\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 273, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/273\hfil Multiple homoclinic solutions] {Multiple homoclinic solutions for indefinite second-order discrete Hamilton system with small perturbation} \author[L. Zhang, X. H. Tang \hfil EJDE-2015/273\hfilneg] {Liang Zhang, Xianhua Tang} \address{Liang Zhang (corresponding author) \newline School of Mathematical Sciences, University of Jinan, Jinan 250022, China} \email{mathspaper2012@163.com} \address{Xianhua Tang \newline School of Mathematics and Statistics, Central South University, Changsha 410083, China} \email{tangxh@csu.edu.cn} \thanks{Submitted June 9, 2015. Published October 21, 2015.} \subjclass[2010]{39A11, 58E05, 70H05} \keywords{Critical point; discrete Hamilton system; homoclinic solution; \hfill\break\indent small perturbation} \begin{abstract} In this article, we sutdy the multiplicity of homoclinic solutions to the perturbed second-order discrete Hamiltonian system $$ \Delta[p(n)\Delta u(n-1)]-L(n)u(n)+\nabla W(n,u(n))+\theta\nabla F(n,u(n))=0, $$ where $L(n)$ and $W(n,x)$ are neither autonomous nor periodic in $n$. Under the assumption that $W(n,x)$ is only locally superquardic as $|x|\to \infty$ and even in $x$ and $F(n,x)$ is a perturbation term, we establish some existence criteria to guarantee that the above system has multiple homoclinic solutions by minimax method in critical point theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main results} In this article, we consider the second-order perturbed discrete Hamilton system \begin{equation}\label{e1} \Delta[p(n)\Delta u(n-1)]-L(n)u(n)+\nabla W(n,u(n))+\theta\nabla F(n,u(n))=0, \end{equation} where $n\in \mathbb{Z}$, $u\in \mathbb{R}^N$, $\Delta u(n)=u(n+1)-u(n)$ is the forward difference operator, $p(n)$ and $L(n)$ are $N\times N$ real symmetric positive definite matrices for all $n\in \mathbb{Z}$, and $W$, $F$: $\mathbb{Z}\times \mathbb{R}^{N\times N}\to \mathbb{R}$. As usual, we say that a solution $u(n)$ of \eqref{e1} is homoclinic (to 0) if $u(n)\to 0$ as $n\to \pm \infty$. In addition, if $u(n) \not\equiv 0$ then $u(n)$ is called a nontrivial homoclinic solution. System \eqref{e1} does have its applicable setting as evidenced by the excellent monographs (see \cite{A1,AP}), and some authors studied the existence of periodic solutions and subharmonic solutions of \eqref{e1} using the critical point theory (see \cite{A2,BYG,XT,YGZ,YDG}). Moreover, the existence and multiplicity results of boundary value problems for discrete inclusions, such as fourth-order discrete inclusion and partial difference inclusions, have been established by the application of non-smooth version of critical point theory (see \cite{GMW,MM,MR}). It is obvious that system \eqref{e1} with $\theta=0$ is a discretization of the following second-order Hamiltonian system: \begin{equation}\label{e2} \frac{d}{dt}(p(t)\dot{u}(t))-L(t)u(t)+\nabla W(t,u(t))=0. \end{equation} In recent years, the study of homoclinic solution of system \eqref{e2} is rapid by variational methods (see \cite{CR,D,MW,OT,TL1,TX}). It is well known that homoclinic orbits play an important role in analyzing the chaos of dynamical systems. If a system has the smoothly connected homoclinic orbits, then it can not stand the perturbation, and its perturbed system probably produce chaotic phenomenon. For system \eqref{e1} with $\theta=0$, the existence and multiplicity of homoclinic solutions of system \eqref{e1} or its special forms have been investigated by the use of critical point theory (see \cite{DCS,MG1,MG2,TL2,ZYC}). If $p(n)$, $L(n)$ and $W(n, x)$ are periodic in $n$, some authors dealt with the periodic case in \cite{DCS,MG2}. When the periodicity is lost, this case is quite different from the one mentioned above, because of lack of compactness of the Sobolev embedding. If $W(n,x)$ is superquadratic as $|x|\to \infty$ uniformly for $n\in \mathbb{Z}$, the following well known global Ambrosetti-Rabinowitz superquadratic condition is often required: \begin{itemize} \item[(A1)] there exists $\mu>2$ such that $$ 0<\mu W(n,x)\leq (\nabla W(n,x), x), \quad (n,x)\in \mathbb{Z}\times \mathbb{R}^N\setminus \{0\}, $$ where and in the sequel, $(\cdot, \cdot)$ denotes the standard inner product in $\mathbb{R}^N$, and $|\cdot|$ is the induced norm. \end{itemize} However, there are many indefinite functions not satisfying (A1). For example, let \begin{equation}\label{e3} W(n,x)=(n-1)|x|^s, \quad 22$ such that $$ \mu W(n,x)\leq (\nabla W(n,x), x), \quad (n, x)\in \mathbb{Z}\times\mathbb{R}^N; $$ \item[(A4)] for every $n\in \mathbb{Z}$, $W$ is continuously differentiable in $x$, and there exists constants $a_1>0$ and $1<\nu_1\leq\nu_2<\infty$ such that $$ |\nabla W(n, x)|\leq a_1 l(n)(|x|^{\nu_1}+|x|^{\nu_2}), \quad (n, x)\in \mathbb{Z}\times\mathbb{R}^N; $$ \item[(A5)] there exists an infinite subset $\Lambda\subset \mathbb{Z}$ such that $$ \lim_{|x|\to \infty}\frac{W(n,x)}{|x|^2}=\infty, \quad n\in \Lambda, $$ and there exists $r_0\geq 0$ such that $$ W(n,x)\geq 0, \quad (n, x)\in \Lambda\times\mathbb{R}^N \text{ and } |x|\geq r_0; $$ \item[(A6)] $W(n,x)=W(n,-x)$, $(n,x)\in \mathbb{Z}\times \mathbb{R}^N$; \item[(A7)] for every $n\in \mathbb{Z}$, $F$ is continuously differentiable in $x$, and there exists a function $\gamma_1\in l^1(\mathbb{Z}, [0,+\infty))$ such that $$ |F(n,x)|\leq \gamma_1(n), \quad (n,x)\in \mathbb{Z}\times \mathbb{R}^N; $$ \item[(A8)] there exists a function $\gamma_2\in l^2(\mathbb{Z}, [0,+\infty))$ such that $$ |\nabla F(n,x)|\leq \gamma_2(n), \quad (n,x)\in \mathbb{Z}\times \mathbb{R}^N. $$ \end{itemize} Then for any $j\in \mathbb{N}$, there exists $\varepsilon_j>0$ such that if $|\theta|\leq \varepsilon_j$, system \eqref{e1} possesses at least $j$ distinct homoclinic solutions. \end{theorem} \begin{theorem} \label{thm1.2} Assume that $L$, $W$ satisfy {\rm (A2)--(A6)}. Then there exists an unbounded sequence of homoclinic solutions for system \eqref{e1} with $\theta=0$. \end{theorem} \begin{remark} \label{rmk1.1} \rm We would like to point out that even in the symmetric case, our results are also new. In fact, the condition (A5) implies that $W(n, x)$ is only of locally superquadratic growth as $|x|\to \infty$, and our assumption (A5) is weaker than the conditions presented in the reference. \end{remark} Since $F(n,x)$ is not even in $x$ in Theorem \ref{thm1.1}, the classical multiple critical point theorems fail to obtain multiplicity results for system \eqref{e1}. The main difficulty is to find an appropriate class of sets due to indefinite character of the function $W(n, x)$ which is used to construct multiple critical values for the perturbed functional of system \eqref{e1}. To overcome this difficulty, we construct an orthogonal sequence by which a sequence of sets are introduced, then multiple critical values will be obtained by minimax procedure over these sets, which correspond to multiple homoclinic solutions of system \eqref{e1}. The article is organized as follows. In Section 2, we present some preliminary results and useful lemmas. The proof of Theorem \ref{thm1.1} and Corollary 1.1 are given in