\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 286, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/286\hfil Solution of fractional differential equations] {Solution of fractional differential equations via coupled fixed point} \author[H. Afshari, S. Kalantari, E. Karapinar \hfil EJDE-2015/286\hfilneg] {Hojjat Afshari, Sabileh Kalantari, Erdal Karapinar} \address{Hojjat Afshari \newline Faculty of Basic Sciences, University of Bonab, Iran} \email{hojat.afshari@yahoo.com} \address{Sabileh Kalantari \newline Faculty of Basic Sciences, University of Bonab, Iran} \email{kalantari.math@gmail.com} \address{Erdal Karapinar \newline Atilim University, Department of Mathematics, 06836, \.Incek, Ankara, Turkey.\newline Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, King Abdulaziz University, 21589, Jeddah, Saudi Arabia} \email{erdalkarapinar@yahoo.com} \thanks{Submitted June 25, 2015. Published November 16, 2015.} \subjclass[2010]{47H10, 54H25} \keywords{Fixed point; mixed monotone operator; normal cone; \hfill\break\indent sub-homogeneous operator} \begin{abstract} In this article, we investigate the existence and uniqueness of a solution for the fractional differential equation by introducing some new coupled fixed point theorems for the class of mixed monotone operators with perturbations in the context of partially ordered complete metric space. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction and preliminaries} In the previous decade, one of the most attractive research subject is to investigate the existence and uniqueness of a fixed point of certain operator in the setting of complete metric space endowed with a partial order (see e.g. \cite{AEO1}-\cite{Zhao} and related reference therein). Recently, CB. Zhai \cite{Zhai2} proved some results on a class of mixed monotone operators with perturbations. The aim of this article is to propose a method for the existence and uniqueness of a solution of certain fractional differential equations by following the paper by Zhai \cite{Zhai2}. For this purpose, we shall consider some coupled fixed point theorems for a class of mixed monotone operators with perturbations on ordered Banach spaces with the different conditions that was introduced by Zhai \cite{Zhai2}. On the other hand, our result are finer than the results of Zhai \cite{Zhai2} since we obtain the existence and uniqueness of coupled fixed points without assuming continuity of compactness of the operator. For the sake of completeness of the paper, we present here some basic definitions, notations and known results. Suppose $(E,\| \cdot \|)$ is a Banach space which is partially ordered by a cone $P\subseteq E$, that is, $x\leq y$ if and only if $y-x\in P$. If $x\neq y$, then we denote $xy$. We denote the zero element of $E$ by $\theta$. Recall that a non-empty closed convex set $P\subset E$ is a cone if it satisfies (i) $x\in P,~\lambda\geq 0 \Longrightarrow \lambda x\in P$; (ii) $x\in P,~-x\in P \Longrightarrow x=\theta$. A cone $P$ is called normal if there exists a constant $N>0$ such that $\theta\leq x\leq y$ implies $\| x \| \leq N \| y \|$. Also we define the order interval $[x_1,x_2]=\{x\in E|x_1\leq x\leq x_2\}$ for all $x_1,x_2\in E$. We say that and