} \frac{m_0 H - a - p H c_q^p \alpha \lambda}{p H c_q^p G_{\infty}}, & G_{\infty} > 0,\\ + \infty, & G_{\infty} = 0, \end{cases} \end{equation} then \eqref{eq1.1} possesses an unbounded sequence of weak solutions in $X$ for every $\mu \in J:= [0, \mu_*[$. \end{theorem} \begin{proof} Our aim is to apply part (i) of Theorem \ref{thm:2.1}. Let $\Phi, \Psi$ be the functionals defined in \eqref{eq2.3}. From the above, we know that the Gateaux derivative of $\Phi$ and $\Psi$ are given by \eqref{eq2.5} and \eqref{eq2.6}, respectively. By \eqref{eq2.1}, it follows that \begin{equation}\label{eq3.4} \frac{m_0 H - a}{p H} \|u\|^p \le \Phi(u) \le \frac{m_1}{p} \|u\|^p, \quad u \in X, \end{equation} which implies that $\Phi$ is coercive. Moreover, from the weakly lower semicontinuity of norm, and the monotonicity and continuity of $\widehat{M}$, we known that $\Phi$ is sequentially weakly lower semicontinuous. The functional $\Psi$ has compact derivative, hence it is sequentially weakly upper semicontinuous. By \eqref{eq2.8} and \eqref{eq3.4}, we obtain \begin{equation} \begin{aligned} \Phi^{-1}(]- \infty, r[) &= \{u \in X : \Phi(u) < r\} \\ &\subset \big\{u \in X : \frac{m_0 H - a}{pH} \|u\|^p < r\big\} \\ & \subset \big\{u \in X : \|u\|_{L^q(\Omega)} < c_q \big(\frac{pHr}{m_0H-a}\big)^{1/p}\big\}. \end{aligned}\label{eq3.5} \end{equation} Note that $\Phi(0) = 0$ and $\Psi(0) = 0$. For every $r > 0$, we obtain by \eqref{eq3.5} that \begin{align*} \varphi(r) &= \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\sup _{v \in \Phi^{-1}(]-\infty, r[)} \Psi(v) - \Psi(u)}{r - \Phi(u)} \\ & \le \frac{\sup _{v \in \Phi^{-1}(]-\infty, r[)} \Psi(v)}{r} \\ & \le \frac{\sup_{\|\xi\|_{L^q(\Omega)} \le l} \int_{\Omega} F(x, \xi) dx}{r} + \frac{\mu}{\lambda} \frac{\sup_{\|\xi\|_{L^q(\Omega)} \le l} \int_{\Omega} G(x, \xi) dx}{r}, \end{align*} where $l = c_q \big(\frac{pHr}{m_0H-a}\big)^{1/p}$. Let $\{\sigma_n\}$ be a sequence of positive numbers such that $\sigma_n \to + \infty$ and \begin{equation} \begin{aligned} &\lim _{n \to + \infty} \frac{ \sup_{\|\xi\|_{L^q(\Omega)} \le \sigma_n} \int_{\Omega} F(x, \xi) dx}{\sigma_n^p} \\ & = \liminf _{t \to + \infty} \frac{ \sup_{\|\xi\|_{L^q(\Omega)} \le t} \int_{\Omega} F(x, \xi) dx}{t^p}. \end{aligned}\label{eq3.6} \end{equation} Let $r_n = \frac{m_0 H - a}{pH c_q^p} \sigma_n^p$ for all $n \in \mathbb{N}$. From (H3), (H4) and \eqref{eq3.6}, we obtain \begin{equation} \begin{aligned} \gamma & = \liminf _{r \to + \infty} \varphi(r) \le \liminf _{n \to + \infty} \varphi(r_n) \\ & \le \frac{p H c_q^p}{m_0 H - a} \lim _{n \to + \infty} \frac{\sup_{\|\xi\|_{L^q(\Omega)} \le \sigma_n} \int_{\Omega} F(x, \xi)dx}{\sigma_n^p} \\ & \quad + \frac{\mu}{\lambda} \frac{p H c_q^p}{m_0 H - a} \limsup _{n \to + \infty} \frac{\sup_{\|\xi\|_{L^q(\Omega)} \le \sigma_n} \int_{\Omega} G(x, \xi) dx}{\sigma_n^p} \\ & \le \frac{p H c_q^p}{m_0 H - a} \left(\alpha + \frac{\mu}{\lambda} G_{\infty}\right) < + \infty. \end{aligned}\label{eq3.7} \end{equation} By \eqref{eq3.3} and \eqref{eq3.7}, we easily check that \begin{equation}\label{eq3.8} \gamma < \begin{cases} \frac{p H c_q^p}{m_0 H - a} \big(\alpha + \frac{\mu^*}{\lambda} G_{\infty}\big) = \frac{1}{\lambda}, & G_{\infty} > 0,\\ \frac{p H c_q^p}{m_0 H - a} \alpha < \frac{1}{\lambda}, & G_{\infty} = 0 \end{cases} \end{equation} From the definition of $\Lambda$ and \eqref{eq3.2}, we have that $\Lambda \subset ]0, \frac{1}{\gamma}[$. In the following, we claim that the functional $\Phi - \lambda \Psi$ for $\lambda \in \Lambda$ is unbounded from below. Indeed, since $\frac{1}{\lambda} < \frac{p H c_q^p}{m_0 H - a} R \beta = \frac{p h^p}{m_1 L} \beta $, there exists a sequence $\{\tau_n\}$ of positive numbers and $\eta > 0$ such that $\tau_n \to + \infty$ and \begin{equation}\label{eq3.9} \frac{1}{\lambda} < \eta < \frac{p h^p}{ m_1 L} \frac{\int_{B(0,s/2)} F(x, \tau_n/h) dx}{\tau_n^p}, \end{equation} for $n$ large enough. Let $h > 1$ be as in $R$ (\eqref{eq3.2}), we consider a sequence $\{w_n\}$ in $X$ defined by setting \begin{equation}\label{eq3.10} w_n(x) = \begin{cases} 0, & x \in \overline{\Omega} \setminus B(0, s),\\ \frac{\tau_n}{h} \left(\frac{4}{s^3} \rho^3 - \frac{12}{s^2} \rho^2 + \frac{9}{s} \rho - 1\right), & x \in B(0, s) \setminus B (0, \frac{s}{2}),\\ \frac{\tau_n}{h}, & x \in B (0, \frac{s}{2}) \end{cases} \end{equation} with $\rho = \operatorname{dist}(x, 0) = \sqrt{\sum_{i=1}^N x_i^2}$. Clearly $w_n \in X$. A direct calculation shows \[ \frac{\partial w_n(x)}{\partial x_i} = \begin{cases} 0, & x \in (\overline{\Omega} \setminus B(0, s)) \cap B (0, \frac{s}{2}),\\ \frac{\tau_n}{h} \left(\frac{12 \rho x_i}{s^3} - \frac{24 x_i}{s^2} + \frac{9 x_i}{s \rho}\right), & x \in B(0, s) \setminus B (0, \frac{s}{2}) \end{cases} \] and \begin{equation}\label{eq3.11} \frac{\partial^2 w_n(x)}{\partial x_i^2} = \begin{cases} 0, & x \in (\overline{\Omega} \setminus B(0, s)) \cap B (0,\frac{s}{2}),\\ \frac{\tau_n}{h} \left(\frac{12(x_i^2 + \rho^2)}{s^3 \rho} - \frac{24}{s^2} + \frac{9(\rho^2 - x_i^2)}{s \rho^3}\right), & x \in B(0, s) \setminus B (0,\frac{s}{2}). \end{cases} \end{equation} By \eqref{eq3.11} and \eqref{eq3.1} we have \begin{align*} \sum _{i=1}^N \frac{\partial^2 w_n(x)}{\partial x_i^2} = \begin{cases} 0, & x \in (\overline{\Omega} \setminus B(0, s)) \cap B (0,\frac{s}{2}),\\ \frac{\tau_n}{h} \left(\frac{12 \rho (N+1)}{s^3} - \frac{24 N}{s^2} + \frac{9(N - 1)}{s \rho}\right), & x \in B(0, s) \setminus B (0,\frac{s}{2}), \end{cases} \end{align*} and \begin{equation} \begin{aligned} &\int_{\Omega} |\Delta w_n(x)|^p dx \\ & = \left(\frac{\tau_n}{h}\right)^p \frac{2 \pi^{N/2}}{\Gamma \left(\frac{N}{2}\right)} \int_{\frac{s}{2}}^s |\frac{12 (N+1)}{s^3} r - \frac{24 