Section 3. In Section 4, we present an example to illustrate our results. Throughout the article, we denote by $C_n$ various positive constants which may vary from line to line and are not essential to the proof. \section{Variational setting and preliminaries} Let \begin{gather*} S=\big\{\{u(n)\}_{n\in \mathbb{Z}} : \ u(n)\in \mathbb{R}^N, \; n\in \mathbb{Z}\big\}, \\ E=\big\{u\in S: \ \sum_{n\in \mathbb{Z}}\Big[\big(p(n+1)\Delta u(n), \Delta u(n)\big)+\big(L(n)u(n), u(n)\big)\Big]<+\infty\big\}. \end{gather*} For $u, v\in E$, let $$ \langle u, v\rangle=\sum_{n\in \mathbb{Z}} \big[\big(p(n+1)\Delta u(n), \Delta v(n)\big)+\big(L(n)u(n), v(n)\big)\big]. $$ Then $E$ is a Hilbert space with the above inner product, and the corresponding norm is $$ \|u\|:=\Big(\sum_{n\in \mathbb{Z}}\big[\big(p(n+1)\Delta u(n), \Delta u(n)\big)+\big(L(n)u(n), u(n)\big)\big]\Big)^{1/2}, \quad u\in E. $$ Moreover, we use $E^*$ to denote the topological dual space with norm $\| \cdot\|_{E^*}$. As usual, for $1\leq p<\infty$, $k=1$ or $N$, set \begin{gather*} l^p(\mathbb{Z}, \mathbb{R}^k) =\big\{\{u(n)\}_{n\in \mathbb{Z}} : u(n)\in \mathbb{R}^k, \; n\in \mathbb{Z}, \ \sum_{n\in \mathbb{Z}}|u(n)|^p< +\infty\big\},\\ l^\infty(\mathbb{Z}, \mathbb{R}^k) =\big\{\{u(n)\}_{n\in \mathbb{Z}} : u(n)\in \mathbb{R}^k, \; n\in \mathbb{Z}, \; \sup_{n\in \mathbb{Z}}|u(n)|< +\infty\big\}, \end{gather*} and their norms are defined by $$ \|u\|_p=\Big(\sum_{n\in \mathbb{Z}}|u(n)|^p\Big)^{1/p}, \quad u\in l^p(\mathbb{Z}, \mathbb{R}^k); \quad \|u\|_{\infty}=\sup_{n\in \mathbb{Z}}|u(n)|, \quad u\in l^{\infty}(\mathbb{Z}, \mathbb{R}^k). $$ If the condition (A2) holds, $E$ is continuously embedded in $l^p(\mathbb{Z}, \mathbb{R}^N)$ for all $p\in [2, +\infty]$. Consequently, there exists $\tau_p>0$ such that \begin{equation}\label{e3b} \|u\|_p\leq \tau_p \|u\|, \quad u\in E. \end{equation} \begin{lemma} \label{lem2.1} If condition {\rm (A2)} holds. Then $E$ is compactly embedded in $l^\infty(\mathbb{Z}, \mathbb{R}^N)$. \end{lemma} \begin{proof} Let $\{u_k\}$ be a bounded sequence in $E$, that is, there is a constant $A$ such that $$ \|u_k\|\leq A, \quad k\in \mathbb{N}. $$ Since $E$ is a reflexive space, passing to a subsequence, also denoted by $\{u_k\}$, it can be assumed that $u_k\rightharpoonup u_0$, $k\to \infty$. Next we only need to prove \begin{equation}\label{e4} u_k\to u_0 \quad \text{in } l^\infty(\mathbb{Z}, \mathbb{R}^N). \end{equation} For any given number $\varepsilon>0$, by (A2), we can choose a positive integer $\Pi_0$ such that \begin{equation}\label{e5} l(n)>\frac{4A^2}{\varepsilon^2}, \quad |n|\geq \Pi_0. \end{equation} By (A2) and \eqref{e5}, we have \begin{equation}\label{e6} |u_k(n)|^2\leq \frac{1}{l(n)}\big(L(n)u_k(n), u_k(n)\big) \leq \frac{\varepsilon^2}{4A^2}\|u_k\|^2 \leq \frac{\varepsilon^2}{4}, \quad |n|\geq\Pi_0, \; k\in \mathbb{N}. \end{equation} Since $u_k\rightharpoonup u_0$ in $E$, it is easy to verify that $u_k(n)$ converges to $u_0(n)$ pointwise for all $n\in \mathbb{Z}$; that is, \begin{equation}\label{e7} \lim_{k\to \infty} u_k(n)= u_0(n), \quad n\in \mathbb{Z}. \end{equation} In view of \eqref{e6} and \eqref{e7}, we have \begin{equation}\label{e8} |u_0(n)|\leq \varepsilon/2, \quad |n|\geq\Pi_0. \end{equation} By \eqref{e7}, there exists $k_0\in \mathbb{N}$ such that \begin{equation}\label{e9} |u_k(n)-u_0(n)|\leq \varepsilon, \quad k\geq k_0, \; |n|<\Pi_0. \end{equation} In combination with \eqref{e6}, \eqref{e8} and \eqref{e9} $$ |u_k(n)-u_0(n)|\leq \varepsilon, \quad k\geq k_0, \; n\in \mathbb{Z}, $$ which implies that \eqref{e4} holds. The