\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 278, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/278\hfil Basicity in $L_p$ of root functions] {Basicity in $L_p$ of root functions for differential equations with involution} \author[L. V. Kritskov, A. M. Sarsenbi \hfil EJDE-2015/278\hfilneg] {Leonid V. Kritskov, Abdizhahan M. Sarsenbi} \address{Leonid V. Kritskov \newline Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, 119899 Moscow, Russia} \email{kritskov@cs.msu.ru} \address{Abdizhahan M. Sarsenbi \newline Auezov South-Kazakhstan State University, Department of Mathematical Methods and Modeling, 160012 Shymkent Kazakhstan.\newline Institute of Mathematics and Mathematical Modeling, 050010 Almaty, Kazakhstan} \email{abzhahan@mail.ru} \thanks{Submitted October 17, 2015. Published November 4, 2015.} \subjclass[2010]{34K08, 34L10, 46B15} \keywords{ODE with involution; nonlocal boundary-value problem; \hfill\break\indent basicity of root functions} \begin{abstract} We consider the differential equation \[ \alpha u''(-x)-u''(x)=\lambda u(x), \quad -11$, but does not constitute a basis. In the case of a rational value of $r$ we specify the way of choosing the associated functions which provides the system of all root functions of the problem forms a basis in $L_p(-1,1)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction and statement of results} This article continues the research started in \cite{k6} where a full spectral analysis in $L_2(-1,1)$ is given to the problem \begin{equation} \begin{gathered} \alpha u''(-x)-u''(x) =\lambda u(x),\quad -11$. \end{lemma} \begin{proof} The minimality of the systems \eqref{e4} and \eqref{e6} is provided by their mutual biorthogonality. Their completeness follows from totality. For instance, consider a function $f\in L_q(-1,1)$, $q^{-1}+p^{-1}=1$, which is orthogonal to each function in \eqref{e4}. Then, as $f(x)$ is orthogonal to the functions $u_k^{(1)}(x)$, and due to the fact that the trigonometric system forms a basis in $L_q$ \cite[p.128]{k1}, the function $f(x)$ a.e. coincides with an even function. Thus, we have $$ 0=\int_{-1}^1 f(x)u_k^{(2)}(x) dx = \sin(\pi rk) \int_{-1}^1 f(x)\cos(\pi kx) dx $$ and, since $r\not\in\mathbb{Q}$, $f(x)$ is orthogonal to $\cos(\pi kx)$, $k\in\mathbb{N}$, and therefore, it is a.e. a constant function on $[-1,1]$. The relation $\int_{-1}^1 f(x)u_0(x) dx=0$ provides $f(x)$ vanishes a.e. on $[-1,1]$. The proof is complete. \end{proof} The system $\{ e_n\}\subset \mathcal{B}$ is called \textit{uniformly minimal} in $\mathcal{B}$ \cite{m3} if its dual system $\{ e^*_n\}\subset \mathcal{B}^*$ satisfies the relation \begin{equation} \sup_n \Bigl(\| e_n\|\cdot\| e^*_n\|\Bigr) <\infty. \label{e7} \end{equation} \begin{lemma} \label{lem2} Neither system \eqref{e4} nor \eqref{e6} is uniformly minimal in $L_p(-1,1)$, $p>1$. \end{lemma} \begin{proof} Let us consider the system \eqref{e4} in the space $L_p(-1,1)$. Taking into account that the $L_q(-1,1)$-norms of functions $v_k^{(2)}(x)$ in \eqref{e6} ($q^{-1}+p^{-1}=1$) satisfy the estimates \begin{equation} 2^{1/q}\ge \| v_k^{(2)}\|_q\ge 2^{-1/p} \| v_k^{(2)}\|_1 \ge 2^{-1/p}, \label{e8} \end{equation} we show that there exists such a sequence $k_n$ of positive integers such that