operator $A:E\to E$ is increasing whenever $x\leq y$ implies $Ax\leq Ay$. For all $x,y\in E$, the notation $x\sim y$ means that there exist $\lambda>0$ and $\mu>0$, such that $\lambda x\leq y\leq \mu x$. Clearly, $\sim$ is an equivalent relation. Given $e>\theta$, we denote by $P_e$ the set $P_e=\{x\in E|x\sim e\}$. It is easy to see that $P_e\subset P$ is convex and $\lambda P_e= P_e$ for all $\lambda>0$. If $P\neq \phi$ and $e\in P$, it is clear that $P_e=P$. \begin{definition}[\cite{Guo1,Guo2}] \rm $A:P\times P\to P$ is said to be a mixed monotone operator if $A(x,y)$ is increasing in $x$ and decreasing in $y$, i.e., $u_i,v_i$ $(i=1,2)\in P$, $u_1\leq u_2$, $v_1\geq v_2$ imply $A(u_1,v_1)\leq A(u_2,v_2)$. The element $x\in P$ is called a fixed point of $A$ if $A(x,x)=x$. \end{definition} The following conditions were was assumed in \cite{Zhai1}: \begin{itemize} \item[(A1)] there exists $h\in P$ with $h\neq \theta$ such that $A(h,h)\in P_h$, \item[(A2)] for any $u,v\in P$ and $t\in (0,1)$, there exists $\varphi(t)\in(t,1]$ such that \begin{equation} \label{t1} A(tu,t^{-1}v)\geq {\varphi(t)}A(u,v). \end{equation} \end{itemize} \begin{lemma}[\cite{Zhai1}] \label{nnnt2} Assume that {\rm (A1), (A2)} hold. Then $A:P_h \times P_h \to P_h$; and there exist $u_0, v_0\in P_h$ and $r\in(0,1)$ such that $$ rv_0\leq u_02$ we have \begin{equation}\label{t5} {t_0^k}h\leq A(h,h)\leq \frac{1}{t_0^k}h\,. \end{equation} Put $u_0={t_0}^kh$ and $v_0=\frac{1}{t_0^k}h$. Evidently, $u_0,v_0\in P_h$ and $u_0 = {t_0}^{2k}v_0A(h,h)\\ &\geq t_0^kh=u_0, \end{align*} and \begin{align*} A(v_0,u_0) &=A(\frac{1}{t_0^k}h,{t_0^k}h)\\ &\leq \frac{1}{2(\frac{\varphi(t_0^k)}{t_0^k})}(A(h,h)+A(h,\frac{t_0^k}{s_0^k}h))\\ &\leq \frac{1}{2(\frac{\varphi(t_0^k)}{t_0^k})}2A(h,h)\\ &\leq A(h,h)\leq \frac{1}{t_0^k}h=v_0. \end{align*} Consequently, we have $u_0\leq A(u_0,v_0)\leq A(v_0,u_0)\leq v_0$. \end{proof} \begin{corollary} If in \eqref{nt1} put $s=t$ then we obtain \eqref{nnt1}. Consequently the Lemma \ref{t2} yields the Lemma \ref{nnnt2}. \end{corollary} \begin{theorem}\label{a} Suppose that $P$ is a normal cone of $E$, and {\rm (A5), (A6)} hold. Then operator $A$ has a unique fixed point $x^*$ in $P_h$. Moreover, for any initial $x_0,y_0\in P_h$, constructing successively the sequences \[ x_n = A(x_{n-1}, y_{n-1}), \quad y_n = A(y_{n-1}, x_{n-1}) \quad n = 1, 2,\ldots, \] we have $\| x_n-x^*\|\to 0$,$\| y_n-x^*\|\to 0$ as $n\to \infty$. \end{theorem} \begin{proof} From Lemma \ref{t2}, there exist $u_0,v_0\in P_h$ and $r\in (0, 1)$ such that $$ rv_0\leq u_00|u_n\geq tv_n\},\quad s_n=\sup\{s>0|u_n\geq sv_n\}, \quad s_n \leq t_n\; n = 1, 2,\ldots. \] Thus we have $u_n\geq t_nv_n,u_n\geq s_nv_n,n=1,2,\ldots$, then $u_n\geq t_nv_n\geq s_nv_n$, also $u_{n+1}\geq u_n\geq t_nv_n\geq t_nv_{n+1}\geq s_nv_{n+1},n=1,2,\ldots$. Therefore, $t_{n+1}\geq t_n,~i.e., {t_n}$ is increasing with ${t_n}\subset(0, 1]$. Suppose $t_n\to t^*$ as $n\to \infty$, then $t^*=1$. Otherwise, $0 {t^*}^2$, which is a contradiction. Thus, $\lim_{n\to\infty}t_n=1$. For any natural number $p$ we have \begin{gather*} \theta\leq u_{n+p}-u_n\leq v_n-u_n\leq v_n-t_nv_n=(1-t_n)v_n\leq (1-t_n)v_0,\\ \theta\leq v_n-v_{n+p}\leq v_n-u_n\leq (1-t_n)v_0. \end{gather*} Since the cone $P$ is normal, we have \begin{gather*} \| u_{n+p}-u_n \| \leq M(1-t_n) \| v_0 \|\to 0,\\ \| v_n-v_{n+p} \| \leq M(1-t_n) \| v_0 \|\to 0, \end{gather*} as $n\to \infty$, where $M$ is the normality constant of $P$. So we can claim that ${u_n}$ and ${v_n}$ are Cauchy sequences. Since $E$ is complete, there exist $u^*,v^*$ such that $u_n\to u^*,v_n\to v^*,$ as $n\to \infty.