proof is complete. \end{proof} Next we introduce a functional $I: \mathbb{R}\times E \to \mathbb{R}$ \begin{equation}\label{e10} I_{\theta}(u):=\frac{\|u\|^2}{2}-\sum_{n\in \mathbb{Z}}W(n,u(n)) -\theta\sum_{n\in \mathbb{Z}}F(n,u(n)). \end{equation} By (A2), (A4), (A7) and (A8), for fixed $\theta_0\in \mathbb{R}$, $I_{\theta_0}(u)$ is well defined and of class $C^1(E, \mathbb{R)}$. For $u, v\in E$, \begin{equation}\label{e11} \begin{aligned} \langle I'_{\theta_0}(u), v\rangle & = \sum_{n\in \mathbb{Z}}\big[\big(p(n+1)\Delta u(n), \Delta v(n)\big) +\big(L(n)u(n), v(n)\big)\big]\\ &\quad -\sum_{n\in \mathbb{Z}}\big(\nabla W(n,u(n)), v(n)\big) -\theta_0\sum_{n\in \mathbb{Z}}\big(\nabla F(n,u(n)), v(n)\big). \end{aligned} \end{equation} Furthermore, if $u_0\in E$ is a critical point of $I_{\theta_0}(u)$, then $u_0$ is a homoclinic solution for system \eqref{e1} with $\theta=\theta_0$. \begin{lemma} \label{lem2.2} Assume that all the hypotheses of Theorem \ref{thm1.1} hold. Then \begin{itemize} \item[(1)] for any fixed $\theta_0\in \mathbb{R}$, $I_{\theta_0}$ satisfies the Palais-Smale condition; \item[(2)] there exists a positive constant $C_0$ such that $$ |I_{\theta}(u)-I_0(u)|\leq C_0|\theta|, \ \ (\theta, u)\in \mathbb{R}\times E. $$ where $C_0:= \sum_{n\in \mathbb{Z}}|\gamma_1(n)|$. \end{itemize} \end{lemma} \begin{proof} To prove (1), we first show that there exists a constant $M$ such that $\{u_k\}\subset E$ is a sequence for which \begin{equation}\label{e12} |I_{\theta_0}(u_k)|\leq M \quad \text{and} \quad I'_{\theta_0}(u_k)\to 0, \end{equation} then $\{u_k\}$ is bounded. For large $k$, it follows \eqref{e10} and \eqref{e11} that \begin{equation}\label{e13} \begin{aligned} 2\mu^{-1}\|u_k\|+M &\geq I_{\theta_0}(u_k)-\frac{1}{\mu}\langle I'_{\theta_0}(u_k), u_k\rangle\\ &> \frac{\mu-2}{2\mu}\|u_k\|^2-C_1\|u_k\|-C_2, \end{aligned} \end{equation} which implies that $\|u_k\|$ is bounded in $E$, that is, there exists a constant $A'>0$ such that $$ \|u_k\|\leq A', \quad k\in \mathbb{N}. $$ Since $E$ is a reflexive space, passing to a subsequence, also denoted by $\{u_k\}$, it can be assumed that \begin{equation}\label{e14} u_k\rightharpoonup u_0, \quad k\to \infty. \end{equation} Moreover, $\|u_0\|\leq A'$ and it is easy to verify that \begin{equation}\label{e15} \lim_{k\to \infty} u_k(n)= u_0(n), \quad n\in \mathbb{Z}. \end{equation} For any given number $\varepsilon>0$, by (A4), there exists a positive constant $\delta<1$ such that \begin{equation}\label{e16} |\nabla W(n, x)|\leq \varepsilon l(n)|x|, \quad (n, x)\in \mathbb{Z}\times\mathbb{R}^N, \; |x|\leq \delta. \end{equation} Arguing as in Lemma \ref{lem2.1}, there exists a positive integer $\Pi_0$ such that \begin{equation}\label{e17} |u_k(n)|\leq \delta \quad \text{and} \quad |u_0(n)|\leq \delta, \quad k\in \mathbb{N}, \; \ |n|> \Pi_0. \end{equation} It follows \eqref{e15} and the continuity of $\nabla W (n,x)$ on $x$ that there exists $k_0\in \mathbb{N}$ such that \begin{equation}\label{e18} \sum_{|n|\leq \Pi_0}|\nabla W(n, u_k(n))-\nabla W(n, u_0(n))||u_k(n)-u_0(n)| <\varepsilon, \quad k\geq k_0. \end{equation} On the other hand, by \eqref{e16} and \eqref{e17}, \begin{equation}\label{e19} \begin{aligned} &\sum_{|n|> \Pi_0}|\nabla W(n, u_k(n))-\nabla W(n, u_0(n))||u_k(n)-u_0(n)|\\ &\leq \sum_{|n|> \Pi_0}(|\nabla W(n, u_k(n))|+|\nabla W(n, u_0(n))|) (|u_k(n|+|u_0(n)|)\\ &\leq \varepsilon\sum_{|n|> \Pi_0} l(n)(|u_k(n)|+|u_0(n)|)(|u_k(n)|+|u_0(n)|)\\ &\leq 2\varepsilon\sum_{|n|> \Pi_0} l(n)(|u_k(n)|^2+|u_0(n)|^2)\\ &\leq 2\varepsilon\sum_{|n|> \Pi_0}[(L(n)u_k(n),u_k(n))+(L(n)u_0(n),u_0(n))]\\ &\leq 2\varepsilon(\|u_k\|^2+\|u_0\|^2)\\ &\leq 4\varepsilon A'^2, \quad k\in \mathbb{N}. \end{aligned} \end{equation} Since $\varepsilon$ is arbitrary, combing \eqref{e18} and \eqref{e19}, \begin{equation}\label{e20} \sum_{n\in \mathbb{Z}}|\nabla W(n, u_k(n))-\nabla W(n, u_0(n)||u_k(n)-u_0(n)|\to 0, \quad k\to \infty. \end{equation} By (A8), there exists a positive integer $\Pi_1$ such that \begin{equation}\label{e21} \Big(\sum_{|n|> \Pi_1}|\gamma_2(n)|^2\Big)^{1/2}<\varepsilon. \end{equation} In view of (A8), \eqref{e17} and \eqref{e21}, we have \begin{equation}\label{e22} \begin{aligned} &\sum_{|n|> \Pi_2}|\nabla F(n, u_k(n))-\nabla F(n, u_0(n))||u_k(n)-u_0(n)|\\ &\leq 2\Big(\sum_{|n|> \Pi_2}|\gamma_2(n)|^2\Big)^{1/2} \Big(\sum_{|n|> \Pi_2}|u_k(n)-u_0(n)|^2\Big)^{1/2}\\ &\leq 2\tau_2^2\|u_k-u_0\|^2\varepsilon\\ &\leq 4\tau_2^2A'^2\varepsilon, \quad k\in \mathbb{N}. \end{aligned} \end{equation} where $\Pi_2:= \max\{\Pi_0, \Pi_1\}$. Moreover, it follows from the continuity of $\nabla F(n,x)$ on $x$ that there exists $k_1\in \mathbb{N}$ such that \begin{equation}\label{e23} \sum_{|n|\leq \Pi_2}|\nabla F(n, u_k(n)) -\nabla F(n, u_0(n))||u_k(n)-u_0(n)|<\varepsilon, \quad k\geq k_1. \end{equation} Since $\varepsilon$ is arbitrary, for any fixed $\theta_0\in \mathbb{R}$, in combination with \eqref{e17} and \eqref{e22}, \begin{equation}\label{e24} \theta_0\sum_{n\in \mathbb{Z}}|\nabla F(n, u_k(n)) -\nabla F(n, u_0(n))||u_k(n)-u_0(n)|\to 0, \quad k\to \infty. \end{equation} It follows from \eqref{e12} and \eqref{e14} that \begin{equation}\label{e25} \langle I'_{\theta_0}(u_k)-I'_{\theta_0}(u_0), u_k-u_0\rangle:=\epsilon_k\to 0, \quad k\to \infty. \end{equation} It follows from \eqref{e20}, \eqref{e24} and \eqref{e25} that \begin{align*} \|u_k-u_0\|^2 &\leq \sum_{n\in \mathbb{Z}}|\nabla W(n, u_k(n)) -\nabla W(n, u_0(n))|| u_k(n)-u_0(n)| \\ & \quad +\theta_0\sum_{n\in \mathbb{Z}}|\nabla F(n, u_k(n)) -\nabla F(n, u_0(n))||u_k(n)-u_0(n)|+|\epsilon_k|, \end{align*} which implies that $u_k\to u_0$ in $E$. Hence, $I_{\theta_0}$ satisfies Palais-Smale condition. To prove (2), by (A7) and direct computations, $$ |I_{\theta}(u)-I_0(u)|\leq C_0|\theta|, \ \ (\theta, u)\in \mathbb{R}\times E. $$ The proof is complete. \end{proof} \begin{lemma} \label{lem2.3} Suppose that {\rm (A5)} holds. Then there exists a normalized orthogonal sequence $\{\phi_i\}_{i=1}^\infty\subset E$. \end{lemma} \begin{proof} Since $\Lambda\subset \mathbb{Z}$ is an infinite set, there exist a strictly increasing sequence or a strictly decreasing sequence $\{n_k\}_{k=1}^{\infty}\subset \Lambda$. Without loss of generality, we assume $$ n_10$ such that $I_0(u_k)\geq -M$ for all $k\in \mathbb{N}$. Set $v_k=u_k/\|u_k\|$, then $\|v_k\|=1$. Passing to subsequence, we may assume $v_k\rightharpoonup v$ in $E$. Since $D_m$ is a finite dimensional space, then $v_k\to v\in D_m$, then $\|v\|=1$. Set $$ \Pi=\{n\in \mathbb{Z} : v(n)\neq 0\} \quad \text{and} \quad \Theta=\{n_1, n_2, \dots, n_m\}, $$ then \begin{equation}\label{e29} \Pi\neq \emptyset \quad \text{and} \quad \Pi\subset \Theta, \end{equation} moreover, \begin{equation}\label{e30} \lim_{k\to \infty}|u_k(n)|=\infty, \quad n\in \Pi. \end{equation} It follows from (A3) and (A4) that \begin{equation}\label{e31} |W(n,x)|\leq a_1l(n)(|x|^{\nu_1+1}+|x|^{\nu_2+1}), \quad (n, x)\in \mathbb{Z}\times\mathbb{R}^N. \end{equation} For $0\leq a0$, so $\beta_k\to\beta\geq0$ as $k\to \infty$. For $k\in \mathbb{N}$, there exists $u_k\in Z_k$ such that \begin{equation}\label{e36} \|u_k\|=1 \quad \text{and} \quad \|u_k\|_{\infty}>\beta_k/2. \end{equation} By a similar proof in \cite[Lemma 3.8]{W}, $u_k\rightharpoonup 0$ in $E$. By Lemma \ref{lem2.1}, we have \begin{equation}\label{e37} u_k\to 0 \quad \text{in } l^\infty(\mathbb{Z}, \mathbb{R}^N). \end{equation} In combination with \eqref{e36} and \eqref{e37}, \eqref{e35} holds. The proof is complete. \end{proof} \begin{lemma} \label{lem3.3} Assume {\rm (A3)} and {\rm (A4)} hold. Then \begin{equation}\label{e38} b_m\to \infty, \quad m\to \infty. \end{equation} \end{lemma} \begin{proof} By Lemma \ref{lem3.1}, for any $h\in \Gamma_m$ and $\rho< R_m$, there exists $u_m\in h(F_m)\cap \partial B_{\rho}\cap Z_{m-1}$, then \begin{equation}\label{e39} \max_{u\in F_m} I_0(h(u))\geq I_0(u_m) \geq \inf_{u\in \partial B_\rho \cap Z_{m-1}}I_0(u). \end{equation} In view of (A3) and (A4), \begin{equation}\label{e40} |W(n,x)|\leq a_1 l(n)(|x|^{\nu_1+1}+|x|^{\nu_2+1}), \quad (n, x)\in \mathbb{Z}\times\mathbb{R}^N. \end{equation} By (A2), \eqref{e10}, \eqref{e35} and \eqref{e40}, for $u\in Z_{m-1}$, \begin{equation}\label{e41} \begin{aligned} I_0(u) & = \frac{\|u\|^2}{2}-\sum_{n\in \mathbb{Z}}W(n,u(n))\\ & \geq \frac{\|u\|^2}{2}-a_1\sum_{n\in \mathbb{Z}}l(n)(|u(n)|^{\nu_1+1} +|u(n)|^{\nu_2+1})\\ & \geq \frac{\|u\|^2}{2}-a_1\beta_{m-1}^{\nu_1-1}\|u\|^{\nu_1+1} -a_1\beta_{m-1}^{\nu_2-1}\|u\|^{\nu_2+1}. \end{aligned} \end{equation} In view of \eqref{e35} and \eqref{e41}, when $m$ is large enough, for $u\in Z_{m-1}$, \begin{equation}\label{e42} \begin{aligned} I_0(u)\geq \frac{\|u\|^2}{2}-2a_1\beta_{m-1}^{\nu_1-1}\|u\|^{\nu_2+1}-C_3. \end{aligned} \end{equation} Choose $\rho:=(8a_1\beta_{m-1}^{\nu_1-1})^{\frac{1}{1-\nu_2}}$, if $u\in Z_{m-1}$ and $\|u\|=\rho$, \begin{equation}\label{e43} I_0(u)\geq \frac{1}{4}(8a_1\beta_{m-1}^{\nu_1-1})^{\frac{2}{1-\nu_2}}-C_3. \end{equation} In combination with \eqref{e39} and \eqref{e43}, when $m$ is large enough, $$ b_m\geq \frac{1}{4}(8a_1\beta_{m-1}^{\nu_1-1})^{\frac{2}{1-\nu_2}}-C_3, $$ which implies that \eqref{e38} holds by \eqref{e35}. The proof is complete. \end{proof} Next we introduce some continuous maps in $E$. Set \begin{equation}\label{e44} \begin{aligned} \Lambda_m:=\big\{& H \in C (U_m, E)| \ H|_{F_m}\in \Gamma_m \text{ and } H=\text{id} \text{ for}\\ &u\in Q_m:=(\partial B_{R_{m+1}}\cap D_{m+1}) \cup\big(( B_{R_{m+1}}\backslash \bar{B}_{R_m})\cap D_m\big)\big\}, \end{aligned} \end{equation} where \begin{equation}\label{e45} U_m:=\big\{u=t\phi_{m+1}+\omega: t\in [0, R_{m+1}], \; \omega\in \bar{B}_{R_{m+1}}\cap D_m, \; \|u\|\leq R_{m+1}\big\}. \end{equation} In view of Lemma \ref{lem3.3}, it is impossible that $b_{m+1}=b_m$ for all large $m$. Next we can construct critical values of $I_\theta(u)$ as follows. \begin{lemma} \label{lem3.4} Suppose $b_{m+1}>b_m>0$. For any $\delta\in (0, b_{m+1}-b_m)$, define \begin{equation}\label{e46} \Lambda_m(\delta)=\big\{H\in \Lambda_m| I_0(H(u))\leq b_m+\delta \text{ for } u\in F_m\big\}. \end{equation} For any $|\theta|<2C_0^{-1}(b_{m+1}-b_m-\delta)$, where $C_0$ is given in Lemma \ref{lem2.2}, let \begin{equation}\label{e47} c_m(\theta)=\inf_{H\in \Lambda_m(\delta)}\max_{u\in U_m}I_{\theta}(H(u)). \end{equation} Then $c_m(\theta)$ is a critical value of $I_{\theta}(u)$. \end{lemma} \begin{proof} By (2) in Lemma \ref{lem2.2}, we have \begin{equation}\label{e48} I_0(u)-C_0|\theta|\leq I_{\theta}(u)\leq I_0(u)+C_0|\theta|, \quad (\theta,u)\in \mathbb{R}\times E. \end{equation} For any $H\in \Lambda_m(\delta)$, since $F_{m+1}=U_m \cup (-U_m)$, then $H$ can be continuously extended to $F_{m+1}$ as an odd function $\bar{H}$. Moreover, $\bar{H}\in \Gamma_{m+1}$. Since $I_0(u)$ is even, by the construction of $\bar{H}$, we have \begin{equation}\label{e49} \max_{x\in U_m} I_0(H(x))=\max_{x\in F_{m+1}} I_0(\bar{H}(x)). \end{equation} It follows from \eqref{e33}, \eqref{e48} and \eqref{e49} that \begin{equation}\label{e50} \begin{aligned} \max_{x\in U_m}I_{\theta}(H(x)) &\geq \max_{x\in U_m}I_0(H(x))-C_0|\theta|\\ &= \max_{x\in F_{m+1}}I_0(\bar{H}(x))-C_0|\theta|\\ &\geq b_{m+1}-C_0|\theta|. \end{aligned} \end{equation} In view of \eqref{e47} and \eqref{e50}, we obtain \begin{equation}\label{e51} c_m(\theta)\geq b_{m+1}-C_0|\theta|> b_m+\delta+C_0|\theta|. \end{equation} If we choose $H_m\in \Lambda_m(\delta)$, then $H_m$ can be continuously extended to $F_{m+1}$ as an odd function $\bar{H}_m$. Moreover, $\bar{H}_m\in \Gamma_{m+1}$. Define \begin{equation}\label{e52} c_m=\max_{x\in U_m}I_0(H_m(x)). \end{equation} It is obvious that $c_m<+\infty$ and $c_m$ is independent of $\theta$. It follows from \eqref{e33} and \eqref{e52} that \begin{equation}\label{e53} c_{m}=\max_{x\in U_m}I_0(H_m(x))=\max_{x\in F_{m+1}} I_0(\bar{H}_m(x))\geq b_{m+1}. \end{equation} Moreover, by \eqref{e47}, \eqref{e48} and \eqref{e52}, \begin{equation}\label{e54} c_m(\theta)\leq c_m+C_0|\theta|. \end{equation} Next we show that $c_m(\theta)$ is a critical value of $I_{\theta}(u)$. If $c_m(\theta)$ is a regular value of $I_{\theta}(u)$, by \eqref{e51}, choose \begin{equation}\label{e55} \bar{\varepsilon}=(c_m(\theta)-b_m-\delta-C_0|\theta|)/2, \end{equation} By the Deformation Theorem in \cite{R2}, there exists $\varepsilon\in (0, \bar{\varepsilon})$ and $\eta\in C([0,1]\times E, E)$ such that \begin{equation}\label{e56} \eta(1,u)=u, \quad I_{\theta}(u)\not\in [c_{m}(\theta) -\bar\varepsilon,c_{m}(\theta)+\bar\varepsilon], \end{equation} and if $I_{\theta}(u)\leq c_{m}(\theta)+\varepsilon$, then \begin{equation}\label{e57} I_{\theta}(\eta(1, u))\leq c_{m}(\theta)-\varepsilon. \end{equation} By \eqref{e47}, there exists $H_0\in\Lambda_{m}(\delta)$ such that \begin{equation}\label{e58} \max_{u\in U_m}I_{\theta}(H_0(u))b_{n_k}> 0$. In view of Lemma \ref{lem3.4}, there exist two sequences $\{\theta_k\}$ and $\{c_{n_k}(\theta)\}$ such that $\theta_k>0$ and $c_{n_k}(\theta)$ is a critical value for $I_{\theta}(u)$ with $|\theta|\leq \theta_k$. Moreover, by \eqref{e51} and \eqref{e54}, \begin{equation}\label{e65} b_{n_k}-C_0|\theta|\leq c_{n_k}(\theta)\leq c_{n_k}+C_0|\theta|. \end{equation} For any $j\in \mathbb{N}$, choose strictly increasing integers $p_i$ such that for $1\leq i \leq j$, $$ p_i\in \{n_k\}\quad \text{and} \quad c_{p_i}0$ small enough such that $c_{p_i}(\theta)$ with $1\leq i \leq j$ are defined for $|\theta|\leq \varepsilon_j$. Moreover, if $|\theta|\leq \varepsilon_j$, for $1\leq i \leq j$, \begin{equation}\label{e66} c_{p_i}+C_0|\theta|0$ such that if $|\theta|\leq \varepsilon_j$, then system \eqref{e1} possesses at least $j$ distinct solutions. Since $F(n, x)$ in our example is not even in $x$, the results in \cite{DCS,MG1,MG2,TL2,ZYC} can't be applied to this example. \subsection*{Acknowledgments} This research was supported by the National Natural Science Foundation of China (No. 11171351, 11571370), the NSF of Shandong Province of China (No. ZR2014AP011). \begin{thebibliography}{00} \bibitem{A1} R. P. Agarwal; \emph{Difference Equations and Inequalities: Theory, Methods, and Applications}, 2nd ed., Marcel Dekker, Inc., New York, 2000. \bibitem{A2} R. P. Agarwal, K. Perera and D. O'Regan; \emph{Multiple positive solutions of singular discrete p-Laplacian problems via variational