the norm $\| u_{k_n}^{(2)}\|_p$ tends to infinity. Evaluating the $L_1$-norm of the function $u_{k}^{(2)}(x)$: \begin{equation} \begin{aligned} \int_{-1}^1 |u_{k}^{(2)}(x)| dx &\ge \frac{1}{|\sin(\pi rk)|} \int_{-1}^1 |\sin(\pi rkx)| dx -2\\ &\ge \frac{1}{|\sin(\pi rk)|} \Bigl( 1-\frac{\sin(2\pi kr)}{2\pi kr} \Bigr) -2 \end{aligned} \label{e9} \end{equation} one notes (see \cite[p.25]{s6}) that the inequality $| \frac{1}{r}-\frac{k}{s}| < 1/s^2$ has infinitely many solutions $k=k_n$, $s=s_n\in\mathbb{N}$. Hence $ |\pi rk_n -\pi s_n| < \pi r/s_n$ and $|\sin (\pi rk_n)|<|\sin(\pi r/s_n)|$. Therefore, the right-hand side of inequality \eqref{e9} blows up as $k=k_n\to\infty$ which means that the norm \[ \| u_{k_n}^{(2)}\|_p\ge 2^{(1-p)/p} \| u_{k_n}^{(2)}\|_1 \] also tends to infinity. Together with estimate \eqref{e8}, this shows that the condition of uniform minimality \eqref{e7} is not valid for the functions $u_{k_n}^{(2)}(x)$ and $v_{k_n}^{(2)}(x)$. The proof is complete. \end{proof} A system $\{ e_n\}\subset \mathcal{B}$ is called a \textit{ basis} in $\mathcal{B}$ if, for any $f\in\mathcal{B}$, there exists a unique convergent to $f$ series: $\sum_{n=1}^\infty \alpha_n e_n = f$. In this case the series is called the biorthogonal series for $f$ and $\alpha_n=e^*_n(f)$ for any $n$. Any basis in $\mathcal{B}$ is a uniformly minimal system \cite{m3}. It follows from Lemma \ref{lem2} that the systems \eqref{e4} and \eqref{e6} do not form bases in $L_p(-1,1)$ whatever $11$. \end{lemma} The proof of Lemma \ref{lem3} mimics the proof of Lemma \ref{lem1}, with minor changes. We omit it. \begin{lemma} \label{lem4} If $a_n=O(1/n)$, $n\to\infty$, then the systems \eqref{e11} and \eqref{e12} are uniformly minimal in $L_p(-1,1)$, $p>1$. If $\lim_{n\to\infty} n{a_n}=\infty$ then these systems are not uniformly minimal and, therefore, do not form bases. \end{lemma} \begin{proof} We start with eigenfunctions of the biorthogonal pair $u_l^{(1)}(x)$ and $v_l^{(1)}(x)$, $l\not\equiv 0 \pmod{m_1}$. Their norms satisfy the estimates: $$ \| u_l^{(1)}\|_p\le 2^{1/p},\quad \| v_l^{(1)}\|_q\le 2^{1/q}\Bigl( 1+\Bigl( r|\sin(\pi l/r)|\Bigr)^{-1}\Bigr). $$ The right-hand part of the second estimate is bounded because for $l\not\equiv 0 \pmod{m_1}$ the number $l/r=lm_2/m_1$ is not integer and hence $|\sin(\pi l/r)|\ge \sin(\pi/m_1)$. Similarly one can prove the boundedness of $\| u_k^{(2)}\|_p\cdot \| v_k^{(2)}\|_q$ for $k\not\equiv 0 \pmod{m_2}$. In the case $\lambda=\lambda_n^*$ the biorthogonal pairs are formed by the functions $u_n^*(x), v_{n,1}^*(x)$ and $u_{n,1}^*(x), v_n^*(x)$. For all $n\in\mathbb{N}$ the relations \begin{equation} c_1\le \| u_n^*\|_p\le c_2,\quad c_1n\le \| v_n^*\|_q\le nc_2 \label{e13} \end{equation} are valid with some positive constants $c_1,c_2$. If $a_n=O(1/n)$ then $$ \| u_{n,1}^*\|_p\le \frac{c_3}{n}, \quad \| v_{n,1}^*\|_q\le c_3, $$ and, by virtue of \eqref{e13}, the uniform minimality condition \eqref{e7} is satisfied. If $\lim_{n\to\infty} n{a_n}=\infty$ then we come to the estimates $$ \| u_{n,1}^*\|_p\ge c_4 |a_n|>0, \quad \| v_{n,1}^*\|_q\ge c_4|a_n|n>0, $$ which mean that $\| u_n^*\|_p\cdot \| v_{n,1}^*\|_q$ and $\| u_{n,1}^*\|_p\cdot \| v_n^*\|_q$ disagree with \eqref{e7}. The proof is complete. \end{proof} Further