$ By \eqref{t6}, we know that $u_n\leq u^*\leq v^*\leq v_n$ with $u^*,v^*\in P_h$ and \[ \theta\leq v^*-u^*\leq v_n-u_n\leq (1-t_n)v_0. \] Further \[ \| v^*-u^* \|\leq M(1-t_n)\| v_0\| \to 0 \quad (n\to\infty), \] and thus $u^*=v^*$. Let $x^*:=u^*=v^*$ and then we obtain $$ u_{n+1}=A(u_n,v_n)\leq A(x^*,x^*)\leq A(v_n,u_n)=v_{n+1}. $$ Let $n\to\infty$, then we obtain $x^*=A(x^*,x^*)$. That is, $x^*$ is a fixed point of $A$ in $P_h$. Next we shall prove that $x^*$ is the unique fixed point of $A$ in $P_h$. In fact, suppose $\bar x$ is a fixed point of $A$ in $P_h$. Since $x^*,\bar x\in P_h$, there exists positive numbers $\bar\mu_1,\bar\mu_2,\bar\lambda_1,\bar\lambda_2>0$ such that $$ \bar\mu_1h\leq x^*\leq \bar\lambda_1,\quad \bar\mu_2h\leq \bar x\leq \bar\lambda_2h. $$ Then we obtain $$ \bar x\leq \bar\lambda_2h=\frac{\bar\lambda_2}{\bar\mu_1}\bar\mu_1h \leq \frac{\bar\lambda_2}{\bar\mu_1}x^*,\quad \bar x\geq \bar\mu_2h=\frac{\bar\mu_2}{\bar\lambda_1}\bar\lambda_1h \geq \frac{\bar\mu_2}{\bar\lambda_1}x^*. $$ Let $e_1=\sup\{t>0|tx^*\leq \bar x\leq t^{-1}x^*\}$. Evidently, $0e_1$, this contradicts the definition of $e_1$. Hence $e_1=1$, and we obtain $\bar x=x^*$. Therefore, $A$ has a unique fixed point $x^*$ in $P_h$. Note that $[u_0,v_0]\subset P_h$, then we know that $x^*$ is the unique fixed point of $A$ in $[u_0,v_0]$. Now we construct the sequences recursively as follows: $$ x_n=A(x_{n-1},y_{n-1}), \quad y_n=A(y_{n-1},x_{n-1}),\quad n=1,2,\ldots, $$ for any initial points $x_0,y_0\in P_h$. Since $x_0,y_0\in P_h$ we can choose small numbers $e_2,e_3\in (0,1)$ such that $$ e_2h\leq x_0\leq \frac{1}{e_2}h,\quad e_3h\leq y_0\leq \frac{1}{e_3}h. $$ Let $e^*=\min\{e_2,e_3\}$. Then $e^*\in (0,1)$ and $$ e^*h\leq x_0,\quad y_0\leq \frac{1}{e^*}h. $$ We can choose a sufficiently large positive integer $m$ such that $$ \big[\frac{\varphi(e^*)}{e^*}\big]^m\geq \frac{1}{e^*}. $$ Put $\bar u_0={e^*}^mh,\bar v_0=\frac{1}{{e^*}^m}h$, it easy to see that $\bar u_0,\bar v_0\in P_h$ and $\bar u_00$ such that $A(x,y)\geq \delta_0Bx$ for all $x,y\in P$. \end{itemize} Then \begin{itemize} \item[(1)] $A:P_h\times P_h\to P_h,B:P_h\to P_h$; \item[(2)] there exist $u_0,v_0\in P_h$ and $r\in(0,1)$ such that $$ rv_0\leq u_00$ such that $$ \lambda_1h\leq A(h_0,h_0)\leq \lambda_2h,\quad \nu_1h\leq Bh_0\leq \nu_2h\,. $$ Also from $h_0\in P_h$, there exists a constant $t_0\in (0,1)$ such that $t_0h\leq h_0\leq\frac{1}{t_0}h$, and let $s_0\in(0,1)$ such that $s_0\leq t_0$, then we have $$ s_0h\leq t_0h\leq h_0\leq \frac{1}{t_0}h\leq \frac{1}{s_0}h. $$ From $s_0\leq t_0$, \eqref{t8}, \eqref{t10} and the mixed monotone properties of operator $A$, we have $$ A(h,h)\geq A(t_0h_0,\frac{1}{t_0}h_0),\quad A(h,h)\geq A(t_0h_0,\frac{1}{s_0}h_0). $$ So we have $$ 2A(h,h)\geq 2t_0^{2\alpha-1} A(h_0,h_0)\,. $$ By combining the inequalities