N}{s^2} + \frac{9(N - 1)}{s} \frac{1}{r}|^p r^{N-1} dr = \frac{L}{h^p} \tau_n^p. \end{aligned}\label{eq3.12} \end{equation} Thus, we have by \eqref{eq2.4} and \eqref{eq3.12} that \begin{equation} \begin{aligned} \Phi(w_n) &= \frac{1}{p} \widehat{M}(\|w_n\|^p) - \frac{a}{p} \int_{\Omega} \frac{|w_n(x)|^p}{|x|^{2p}} dx \le \frac{1}{p} \widehat{M} \Big( \int_{\Omega} |\Delta w_n(x)|^p dx\Big) \\ & \le \frac{ m_1 L}{p h^p}\tau_n^p. \end{aligned}\label{eq3.13} \end{equation} On the other hand, by (H4), one has \begin{equation}\label{eq3.14} \Psi(w_n) = \int_{\Omega} \left[F(x, w_n(x) + \frac{\mu}{\lambda} G(x, w_n(x))\right] dx \ge \int_{B (0,s/2)} F(x, \tau_n/h) dx. \end{equation} Hence, it follows from \eqref{eq3.13}, \eqref{eq3.14} and \eqref{eq3.9} that \[ \Phi(w_n) - \lambda \Psi(w_n) \le \frac{m_1 L}{p h^p} \tau_n^p - \lambda \int_{B (0,s/2)} F(x, \tau_n) dx \\ < \frac{m_1 L}{p h^p} (1-\lambda \eta)\tau_n^p \] for every $n \in \mathbb{N}$ large enough, which leads to $\lim_{n \to +\infty} (\Phi(w_n) - \lambda \Psi(w_n)) = - \infty$. The alternative of Theorem \ref{thm:2.1} case (i) assures the existence of unbounded sequence $\{u_n\}$ of critical points of the functional $\Phi - \lambda \Psi$. This completes the proof in view of the relation between the critical points of $\Phi - \lambda \Psi$ and the weak solutions of problem \eqref{eq1.1}. \end{proof} \begin{remark} \label{rmk3.1} \rm If $\alpha < \infty$, $\beta > 0$, and $h > 1$ large enough, then \eqref{eq3.2} holds. \end{remark} In the following, arguing in a similar way, but applying case (ii) of Theorem \ref{thm:2.1}, we can establishes the existence of infinitely many solutions to \eqref{eq1.1} converging at zero. \begin{theorem}\label{thm:3.2} Suppose that {\rm (H1)} and $0 < a < m_0 H$ hold (with $H$ is as in \eqref{eq2.2}). Also assume \begin{itemize} \item[(H5)] $f \in C(\overline{\Omega} \times \mathbb{R})$, and there exists $c > 0$ such that $F(x, t) \ge 0$ for every $(x, t) \in \Omega \times [0, c]$; \item[(H6)] There exists $s > 0$ as considered in \eqref{eq3.1} such that, if we put $$ \alpha^0 := \liminf _{t \to 0^+} \frac{\sup_{\|\xi\|_{L^q(\Omega)} \le t} \int_{\Omega} F(x, \xi) dx}{t^p}, \quad \beta^0 := \limsup _{t \to 0^+} \frac{\int_{B(0,s/2)} F(x, t/h) dx}{t^p}, $$ one has \begin{equation}\label{eq3.15} \alpha^0 < R \beta^0, \end{equation} where $R = \frac{(m_0 H - a) h^p}{m_1 H L c_q^p}$ (constants $h > 1$, $c_q$ and $L$ are as in \eqref{eq2.8} and \eqref{eq3.1}, respectively). \end{itemize} Then, for every $\lambda \in \Lambda^0 := \frac{m_0 H - a}{p H c_q^p} ]\frac{1}{R \beta^0}, \frac{1}{\alpha^0}[$ and for every $g \in C(\overline{\Omega} \times \mathbb{R}) $ such that \begin{itemize} \item[(H7)] $G(t, u) \ge 0$, for all $(t, u) \in \overline{\Omega} \times [0, c]$ and $$ G_0 := \limsup_{t \to 0^+} \frac{ \sup_{\|\xi\|_{L^q(\Omega)} \le