we consider the uniformly minimal systems \eqref{e11} and \eqref{e12} and for simplicity suppose that $a_n\equiv 0$ for any $n$. Since the natural normalization of the functions $u_{n,1}^*(x)$ and $v_{n}^*(x)$ makes these systems uniformly bounded on $[-1,1]$, the known result of Gaposhkin \cite{m3} provides they could form only conditional bases in $L_p(-1,1)$ for $p\ne 2$. Therefore, in order to study their basis properties we should specify the order of root functions in \eqref{e11} and \eqref{e12}. In $L_2(-1,1)$ the order of root functions is irrelevant since they form an unconditional basis \cite{k6}. The proposed order will correspond to the order of functions in the classical trigonometric system. The biorthogonal system which consists of root functions of the problem \eqref{e1} and the related root functions of the adjoint problem \eqref{e5} starts with the pair $$ \begin{bmatrix} u_0(x) \\ v_0(x) \end{bmatrix} = \begin{bmatrix} x+1 \\ 1/2 \end{bmatrix}, $$ which is followed by the juxtaposed blocks ($k=1,2,\ldots$) of coupled pairs \begin{align*} &\begin{bmatrix} u_k^{(1)}(x) & u_k^{(2)}(x) \\ v_k^{(1)}(x) & v_k^{(2)}(x) \end{bmatrix} \\ &=\begin{bmatrix} \sin(\pi kx) & \cos(\pi kx)+ \frac{\cos \pi k}{\sin \pi rk} \sin(\pi rkx) \\ \sin(\pi kx)+ \frac{\cos \pi k}{r\sin \frac{\pi k}{r}} \cos(\frac{\pi kx}{r}) & \cos(\pi kx) \end{bmatrix}. \end{align*} However if $k\equiv 0 \pmod{m_1}$ then the first column of the block should be replaced by the column $$ \begin{bmatrix} \sin(\pi kx) \\ \sin(\pi kx)-r^{-1}(-1)^{(1+r)k/r} x\sin(\frac{\pi kx}{r}) \end{bmatrix}; $$ if $k\equiv 0 \pmod{m_2}$ then the second column is also replaced by the column $$ \begin{bmatrix} (2(1+\alpha)\pi kr)^{-1} \Bigl[ (-1)^{(1+r)k}\cos (\pi kx) + x\cos(\pi krx) \Bigr] \\ 2(1+\alpha)\pi kr (-1)^{(1+r)k}\cos (\pi kx) \end{bmatrix}. $$ Hence the partial sums of the biorthogonal series with respect to the root functions of the problem \eqref{e1} take the form (we use the notation $K_1=m_1\mathbb{N}$ and $K_2=m_2\mathbb{N}$) \begin{equation} \begin{aligned} S_N(x,f) & = (f,v_0) u_0(x) + \sum_{\substack{1\le k\le N \\ k\not\in K_1}} (f,v_k^{(1)}) u_k^{(1)}(x) + \sum_{\substack{1\le k\le N \\ k\not\in K_2}} (f,v_k^{(2)}) u_k^{(2)}(x)\\ &\quad +\sum_{\substack{1\le k\le N \\ k\in K_1}} \Bigl( f(t), \sin(\pi kt) -r^{-1}(-1)^{(1+r)k/r} t\sin\bigl(\frac{\pi kt}{r}\bigr) \Bigr) \sin(\pi kx) \\ &\quad +\sum_{\substack{1\le k\le N \\ k\in K_2}} \Bigl( f(t), \cos(\pi kt)\Bigr) \Bigl[ \cos (\pi kx) + (-1)^{(1+r)k} x\cos(\pi krx)\Bigr] . \end{aligned} \label{e14} \end{equation} This sum evidently contains the partial sum of the Fourier trigonometric series: \begin{equation} \begin{aligned} &S_N^{(0)}(x,f) \\ &= (f,1/2) + \sum_{k=1}^N \Bigl\{ (f(t),\cos(\pi kt)) \cos(\pi kx) + (f(t),\sin(\pi kt)) \sin(\pi kx) \Bigr\}, \end{aligned}\label{e15} \end{equation} the remaining items group into the following sums: \begin{gather} S_N^{(1)}(x,f) = \sum_{\substack{1\le k\le N \\ k\not\in K_1}} \frac{\cos \pi k}{r\sin\frac{\pi k}{r}} \Bigl( f(t), \cos\big(\frac{\pi kt}{r}\big) \Bigr) \sin(\pi kx), \nonumber \\ S_N^{(2)}(x,f) = \sum_{\substack{1\le k\le N \\ k\not\in K_2}} \frac{\cos \pi k}{\sin(\pi kr)} \Bigl(f(t), \cos(\pi kt) \Bigr) \sin(\pi krx), \nonumber \\ S_N^{(3)}(x,f) = -\sum_{\substack{1\le k\le N \\ k\in K_1}} r^{-1}(-1)^{(1+r)k/r} \Bigl( f(t),t\sin\big(\frac{\pi kt}{r}\big) \Bigl) \sin(\pi kx), \nonumber \\ S_N^{(4)}(x,f) = \sum_{\substack{1\le k\le N \\ k\in K_2}} (-1)^{(1+r)k} \Bigl( f(t),\cos(\pi kt)\Bigr) x\cos(\pi krx). \label{e16} \end{gather} To analyze these four sums, we decompose $f(x)$ into the sum of its even and odd components $$ f(x) =f_+(x)+f_-(x) \equiv \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2} $$ and note that for the odd component $f_-(x)$ all the sums in \eqref{e16} vanish. In $S_N^{(3)}(x,f_+)$ we make the substitution $k=m_1n$ and for simplicity suppose that $m_1+m_2$ is even. Then this sum takes the form $$ S_N^{(3)}(x,f_+) = -r^{-1} \sum_{\substack{1\le k\le N \\ k=m_1n}} \int_0^1 f_+(t)t \sin(\pi m_2nt) dt \cdot \sin(\pi m_1nx) $$ and further substitutions $\tau=m_2t, y=m_1x$ transform it into the sum $$ S_N^{(3)}(x,f_+) = -(rm_2^2)^{-1} \sum_{\substack{1\le k\le N \\ k=m_1n}} \int_0^{m_2} f_+\Bigl(\frac{\tau}{m_2} \Bigr)\tau \sin(\pi n\tau) d\tau \cdot \sin(\pi ny). $$ It could be easily interpreted as a sum of $m_2$ partial sums of Fourier trigonometric series for functions which $L_p$-norms are $O(1)\| f\|_p$. A similar conclusion could be made about $S_N^{(4)}(x,f_+)$. The sum $S_N^{(2)}(x,f_+)$ naturally splits into $m_2-1$ items in accordance with the remainder $k_1=k\pmod{m_2}$, $k_1=\overline{1,m_2-1}$. We suppose, for simplicity, that $k_1$ and $m_1+m_2$ are even. Then the corresponding parts of the sum equal \begin{align*} S_N^{(2,k_1)}(x,f_+) &= \frac{1}{\sin(\pi k_1r)} \sum_{\substack{1\le k\le N \\ k=k_1+m_2n}} \Bigl\{ \int_0^1 f(t)\cos(\pi k_1t) \cos(\pi m_2nt) dt \\ &\quad\times \Bigl[ \cos(\pi m_1nx)\sin(\pi k_1rx) + \sin(\pi m_1nx)\cos(\pi k_1rx) \Bigr] \\ &\quad -\int_0^1 f(t)\sin(\pi k_1t) \sin(\pi m_2nt) dt \\ &\quad \times \Bigl[ \cos(\pi m_1nx)\sin(\pi k_1rx) + \sin(\pi m_1nx)\cos(\pi k_1rx) \Bigr] \Bigg\} . \end{align*} Similar to $S_N^{(3)}(x,f_+)$ this expression consists of four items which are combinations of the partial sums of Fourier trigonometric series for functions which $L_p$-norms are $O(1)\| f\|_p$, and of the partial sums of conjugate trigonometric series which converge in $L_p(0,1)$ to functions which $L_p$-norms are also $O(1)\| f\|_p$ by Riesz theorem \cite[p. 566]{b1}. The remaining sum $S_N^{(1)}(x,f_+)$ is considered similarly. It is known \cite[pp.593--594]{b1} that if $F(x)\in L_p$ then the partial sums $\sigma_N(x,F)$ of its Fourier trigonometric series and the partial sums $\sigma_N^*(x,F)$ of its conjugate series satisfy the estimate $$ \| \sigma_N(x,F)\|_p \le c\| F\|_p,\quad \| \sigma_N^*(x,F)\|_p \le c\| F\|_p $$ uniformly with respect to $N$. It follows from \eqref{e14}--\eqref{e16} that \begin{equation} \| S_N(x,f)\|_p \le \| (f,1/2) x\|_p +\| S_N^{(0)}(x,f)\|_p + \sum_{j=1}^4 \| S_N^{(j)}(x,f_+)\|_p = O(1) \| f\|_p \label{e17} \end{equation} uniformly with respect to $N$. The system of root functions of the problem \eqref{e1} is complete and minimal in $L_p(-1,1)$ (Lemma \ref{lem3}), therefore (see, e.g., \cite[p. 11]{k1}) the estimate \eqref{e17} is sufficient for its basicity in $L_p(-1,1)$ for $p>1$. Theorem \ref{thm2} is proved. \subsection*{Acknowledgments} This research was supported by the Committee of Science of the Ministry for Education and Science of the Kazakhstan Republic (Grant N 0971/GF). \begin{thebibliography}{99} \bibitem{a1} T. S. Aleroev, M. Kirane, S. A. Malik; \emph{Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition}, \newblock{Electron. J. Differ. Equ.