methods}, Adv. Difference Equ., (2005), 93--99. \bibitem{AP} C. D. Ahlbrandt and A. C. Peterson; \emph{Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations}, Kluwer Academic Publishers, Dordrecht, 1996. \bibitem{BYG} H. H. Bin, J. S. Yu, and Z. M. Guo; \emph{Nontrivial periodic solutions for asymptotically linear resonant difference problem}, J. Math. Anal. Appl., 322 (2006), 477--488. \bibitem{CR} V. Coti Zelati and P. H. Rabinowitz; \emph{Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials}, J. Amer. Math. Soc., 4 (1991), 693--727. \bibitem{DCS} X. Q. Deng, G. Cheng and H. P. Shi; \emph{Subharmonic solutions and homoclinic orbits of second order discrete Hamiltonian systems potential changing sign}, Comput. Math. Appl., 58 (2009), 1198--1206. \bibitem{D} Y. H. Ding; \emph{Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems}, Nonlinear Anal., 25 (1995), 1095--1113. \bibitem{GMW} M. Galewskia, G. Molica Bisci and R. Wieteska; \emph{Existence and multiplicity of solutions to discrete inclusions with the $p(k)$-Laplacian problem}, J. Differ. Equ. Appl., 21 (2015), 887--903. \bibitem{MW} J. Mawhin, M. Willem; \emph{Critical Point Theory and Hamiltonian Systems}, Springer-Verlag, New York, 1989. \bibitem{MG1} M. Ma, Z. M. Guo; \emph{Homoclinic orbits for second order self-adjoint difference equations}, J. Math. Anal. Appl., 323 (2006), 513--521. \bibitem{MG2} M. Ma, Z. M. Guo; \emph{Homoclinic orbits and subharmonics for nonlinear second order difference equations}, Nonlinear Anal., 67 (2007), 1737--1745. \bibitem{MM} N. Marcu and G. Molica Bisci; \emph{Existence and multiplicity of solutions for nonlinear discrete inclusions}, Electron. J. Differ. Equ., (2012), 1--13. \bibitem{MR} G. Molica Bisci, D. Repov\v{s}; \emph{Nonlinear algebraic systems with discontinuous terms}, J. Math. Anal. Appl., 398 (2013), 846--856. \bibitem{OT} Z. Q. Ou, C. L. Tang; \emph{Existence of homoclinic orbits for the second order Hamiltonian systems}, J. Math. Anal. Appl., 291 (2004), 203--213. \bibitem{R1} P. H. Rabinowitz; \emph{Multiple critical points of perturbed symmetric functionals}, Trans. Amer. Math. Soc., 272 (1982), 753--769. \bibitem{R2} P. H. Rabinowitz; \emph{Minimax Methods in Critical Point Theory with Applications in Differential Equations}, CBMS Reg. Conf. Series, 65, Amer. Math. Soc., Providence, 1986. \bibitem{TL1} X. H. Tang, X. Y. Lin; \emph{Homoclinic solutions for a class of second-order Hamiltonian systems}, J. Math. Anal. Appl., 354 (2009), 539--549. \bibitem{TX} X. H. Tang, L. Xiao; \emph{Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential}, J. Math. Anal. Appl., 351 (2009), 586--594. \bibitem{TL2} X. H. Tang, X. Y. Lin; \emph{Homoclinic solutions for a class of second order discrete Hamiltonian systems}, J. Differ. Equ. Appl., 16 (2010), 1257--1273. \bibitem{W} M. Willem; \emph{Minimax Theorems}, Birkh\"{a}user, Berlin, 1996. \bibitem{XT} Y. F. Xue, C. L. Tang; \emph{Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system}, Nonlinear Anal., 67 (2007), 2072--2080. \bibitem{YGZ} J. S. Yu, Z. M. Guo and X. Zou; \emph{Positive periodic solutions of second order self-adjoint difference equations}, J. London Math. Soc., 71 (2005), 146--160. \bibitem{YDG} J. S. Yu, X. Q. Deng, and Z. M. Guo; \emph{Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential}, J. Math. Anal. Appl., 324 (2006), 1140--1151. \bibitem{ZYC} Z. Zhou, J. S. Yu and Y. Chen; \emph{Homoclinic solutions in periodic difference equations with saturable nonlinearity}, Sci. China Math., 54 (2011), 83--93. \end{thebibliography} \end{document}