\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 27, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/27\hfil Inverse Sturm-Liouville problems] {Inverse Sturm-Liouville problems with fixed boundary conditions} \author[Yu. A. Ashrafyan, T. N. Harutyunyan \hfil EJDE-2015/27\hfilneg] {Yuri A. Ashrafyan, Tigran N. Harutyunyan} \address{Yuri A. Ashrafyan \newline Yerevan State University, Armenia} \email{yuriashrafyan@ysu.am} \address{Tigran N. Harutyunyan \newline Yerevan State University, Armenia} \email{hartigr@yahoo.co.uk} \thanks{Submitted December 17, 2014. Published January 28, 2015.} \subjclass[2000]{34B24, 34L20} \keywords{Inverse Sturm-Liouville problem; eigenvalues; norming constants} \begin{abstract} Necessary and sufficient conditions for two sequences $\{\mu_n\}_{n=0}^\infty$ and $\{ a_n\}_{n=0}^\infty$ to be the spectral data for a certain Sturm-Liouville problem are well known. We add two more conditions so that the same two sequences become necessary and sufficient for being the spectral data for a Sturm-Liouville problem with fixed boundary conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \allowdisplaybreaks \section{Introduction and statements of the results} Let us denote by $L(q, \alpha, \beta)$ the Sturm-Liouville boundary-value problem \begin{gather} \ell y\equiv -y''+q(x)y=\mu y,\quad x\in (0, \pi),\; \mu\in \mathbb{C},\label{eq1}\\ y(0)\cos\alpha+y'(0)\sin\alpha=0,\quad \alpha\in (0, \pi],\label{eq2}\\ y(\pi)\cos\beta +y'(\pi)\sin\beta=0,\quad \beta\in[0, \pi),\label{eq3} \end{gather} where $q$ is a real-valued functions which are integrable on $[0, \pi]$ (we write $q\in L^1_{\mathbb{R}}[0, \pi]$). By $L(q, \alpha, \beta)$ we also denote the self-adjoint operator, generated by problem \eqref{eq1}-\eqref{eq3} (see \cite{n1}). It is known, that under these conditions the spectra of the operator $L(q, \alpha, \beta)$ is discrete and consists of real, simple eigenvalues \cite{n1}, which we denote by $\mu_n=\mu_n(q,\alpha,\beta)=\lambda_n^2(q, \alpha, \beta)$, $n=0, 1, 2, \dots$, emphasizing the dependence of $\mu_n$ on $q$, $\alpha$ and $\beta$. We assume that eigenvalues are enumerated in the increasing order, i.e., $$ \mu_0(q, \alpha, \beta) < \mu_1(q, \alpha, \beta) < \dots < \mu_n(q, \alpha, \beta) < \dots. $$ Let $\varphi(x,\mu,\alpha,q)$ and $\psi(x,\mu,\beta,q)$ be the solutions of the equation \eqref{eq1}, which satisfy the initial conditions \begin{gather*} \varphi(0,\mu,\alpha,q)=\sin\alpha,\quad \varphi'(0,\mu,\alpha,q)=-\cos\alpha,\\ \psi(\pi,\mu,\beta,q)=\sin\beta, \quad \psi'(\pi,\mu,\beta,q)=-\cos\beta, \end{gather*} respectively. The eigenvalues $\mu_n=\mu_n(q, \alpha, \beta)$, $n=0,1, 2, \dots$, of $L(q, \alpha, \beta)$ are the solutions of the equation $$ \Phi(\mu)=\Phi(\mu,\alpha,\beta):=\varphi(\pi, \mu, \alpha)\cos \beta+\varphi'(\pi, \mu,\alpha)\sin\beta=0, $$ or of the equation $$ \Psi(\mu)=\Psi(\mu,\alpha,\beta):=\psi(0, \mu, \beta)\cos\alpha+\psi'(0, \mu, \beta)\sin \alpha=0. $$ According to the well-known Liouville formula, the wronskian $W(x)=W(x,\varphi,\psi)= \varphi \psi'-\varphi'\psi$ of the solutions $\varphi$ and $\psi$ is constant. It follows that $W(0)=W(\pi)$ and, consequently $\Psi(\mu, \alpha, \beta)=-\Phi(\mu, \alpha, \beta)$. It is easy to see that the functions $\varphi_n(x):=\varphi(x, \mu_n, \alpha, q)$ and $\psi_n(x):=\psi(x,\mu_n, \beta, q)$, $n=0, 1, 2, \dots$, are the eigenfunctions, corresponding to the eigenvalue $\mu_n$. Since all eigenvalues are simple, there exist constants $c_n=c_n(q, \alpha, \beta)$, $n=0, 1, 2, \dots$, such that \begin{equation}\label{eq4} \varphi_n(x)=c_n \psi_n(x). \end{equation} The squares of the $L^2$-norm of these eigenfunctions: \begin{gather*} a_n=a_n(q,\alpha,\beta):=\int_0^{\pi} |\varphi_n(x)|^2 dx,\quad n=0, 1, 2, \dots,\\ b_n=b_n(q,\alpha,\beta):=\int_0^{\pi} |\psi_n(x)|^2 dx,\quad n=0, 1, 2, \dots \end{gather*} are called norming constants. In this article we consider the case $\alpha,\beta \in (0,\pi)$; i.e. we assume that $\sin \alpha \neq 0$ and $\sin \beta \neq 0$. In this case we consider the solution $\tilde{\varphi}(x,\mu,\alpha,q):=\frac{\varphi(x,\mu,\alpha,q)}{\sin\alpha}$ of \eqref{eq1} which has the initial values $$ \tilde{\varphi}(0,\mu,\alpha,q)=1, \quad \tilde{\varphi}'(0,\mu,\alpha,q)=-\cot\alpha; $$ also we consider the solution $\tilde{\psi}(x,\mu,\beta,q):=\frac{\psi(x,\mu,\beta,q)}{\sin\beta}$. Of course, the functions $\tilde{\varphi}_n(x):=\tilde{\varphi}(x,\mu_n,\alpha,q)$ and $\tilde{\psi}_n(x):=\tilde{\psi}(x,\mu_n,\alpha,q)$, $n=0,1,2,\dots$, are the eigenfunctions, corresponding to the eigenvalue $\mu_n$. It follows from \eqref{eq4} that for norming constants $\tilde{a}_n:=\|\tilde{\varphi}_n\|^2=\frac{a_n}{\sin^2\alpha}$ and $\tilde{b}_n:=\|\tilde{\psi}_n\|^2=\frac{b_n}{\sin^2\beta}$ satisfy \begin{equation}\label{eq5} \tilde{b}_n=\frac{b_n}{\sin^2\beta}=\frac{a_n}{c^2_n \sin^2\beta} =\frac{\tilde{a}_n \sin^2 \alpha}{c^2_n \sin^2\beta}. \end{equation} The inverse problem by ``spectral function'' (see \cite{f1,g1,g2,i1,l1,m1,p1,z1}) is the reconstruction of the problem $(q,\alpha,\beta)$ from the spectra $\{\mu_n\} _{n=0}^{\infty}$ and the norming constants $\{\tilde{a}_n \} _{n=0}^{\infty}$ (or $\{\tilde{b}_n \} _{n=0}^{\infty}$). The two sequences $\{\mu_n \} _{n=0}^\infty$ and $\{\tilde{a}_n \} _{n=0}^\infty$ together will be called the spectral data. In this article we state the question \begin{quote} What kind of sequences $\{\mu_n \} _{n=0}^\infty$ and $\{\tilde{a}_n \} _{n=0}^\infty$ can be the spectral data for problem $(q,\alpha,\beta)$ with $q\in L^2_{\mathbb{R}}[0, \pi]$ and in advance fixed $\alpha$ and $\beta$ in $(0,\pi)$? \end{quote} Our answer is in the following assertion. \begin{theorem}\label{thm1} For a real increasing sequence $\{\mu_n \} _{n=0}^\infty$ and a positive sequence $\{\tilde{a}_n \} _{n=0}^\infty$ to be spectral data for boundary-value problem $(q,\alpha,\beta)$ with a $q\in L^2_{\mathbb{R}}[0, \pi]$ and fixed $\alpha,\beta \in (0,\pi)$ it is necessary and sufficient that the following relations hold: \begin{gather} \lambda_n=\sqrt{\mu_n}=n+\frac{\omega}{\pi n}+\frac{\omega_n}{n}, \quad \omega=\textrm{const}, \quad \{\omega_n \} _{n=0}^\infty \in l^2, \label{eq6} \\ \tilde{a}_n=\frac{\pi}{2}+\frac{\kappa_n}{n}, \quad \{{\kappa_n} \}_{n=0}^\infty \in l^2, \label{eq7} \\ \frac{1}{\tilde{a}_0}-\frac{1}{\pi}+\sum_{n=1}^\infty\Big(\frac{1}{\tilde{a}_n} -\frac{2}{\pi}\Big)=\cot\alpha, \label{eq8} \\ \frac{\tilde{a}_0}{\pi^2 \cdot \left( \prod_{k=1}^\infty \frac{\mu_k - \mu_0}{k^2}\right)^2}-\frac{1}{\pi} +\sum_{n=1}^\infty\Big(\frac{\tilde{a}_n n^4}{\pi^2 [\mu_0-\mu_n]^2 \big( \prod_{k=1, k \neq n}^\infty \frac{\mu_k - \mu_n}{k^2}\big)^2}- \frac{2}{\pi}\Big)=-\cot\beta.\label{eq9} \end{gather} \end{theorem} To prove Theorem \ref{thm1} we prove the following assertion, which has independent interest. \begin{theorem}\label{thm2} Let $q\in L^2_{\mathbb{R}}[0, \pi]$ and $\alpha,\beta \in (0,\pi)$. Then for norming constants $\tilde{a}_n=\tilde{a}_n(q, \alpha,\beta)$ and $\tilde{b}_n=\tilde{b}_n(q,\alpha,\beta)$ satisfy \begin{gather} \frac{1}{\tilde{a}_0}-\frac{1}{\pi}+\sum_{n=1}^\infty \Big(\frac{1}{\tilde{a}_n}-\frac{2}{\pi}\Big)=\cot\alpha, \label{eq10}\\ \frac{1}{\tilde{b}_0}-\frac{1}{\pi}+\sum_{n=1}^\infty \Big(\frac{1}{\tilde{b}_n}-\frac{2}{\pi}\Big)=-\cot\beta. \label{eq11} \end{gather} \end{theorem} Let us note that asymptotic behavior of $\{\mu_n\}_{n=0}^\infty$ and $\{\tilde{a}_n\}_{n=0}^\infty$ are standard conditions for the solution of the inverse problem. The conditions \eqref{eq8} and \eqref{eq9} which we add to the conditions \eqref{eq6} and \eqref{eq7} guarantee that $\alpha$ and $\beta$, which we construct during the solution of the inverse problem, are the same that we fixed in advance. At the same time Theorem \ref{thm2} says that the conditions \eqref{eq8} and \eqref{eq9} are necessary. \section{Proof of Theorem \ref{thm2}} The solution $\tilde{\varphi}$ has the well known representation (see \cite{f1,g1,g2,l1,m1}) \begin{equation}\label{eq12} \tilde{\varphi}(x,\lambda,\alpha,q)=\cos{\lambda x}+\int^x_0 G(x,t)\cos{\lambda t}dt, \end{equation} where about the kernel $G(x,t)$ we know (in particular) that \begin{equation}\label{eq13} G(x,x)=-\cot\alpha + \frac{1}{2} \int^x_0 q(s)ds. \end{equation} It is also known that $G(x,t)$ satisfies to the Gelfand-Levitan integral equation \begin{equation}\label{eq14} G(x,t)+F(x,t)+\int^x_0 