}, \textbf{2013:270} (2013), 1--16. \bibitem{a2} Z. S. Aliyev, N. B. Kerimov; \emph{Basis properties of a spectral problem with spectral parameter in the boundary condition}, \newblock{Sbornik: Mathematics}, \textbf{197}, No.10 (2006), 1467--1487. \bibitem{a3} A. Ashyralyev, A. M. Sarsenbi; \emph{Well--posedness of a parabolic equation with nonlocal boundary condition}, \newblock{Boundary Value Problems}, \textbf{2015}, article ID 38, 1--11. \bibitem{b1} N. K. Bari; \emph{A Treatise on trigonometric series}, New York, 1964. \bibitem{b2} H. E. Benzinger; \emph{The $L^p$ behavior of eigenfunction expansions}, \newblock{Trans. Amer. Math. Soc.}, \textbf{174} (1972), 333--344. \bibitem{c1} A. Cabada, F. A. F. Tojo; \emph{Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions}, \newblock{J. Math. Anal. Appl.}, \textbf{412}, No.1 (2014), 529--546. \bibitem{c2} A. Cabada, F. A. F. Tojo; \emph{Solutions and Green's function of the first order linear equation with reflection and initial conditions}, \newblock{Boundary Value Problems}, \textbf{2014:99} (2014). \bibitem{g1} A. M. Gomilko, G. V. Radzievskii; \emph{Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ ($k=0,\pm 1,\ldots$) and the system of the eigenfunctions of an ordinary functional-differential operator}, \newblock{Math. Notes}, \textbf{49}, No.1 (1991), 34--40. \bibitem{g2} C. P. Gupta; \emph{Two-point boundary value problems involving reflection of the argument}, \newblock{Int. J. Math. and Math. Sci.}, \textbf{10}, No.2 (1987), 361--371. \bibitem{f1} K. M. Furati, O. S. Iyiola, M. Kirane; \emph{An inverse problem for a generalized fractional diffusion}, \newblock{Appl. Math. Comp.}, \textbf{249} (2014), 24--31. \bibitem{i1} V. A. Il'in; \emph{Basis property and equiconvergence with the trigonometric series of root function expansions and the form of boundary conditions for a nonself-adjoint differential operator}, \newblock{Differ. Equ.}, \textbf{30}, No.9 (1994), 1402--1413. \bibitem{i2} V. A. Il'in and L. V. Kritskov; \emph{Properties of spectral expansions corresponding to nonself-adjoint differential operators}, \newblock{J. Math. Sci. (NY)}, \textbf{116}, No.5 (2003), 3489--3550. \bibitem{i3} N. I. Ionkin; \emph{Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition}, \newblock{Differ. Equ.}, \textbf{13}, No.2 (1977), 204--211. \bibitem{k1} B. S. Kashin, A. A. Saakyan; \emph{Orthogonal series}, Transl. of Math. Monographs, AMS, vol.75, 1989. \bibitem{k2} N. B. Kerimov; \emph{On a boundary value problem of N. I. Ionkin type}, \newblock{Differ. Equ.}, \textbf{49}, No.10 (2013), 1233--1245. \bibitem{k3} A. P. Khromov, V. P. Kurdyumov; \emph{Riesz bases formed by root functions of a functional-differential equation with a reflection operator}, \newblock{Differ. Equ.}, \textbf{44}, No.2 (2008), 203--212. \bibitem{k4} A. A. Kopzhassarova, A. L. Lukashov, A. M. Sarsenbi; \emph{Spectral properties of non-self-adjoint perturbations for a spectral problem with involution}, \newblock{Abstr. Appl. Anal.