t} \int_{\Omega} G(x, \xi) dx}{t^p}, $$ \end{itemize} if we put \begin{equation}\label{eq3.16} \mu_* =\begin{cases} \frac{m_0 H - a - p H c_q^p \alpha \lambda}{p H c_q^p G_0}, & G_0 > 0,\\ + \infty, & G_0 = 0, \end{cases} \end{equation} then \eqref{eq1.1} admits a sequence $\{u_n\}$ of weak solutions such that $u_n \to 0$ strongly in $X$ for every $\mu \in J:= [0, \mu_*[$. \end{theorem} \begin{proof} We take $\Phi$ and $\Psi$ be as in \eqref{eq2.3}. First, note that $\min _X \Phi = \Phi(0) = 0$. Let $\{\sigma_n\}$ be a sequence of positive numbers such that $\sigma_n \to 0^+$, and putting $r_n = \frac{m_0 H - a}{pH c_q^p} \sigma_n^p$. Similarly as above, we get \begin{equation} \begin{aligned} \delta & := \liminf _{r \to 0^+} \varphi(r) \le \liminf_{n \to + \infty} \varphi(r_n) \\ & \le \frac{p H c_q^p}{m_0 H - a} \left(\alpha^0 + \frac{\mu}{\lambda} G_0\right) < + \infty. \end{aligned}\label{eq3.17} \end{equation} From \eqref{eq3.16} and \eqref{eq3.17}, we have that $\Lambda^0 \subset ]0, \frac{1}{\delta}[$. Now, for $\lambda \in \Lambda^0$, we claim that $\Phi - \lambda \Psi$ does not have a local minimum at zero. Indeed, let $\{\tau_n\}$ be a sequence of positive numbers in $]0, \tau[$ and $\eta > 0$ such that $\tau_n \to 0^+$ and $$ \frac{1}{\lambda} < \eta < \frac{p h^p}{m_1 L} \frac{\int_{B(0,s/2)} F(x, \tau_n/h)dx}{\tau_n^p}, $$ for $n$ large enough. Let $\{w_n\}$ be the sequence in $X$ defined in \eqref{eq3.10}. By (H7), one has that \eqref{eq3.14} holds. Thus, from \eqref{eq3.13}, \eqref{eq3.14} and \eqref{eq3.9} we obtain that $$ \Phi(w_n) - \lambda \Psi(w_n) < \frac{m_1 L }{p h^p} (1-\lambda \eta)\tau_n^p < 0 = \Phi(0) - \lambda \Psi(0) $$ for every $n \in \mathbb{N}$ large enough. This together with the fact that $\|w_n\| \to 0$ shows that $\Phi - \lambda \Psi$ has not a local minimum at zero. The conclusion follows from the alternative of Theorem \ref{thm:2.1} case (ii). \end{proof} \subsection*{Acknowledgments} The authors want to than the referees for their valuable and helpful suggestions and comments that improved this article. This work is supported by the Natural Science Foundation of Jiangsu Province (BK2011407), and by the Natural Science Foundation of China (11571136 and 11271364). \begin{thebibliography}{00} \bibitem{A} C. O. Alves, F. J. S. A. Corr\^ea, T. F. Ma; Positive solutions for a quasilinear elliptic equation of Kirchhoff type, \emph{Comput. Math. Appl.}, \textbf{49} (2005), 85-93. \bibitem{B1} G. Molica Bisci; Variational problems on the Sphere, Recent Trends in Nonlinear Partial Differential Equations Dedicated to Patrizia Pucci on the Occasion of her 60th Birthday, \emph{Contemporary Mathematics}, \textbf{595} 5 (2013), 273-291. \bibitem{B2} G. Molica Bisci, D. Repovs; Multiple solutions of p-biharmonic equations with Navier boundary conditions, \emph{Complex Var. Elliptic Equ.