G(x,s)F(s,t)ds=0,\quad 0\leq t \leq x, \end{equation} where (see \cite{f1}) \begin{equation}\label{eq15} F(x,t)=\sum_{n=0}^\infty \Big( \frac{\cos{\lambda_n x}\cos{\lambda_n t}}{\tilde{a}_n} -\frac{\cos{n x}\cos{n t}}{a_n^0}\Big) \end{equation} where $a_0^0=\pi$ and $a_n^0=\frac{\pi}{2}$ for $n=1,2,\dots$. From \eqref{eq13}--\eqref{eq15} it follows that \begin{equation}\label{eq16} \begin{aligned} G(0,0)&=-F(0,0) =-\sum_{n=0}^\infty \Big( \frac{1}{\tilde{a}_n}-\frac{1}{a_n^0}\Big)\\ &=-\Big( \frac{1}{\tilde{a}_0}-\frac{1}{\pi}\Big) - \sum_{n=1}^\infty \Big( \frac{1}{\tilde{a}_n}-\frac{2}{\pi}\Big) = -\cot\alpha. \end{aligned} \end{equation} Thus, \eqref{eq10} is proved. Let us now consider the functions (compare with \cite{j1}) \begin{equation}\label{eq17} p(x,\mu_n)=\frac{\varphi(\pi-x,\mu_n,\alpha,q)}{\varphi(\pi, \mu_n,\alpha,q)}= \frac{\varphi(\pi-x,\mu_n)}{\varphi(\pi, \mu_n)}, \quad n=0,1,2,\dots . \end{equation} Since $\varphi(x,\mu,\alpha,q)$ satisfies \eqref{eq1}, and $$ p'(x,\mu_n)=-\frac{\varphi'(\pi-x,\mu_n)}{\varphi(\pi, \mu_n)}, \quad p''(x,\mu_n)=\frac{\varphi''(\pi-x,\mu_n)}{\varphi(\pi, \mu_n)}, $$ we can see that $p(x,\mu_n)$ satisfies $$ -p''(x,\mu_n)+q(\pi-x)p(x,\mu_n)=\mu_n p(x,\mu_n) $$ and the initial conditions \begin{equation}\label{eq18} p(0,\mu_n)=1, \quad p'(0,\mu_n)=-\frac{\varphi'(\pi,\mu_n)}{\varphi(\pi,\mu_n)} =-(-\cot\beta)=\cot\beta=-\cot(\pi-\beta). \end{equation} Also we have \begin{gather*} p(\pi,\mu_n)=\frac{\varphi(0,\mu_n)}{\varphi(\pi,\mu_n)} =\frac{\sin\alpha}{\varphi(\pi,\mu_n)} =\frac{\sin(\pi-\alpha)}{\varphi(\pi,\mu_n)}, \\ p'(\pi,\mu_n)=-\frac{\varphi'(0,\mu_n)}{\varphi(\pi,\mu_n)} =-\frac{-\cos\alpha}{\varphi(\pi,\mu_n)} =\frac{-\cos(\pi-\alpha)}{\varphi(\pi,\mu_n)}. \end{gather*} It follows, that $p_n(x):=p(x,\mu_n)$ satisfy to the boundary condition $$ p_n(\pi)\cos(\pi-\alpha)+p'_n(\pi)\sin(\pi-\alpha)=0, \quad n=0,1,2,\dots. $$ Let us denote $q^{*}(x):=q(\pi-x)$. Since $\mu_n(q^{*},\pi-\beta,\pi-\alpha)=\mu_n(q,\alpha,\beta)$ (it is easy to prove and is well known \cite{i1}), it follows, that $p_n(x)$, $n=0,1,2,\dots$, are the eigenfunctions of problem $(q^{*},\pi-\beta,\pi-\alpha)$, which have the initial conditions \eqref{eq18}; i.e. $p_n(x)=\tilde{\varphi}(x,\mu_n,\pi-\beta,q^{*})$, $n=0,1,2,\dots$. Thus, as in \eqref{eq16}, for norming constants $\hat{a}_n=\|p(\cdot, \mu_n)\|^2$ must satisfy \begin{equation}\label{eq19} \Big( \frac{1}{\hat{a}_0}-\frac{1}{\pi}\Big) + \sum_{n=1}^\infty \Big( \frac{1}{\hat{a}_n}- \frac{2}{\pi}\Big) = \cot(\pi-\beta)=-\cot\beta. \end{equation} On the other hand, for the norming constants $\hat{a}_n$, according to \eqref{eq4}, \eqref{eq5} and \eqref{eq17}, we have \begin{align*} \hat{a}_n &=\int_0^{\pi} p^2(x,\mu_n)dx\\ &= \int_0^{\pi} \frac{\varphi^2(\pi-x,\mu_n)}{\varphi^2(\pi,\mu_n)}dx\\ &=-\frac{1}{\varphi^2(\pi,\mu_n)} \int^0_{\pi} \varphi^2(s,\mu_n)ds\\ &= \frac{1}{\varphi^2(\pi,\mu_n)} \int^{\pi}_0 \varphi^2(s,\mu_n)ds\\ &=\frac{a_n(q,\alpha,\beta)}{\varphi^2(\pi,\mu_n)} =\frac{\tilde{a}_n \sin^2\alpha}{c^2_n \sin^2\beta}=\tilde{b}_n. \end{align*} Therefore, we can rewrite \eqref{eq19} in the form $$ \Big( \frac{1}{\tilde{b}_0}-\frac{1}{\pi} \Big) - \sum_{n=1}^\infty \Big( \frac{1}{\tilde{b}_n}-\frac{2}{\pi}\Big) =\cot(\pi-\beta)= -\cot\beta. $$ Thus, \eqref{eq11} holds, and Theorem \ref{thm2} is proved. \smallskip Let us note that the specification of the spectra $\{\mu_n(q,\alpha,\beta) \} _{n=0} ^\infty $ (of a problem $(q,\alpha,\beta)$) uniquely determines the characteristic function $\Phi(\mu)$ (see \cite[Lemma 2.2]{h1}, see also \cite[Lemma 1]{i1}), and its derivative $\frac{\partial \Phi(\mu)}{\partial \mu}=\dot{\Phi}(\mu)$ (see \cite[lemma2.3]{h1}). In particular, if $\alpha,\beta \in (0,\pi)$ the following formulae hold: \begin{gather}\label{eq20} \dot{\Phi}(\mu_0)=-\pi \sin\alpha \sin\beta \prod_{k=1}^\infty \frac{\mu_k - \mu_0}{k^2}, \\ \label{eq21} \dot{\Phi}(\mu_n)=-\frac{\pi}{n^2} \left[ \mu_0 - \mu_n \right] \sin\alpha \sin\beta \prod_{k=1, k \neq n}^\infty \frac{\mu_k - \mu_n}{k^2}, \end{gather} for $ n=1,2,\dots$. On the other hand, it is easy to prove the relation (see \cite[(2.16) in Lemma 2.2]{h1} and \cite[Lemma 1]{i1}) \begin{equation}\label{eq22} a_n=-c_n \dot{\Phi}(\mu_n). \end{equation} To take into account the relations \eqref{eq5} and \eqref{eq20}-\eqref{eq22} we find formulae for $1/\tilde{b}_0$ and $1/\tilde{b}_n$ with $n=1,2,\dots$ (in terms of $\{\mu_n\}_{n=0}^\infty$ and $\{\tilde{a}_n\}_{n=0}^\infty$): \begin{gather}\label{eq23} \frac{1}{\tilde{b}_0}=\frac{\tilde{a}_0}{\pi^2 \big( \prod_{k=1}^\infty \frac{\mu_k - \mu_0}{k^2}\big)^2}, \\ \label{eq24} \frac{1}{\tilde{b}_n}=\frac{\tilde{a}_n n^4}{\pi^2 [\mu_0-\mu_n]^2 \big( \prod_{k=1, k \neq n}^\infty \frac{\mu_k - \mu_n}{k^2}\big)^2}. \end{gather} So, we can change the second assertion in Theorem \ref{thm2} by the assertion \begin{align*} &\frac{\tilde{a}_0}{\pi^2 \big( \prod_{k=1}^\infty \frac{\mu_k - \mu_n}{k^2}\big)^2} -\frac{1}{\pi}\\ &+\sum_{n=1}^\infty\Big( \frac{\tilde{a}_n n^4}{\pi^2 [\mu_0-\mu_n]^2 \big( \prod_{k=1, k \neq n}^\infty \frac{\mu_k - \mu_n}{k^2}\big)^2}- \frac{2}{\pi}\Big)=-\cot\beta, \end{align*} which coincides with \eqref{eq9}. \section{proof of the Theorem \ref{thm1}} For $\mu_n$ we have proved in \cite{h2} (in a more general case, when $q\in L^1_{\mathbb{R}}[0, \pi]$) the asymptotic formula \begin{equation}\label{eq25} \mu_n(q,\alpha,\beta)=\left[ n+\delta_n(\alpha,\beta) \right] ^2 + \frac{1}{\pi}\int_0^{\pi} q(t)dt + r_n(q,\alpha,\beta), \end{equation} where $\delta_n$ is the solution of the equation \begin{equation}\label{eq26} \begin{aligned} \delta_n(\alpha,\beta) &=\frac{1}{\pi} \arccos{\frac{\cos\alpha}{\sqrt{\left[ n+\delta_n(\alpha,\beta) \right] ^2 \sin^2\alpha + \cos^2 \alpha}}} \\ &\quad -\frac{1}{\pi} \arccos{\frac{\cos\beta}{\sqrt{\left[ n+\delta_n(\alpha,\beta) \right] ^2 \sin^2\beta + \cos^2 \beta}}} \end{aligned} \end{equation} and $r_n(q,\alpha,\beta)=o(1)$, when $n \rightarrow \infty$, uniformly in $\alpha, \beta \in [0,\pi]$ and $q$ from any bounded subset of $L_{\mathbb{R}}^1[0,\pi]$ (we will write $q \in BL_{\mathbb{R}}^1[0,\pi]$). It follows from \eqref{eq26} (see \cite{h2} for details), that if $\sin \alpha \neq 0$ and $\sin \beta \neq 0$, $(\alpha,\beta \in (0,\pi))$, then \begin{equation}\label{eq27} \delta_n(\alpha,\beta)=\frac{\cot\beta - \cot\alpha}{\pi n} + O \big( \frac{1}{n^2} \big). \end{equation} It is not difficult to obtain from \eqref{eq25} that (see \cite{h3}) \begin{equation}\label{eq28} \lambda_n=\sqrt{\mu_n}=n+\delta_n(\alpha,\beta)+\frac{\left[ q \right]}{2 \left[ n +\delta_n(\alpha,\beta)\right]} + l_n + O \big( \frac{1}{n^2} \big), \end{equation} where \[ l_n=\frac{1}{\pi [n+\delta_n(\alpha,\beta)]} \int_0^{\pi} q(x) \cos 2 \lambda_n x dx =o \big( \frac{1}{n} \big) \] and $[q]=\frac{1}{\pi}\int_0^{\pi} q(t) dt$. In the case $q\in L_{\mathbb{R}}^2[0, \pi]$ and $\alpha,\beta \in (0,\pi)$ it follows from \eqref{eq27} and \eqref{eq28} that $l_n=\omega_n/n$, where $\left[ \omega_n \right] \in l^2$ and we can rewrite \eqref{eq28} in the form \begin{equation}\label{eq29} \lambda_n=n+\frac{\omega}{n} +\frac{\omega_n}{n}, \end{equation} where $\omega= \textrm{const} = \big(\cot\beta - \cot\alpha+ \frac{\pi}{2} [q]\big)/\pi$ and $\{\omega_n \} _{n=0}^\infty \in l^2$, i.e. $\sum_{n=1}^\infty | \omega_n |^2 < \infty$. In \cite{f1} there is a proof of such assertion: \begin{theorem}[\cite{f1}]\label{thm3} For real numbers $\{\lambda_n^2 \} _{n=0}^\infty$ and $\{\tilde{a}_n \} _{n=0}^\infty$ to be the spectral data for a certain boundary-value problem $(q,\alpha,\beta)$ with $q\in L_{\mathbb{R}}^2[0, \pi]$, ($\alpha,\beta \in \left( 0,\pi \right)$), it is necessary and sufficient that relations \eqref{eq6} and \eqref{eq7} hold. \end{theorem} Thus, if we have a real sequence $\{\mu_n \}_{n=0}^\infty = \{\lambda_n^2 \}_{n=0}^\infty$, which has the asymptotic representation \eqref{eq6} and a positive sequence $\{\tilde{a}_n \}_{n=0}^\infty$, which has the asymptotic representation \eqref{eq7}, then, according to the Theorem \ref{thm3}, there exist a function $q\in L^2_{\mathbb{R}}[0, \pi]$ and some constants $\tilde{\alpha},\tilde{\beta} \in (0,\pi)$ such that $\lambda_n^2$, $n=0,1,2,\dots$, are the eigenvalues and $\tilde{a}_n$, $n=0,1,2,\dots$, are norming constants of a Sturm-Liouville problem $(q,\tilde{\alpha},\tilde{\beta})$. The function $q(x)$ and constants $\tilde{\alpha}, \tilde{\beta}$ are obtained on the way of solving the inverse problem by Gel'fand-Levitan method. The algorithm of that method is as follows: First we define the function $F(x,t)$ by formula \eqref{eq15} (note that this function is defined by $\{\lambda_n \}_{n=0}^\infty$ and $\{\tilde{a}_n \}_{n=0}^\infty$ uniquely). Then we consider the integral equation \eqref{eq14}, where $G(x,\cdot)$ is unknown function. It is proved (see \cite{f1}) that provided \eqref{eq29} and \eqref{eq7} the integral equation \eqref{eq14} has a unique solution $G(x,t)$. With function $G(x,t)$, we construct a function \begin{equation}\label{eq30} \tilde{\varphi}(x,\lambda)=\cos{\lambda x}+\int^x_0 G(x,t)\cos{\lambda t}dt, \end{equation} which is defined for all $\lambda \in \mathbb{C}$. It is proved (see \cite{f1}) that \begin{equation}\label{eq31} - \tilde{\varphi}''(x,\lambda^2)+\Big( 2 \frac{d}{dx}G(x,x) \Big) \tilde{\varphi}(x,\lambda^2) = \lambda^2 \tilde{\varphi}(x,\lambda^2), \end{equation} almost everywhere on $(0,\pi)$, \begin{gather*} \tilde{\varphi}(0,\lambda^2)=1,\\ \tilde{\varphi}'(0,\lambda^2)=G(0,0). \end{gather*} If we state the condition \begin{equation}\label{eq32} G(0,0)=-\cot \alpha, \end{equation} then the solution \eqref{eq30} of equation \eqref{eq31} will satisfy the boundary condition \eqref{eq2} $$ \tilde{\varphi}(0,\lambda^2) \cos \alpha+\tilde{\varphi}'(0,\lambda^2)\sin \alpha =0 $$ for all $\lambda \in \mathbb{C}$. Since from \eqref{eq14} it follows that $G(0,0)=-F(0,0)$ and from \eqref{eq15} that $F(0,0)=-\sum_{n=0}^\infty \big( \frac{1}{\tilde{a}_n}-\frac{1}{a_n^0}\big)$, we have that condition \eqref{eq32} can be represented as $$ \sum_{n=0}^\infty \Big( \frac{1}{\tilde{a}_n}-\frac{1}{a_n^0}\Big)=\cot \alpha, $$ which is our condition \eqref{eq8} on the sequence $\{\tilde{a}_n \}_{n=0}^\infty$. It is also proved (see \cite{f1,z1}) that the expression \[ \frac {\tilde{\varphi}'_n (\pi)}{\tilde{\varphi}_n (\pi)} = \frac {\tilde{\varphi}'(\pi, \lambda_n^2)}{\tilde{\varphi}(\pi,\lambda_n^2)} \] is a constant (i.e. does not depend on $n$), which we will denote by $-\cot \tilde{\beta}$. So the functions $\tilde{\varphi}(x,\lambda_n^2), n=0,1,2,\dots$, are the eigenfunctions of a problem $(q,\tilde{\alpha},\tilde{\beta})$, where $q(x)=2 \frac{d}{dx} G(x,x)$, $\tilde{\alpha}$ is in advance given $\alpha$ and we want $\tilde{\beta}$ to be equals $\beta$. We know from the Theorem \ref{thm2}, that for problem $(q,\alpha,\tilde{\beta})$ it holds $$ \frac{1}{\tilde{b}_0}-\frac{1}{\pi}+\sum_{n=1}^\infty \Big( \frac{1}{\tilde{b}_n}- \frac{2}{\pi} \Big)=- \cot \tilde{\beta}. $$ Thus, if we obtain condition \eqref{eq11}, then we guarantee that $\tilde{\beta}=\beta$. But \eqref{eq11} deals with the norming constants $\tilde{b}_n$, which are not independent. We have shown that we can represent $\tilde{b}_n$ by $\tilde{a}_n$ and $\{\mu_k \}_{k=0}^\infty$ (see the relations \eqref{eq23} and \eqref{eq24}). Therefore, instead of \eqref{eq11}, we obtain the condition in the form \eqref{eq9}. Theorem \ref{thm1} is proved. \subsection*{Acknowledgments} We would like to thank the anonymous referee for pointing out that in an earlier version of Theorem \ref{thm1} we used the condition $\tilde{a}_n=(\pi/2)+r_n$ with $r_n=O(1/n^2)$, from an incorrect result from [Harutyunyan, T. N.; Asymptotics of the Norming Constants of the Sturm-Liouville Problem, Proceedings of YSU, 3, pp. 3-11, 2013]. The new version of Theorem \ref{thm1} uses $\tilde{a}_n=(\pi/2)+(k_n/n)$ with $\{k_n\}\in \ell^2$, which leads to the correct result. This research is supported by the Open Society Foundations - Armenia, within the Education program, grant N18742. \begin{thebibliography}{0} \bibitem{f1} Freiling, G.; Yurko V. A.; \emph{Inverse Sturm-Liouville Problems and Their Applications}, Nova Science Publishers, Inc., New York, 2001. \bibitem{g1} Gasimov, M.; Levitan, B. M.; \emph{Reconstruction of Differential Equation by Two Spectra}, Uspekhi Mat. Nauk, 1964, (in Russian). \bibitem{g2} Gel'fand, I. M.; Levitan, B. M.; \emph{ On the Determination of a Differential Equation from its Spectral Function}, Izv. Akad. Nauk. SSSR., Ser Math. 15, pp. 253-304, 1951. \bibitem{h1} Harutyunyan, T. N.; \emph{Representation of the Norming Constants by Two Spectra }, Electronic Journal of Differential Equations, No. 159, pp. 1-10, 2010. \bibitem{h2} Harutyunyan, T. N.; \emph{The Dependence of the Eigenvalues of the Sturm-Liouville Problem on Boundary Conditions} Matematicki Vesnik (Beograd) (4) 60, pp. 285-294, 2008. \bibitem{h3} Harutyunyan, T. N.; \emph{The Eigenvalue Function of a Family of Sturm-Liouville Operators} Izvestiya RAN, Ser. Math. 74:3 pp. 3-22, 2010. \bibitem{i1} Isaacson, E. L.; Trubowitz, E.; \emph{The Inverse Sturm-Liouville Problem, I}, Com. Pure and Appl. Math., Vol 36, pp. 767-783, 1983. \bibitem{j1} Jodeit, M; Levitan, B. M.;; \emph{The Isospectrality Problem for the Classical Sturm-Liouville Equation}, Advances in Differential Equations, Volume 2, Number 2, pp. 297-318, 1997. \bibitem{l1} Levitan, B. M.; \emph{The Inverse Problems}, Moskva, Nauka, 1984. \bibitem{m1} Marchenko, V. A.; \emph{Concerning the Theory of a D ifferential Operators of the Second Order}, Trudy Moskov. Mat. Obshch. 1, pp. 327-420, 1952, (in Russian). \bibitem{n1} Naimark, M. A.; \emph{Linear Differential Operators} Nauka, Moscow, 1969, (in Russian). \bibitem{p1} Poshel, J., Trubowitz, E.; \emph{Inverse Spectral Theory}, N.-Y., Academic Press, 1987. \bibitem{z1} Zikov, V. V.; \emph{On Inverse Sturm-Liouville Problem on a Finite Segment} Izv. Akad. Nauk. SSSR., Ser Math. (5) 31,pp. 965-976, 1967. \end{thebibliography} \end{document}