}, \textbf{2012}, article ID 590781, 1--5. \bibitem{k5} A. A. Kopzhassarova, A. M. Sarsenbi; \emph{Basis properties of eigenfunctions of second-order differential operators with involution}, \newblock{Abstr. Appl. Anal.}, \textbf{2012}, article ID 576843, 1--6. \bibitem{k6} L. V. Kritskov, A. M. Sarsenbi; \emph{Spectral properties of a nonlocal problem for the differential equation with involution}, \newblock{Differ. Equ.}, \textbf{51}, No.8 (2015), 984--990. \bibitem{k7} V. M. Kurbanov; \emph{On an analog of the Riesz theorem and the basis property of the system of root functions of a differential operator in $L_p$}, \newblock{Differ. Equ.}, I: \textbf{49}, No.1 (2013), 7--19; II: \textbf{49}, No.4 (2013), 437--449. \bibitem{m1} A. S. Makin; \emph{A class of boundary value problems for the Sturm-Liouville operator}, \newblock{Differ. Equ.}, \textbf{35}, No.8 (1999), 1067--1076. \bibitem{m2} A. S. Makin; \emph{A class of essentially nonself-adjoint boundary value problems}, \newblock{Dokl. Math.}, \textbf{89}, No.3 (2014), 351--353. \bibitem{m3} V. D. Mil'man; \emph{Geometric theory of Banach spaces. Part I}, \newblock{Russian Math. Surveys}, \textbf{25}, No.3 (1970), 111--170. \bibitem{m4} A. Yu. Mokin; \emph{On a family of initial-boundary value problems for the heat equation}, \newblock{Differ. Equ.}, \textbf{45}, No.1 (2009), 126--141. \bibitem{o1} D. O'Regan; \emph{Existence results for differential equations with reflection of the argument}, \newblock{J. Aust. Math. Soc.}, A \textbf{57}, No.2 (1994), 237--260. \bibitem{p1} D. Przeworska-Rolewicz; \emph{Equations with transformed argument. Algebraic approach.} \newblock Elsevier Sci. Publ.: Amsterdam, PWN: Warsawa, 1973. \bibitem{s1} M. F. Sadybekov, A. M. Sarsenbi; \emph{Criterion for the basis property of the eigenfunction system of a multiple differentiation operator with an involution}, \newblock{Differ. Equ.}, \textbf{48}, No.8 (2012), 1112--1118. \bibitem{s2} M. F. Sadybekov, A. M. Sarsenbi; \emph{Mixed problem for a differential equation with involution under boundary conditions of a general form}, \newblock{in: {\em AIP Conf. Proc.}}, {\bf 1470} (2012), 225--227. \bibitem{s3} A. M. Sarsenbi; \emph{Unconditional bases related to a nonclassical second-order differential operator}, \newblock{Differ. Equ.}, \textbf{46}, No.4 (2010), 509--514. \bibitem{s4} A. M. Sarsenbi, A. A. Tengaeva; \emph{On the basis properties of root functions of two generalized eigenvalue problems}, \newblock{Differ. Equ.}, \textbf{48}, No.2 (2012), 306--308. \bibitem{s5} V. Serov; \emph{Green's function and convergence of Fourier series for elliptic differential operators with potential from Kato space}, \newblock{Abstr. Appl. Anal.}, \textbf{2010}, article ID 902638, 1--10. \bibitem{s6} A. B. Shidlovskii; \emph{Transcendental numbers}. Berlin, New York, 1989. \bibitem{w1} W. Watkins; \emph{Asymptotic properties of differential equations with involutions}, \newblock{Int. J. Pure Appl. Math.}, \textbf{44}, No.4 (2008), 485--492. \bibitem{w2} J. Wiener; \emph{Generalized solutions of functional differential equations.} \newblock World Sci.: Singapore, New Jersey, London, Hong Kong, 1993. \end{thebibliography} \end{document}