}, \textbf{59} (2014), 271-284. \bibitem{B3} G. Molica Bisci, P. Pizzimenti; Sequences of weak solutions for non-local elliptic problems with Dirichlet boundary condition, \emph{Proc. Edinb. Math. Soc.}, \textbf{57} (2014), 779-809. \bibitem{Bo} G. Bonanno, G. Molica Bisci; Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, \emph{Bound. Value Probl.}, \textbf{2009} (2009), 1-20. \bibitem{D} E. B. Davies, A. M. Hinz; Explicit constants for Rellich inequalities in $L_p(\Omega)$, \emph{Math. Z.}, \textbf{227} (1998), 511-523. \bibitem{F1} M. Ferrara, S. Khademloo, S. Heidarkhani; Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, \emph{Appl. Math. Comput.}, \textbf{234} (2014), 316-325. \bibitem{F2} M. Ferrara, G. Molica Bisci; Existence results for elliptic problems with Hardy potential, \emph{Bull. Sci. math.}, \textbf{138} (2014), 846-859. \bibitem{Fi} G. M. Figueiredo; Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, \emph{J. Math. Anal. Appl.}, \textbf{401} (2013), 706-713. \bibitem{G1} M. Ghergu, V. Radulescu; Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford Univ. Press, 2008. \bibitem{G2} M. Ghergu, V. Radulescu; Sublinear singular elliptic problems with two parameters, \emph{J. Differ. Equ.}, \textbf{195} (2003), 520-536. \bibitem{Gr} J. R. Graef, S. Heidarkhani, L. Kong; A variational Approach to a Kirchhoff-type problem involving two parameters, \emph{Results. Math.} , \textbf{63} (2013), 877-889. \bibitem{Ha} A. Hamydy, M. Massar, N. Tsouli; Existence of solutions for p-Kirchhoff type problems with critical exponent, \emph{Electron. J. Diff. Equ.} , \textbf{2011} (2011), No. 105, pp. 1-8. \bibitem{He} X. He, W. Zou; Infinitely many positive solutions for Kirchhoff-type problems, \emph{Nonlinear Anal.}, \textbf{70} (2009), 1407-1414. \bibitem{Hu} Y. Huang, X. Liu; Sign-changing solutions for $p$-biharmonic equations with Hardy potential, \emph{J. Math. anal. Appl.} \textbf{412} (2014), 142-154. \bibitem{K} G. Kirchhoff; Mechanik, Teubner, leipzig, Germany, 1883. \bibitem{L} Y. Li, F. Li, J. Shi; Existence of a positive solution to Kirchhoff type problems without compactness conditions, \emph{J. Differ. Equ.}, \textbf{253} (2012), 2285-2294. \bibitem{M} M. Massar; Existence and multiplicity solutions for nonlocal elliptic problems, \emph{Electron. J. Diff. Equ.}, \textbf{2013} (2013), No. 75, pp. 1-14. \bibitem{R} V. Radulescu; Combined effects in nonlinear singular elliptic problems with convenction, \emph{Rev. Roum. Math. Pures Appl.}, \textbf{53} (2008), 543-553. \bibitem{T} G. Talenti; Elliptic equations and rearrangements, \emph{Ann. Sc. Norm. Super Pisa Cl. Sci.}, \textbf{3} (1976), 697-718. \bibitem{W} F. Wang, Y. An; Existence and multiplicity of solutions for a fourth-order elliptic equation, \emph{Boundary Value Problems}, \textbf{2012} (2012), No. 6, pp. 1-9. \end{thebibliography} \end{document}