above, we have \[ A(h,h)\geq t_0^{2\alpha-1} A(h_0,h_0) \geq t_0^{2\alpha} A(h_0,h_0)\geq \lambda_1 t_0^{2\alpha} h, \] and \begin{align*} A(h,h)&\leq A(\frac{1}{t_0}h_0,t_0h_0) \leq \frac{1}{2t_0^{2\alpha-1}}(A(h_0,h_0)+A(h_0,\frac{t_0}{s_0}h_0))\\ &\leq \frac{1}{t_0^{2\alpha}}A(h_0,h_0)\leq \frac{\lambda_2}{t_0^\alpha}h. \end{align*} Noting that $\frac{\lambda_2}{t_0^{2\alpha}},\lambda_1 t_0^2\alpha>0$, we can get $A(h,h)\in P_h$. By Definition \ref{t9} and the monotone property of operator $B$, we have $$ Bh\leq B(\frac{1}{t_0}h_0)\leq \frac{1}{t_0}Bh_0\leq \frac{\nu_2}{t_0}h,\quad Bh\geq B(t_0h_0)\geq t_0Bh_0\geq\nu_1t_0h. $$ Next we show $B:P_h\to P_h$. For any $x\in P_h$, we can choose a sufficiently small number $\mu\in (0,1)$ such that \[ \mu h\leq x\leq \frac{1}{\mu}h. \] Consequently, $$ Bx\leq B(\frac{1}{\mu}h)\leq \frac{1}{\mu}\frac{\nu_2}{t_0}h,\quad Bx\geq B(\mu h)\geq \mu t_0\nu_1h. $$ Evidently, we have $\frac{\nu_2}{\mu t_0},\mu t_0 \nu_1>0$. Thus $Bx\in P_h$; that is, $B:P_h\to P_h$. So the conclusion $(1)$ holds. Now we define an operator $T=A+B$ by $T(x,y)=A(x,y)+Bx$. Then $T:P\times P\to P$ is a mixed monotone operator and $T(h,h)\in P_h$. In the following we show that there exists $\varphi(t)\in (t,1]$ with respect to $s,t\in (0,1),s\leq t$ such that $$ T(tx,t^{-1}y)+T(tx,s^{-1}y)\geq 2(\frac{\varphi(t)}{t})A(x,y),\quad \forall,x,y\in P. $$ Consider the function \[ f(t)=\frac{t^{2\beta-1}-t}{t^{2\alpha-1}-t^{2\beta-1}}, \] for $t\in (0,1)$, where $\beta\in (\alpha,1)$. It is easy to prove that $f$ is increasing in $(0,1)$ and $$ \lim_{t\to 0^+}f(t)=0,\quad \lim_{t\to1^{-}}f(t)=\frac{1-\beta}{\beta-\alpha}. $$ Further, fixing $t\in(0,1)$, we have $$ \lim_{\beta\to1^{-}}f(t)=\lim_{\beta\to1^{-}} \frac{t^{2\beta-1}-t}{t^{2\alpha-1}-t^{2\beta-1}}=0. $$ So there exists $\beta_0(t)\in (0,1)$ with respect to $t$ such that $$ \frac{t^{2{\beta_0(t)}-1}-t}{t^{2\alpha-1}-t^{2{\beta_0(t)}-1}}\leq \delta_0, \quad t\in(0,1). $$ Hence we have $$ A(x,y)\geq \delta_0Bx \geq \frac{t^{2\beta_0(t)-1}-t}{t^{2\alpha-1}-t^{2\beta_0(t)-1}}Bx,\quad \forall t\in (0,1),~x,y\in P. $$ Then we obtain $$ t^{2\alpha-1 }A(x,y)+tBx\geq t^{2\beta_0(t)-1}[A(x,y)+Bx],\quad \forall t\in (0,1),\; x,y\in P. $$ Consequently, for any $t\in(0,1)$ and $x,y\in P$, \begin{align*} T(tx,t^{-1}y)+T(tx,s^{-1}y) &=A(tx,t^{-1}y)+B(tx)+A(tx,s^{-1}y)+B(tx)\\ &\geq 2t^{2\alpha-1} A(x,y)+2tBx\\ &\geq 2t^{2\beta_0(t)-1}( A(x,y)+Bx)\\ &=2t^{2\beta_0(t)-1}T(x,y). \end{align*} Let $\varphi(t)=t^{2\beta_0(t)},~~t\in (0,1)$. Then $\varphi(t)\in (t^{2},1]$ and $$ T(tx,t^{-1}y)+T(tx,s^{-1}y)\geq 2(\frac{\varphi(t)}{t})A(x,y), $$ for any $s,t\in (0,1)$ and $x,y\in P$. Hence the condition (A2) in Lemma \ref{t2} is satisfied. By Lemma \ref{t2} we conclude that: (a) there exist $u_0,v_0\in P_h$ and $r\in (0,1)$ such that $rv_0\leq u_0\theta$ such that $A(h_0,h_0)\in P_h$. Then \begin{itemize} \item[(1)] $A:P_h\times P_h\to P_h$; \item[(2)] there exist $u_0,v_0\in P_h$ and $r\in(0,1)$ such that $$ rv_0\leq u_00$, $M_2>0$ and $h\neq \theta\in P$ such that $$ M_1h(t)\leq\int_{\epsilon}^TG(t,\xi)f(s,\xi,u(s,\xi),v(s,\xi))d{\xi }\leq M_2h(t), $$ for all $t\in [\epsilon,T]$, where $G(t,s)$ is the green function defined in Lemma \ref{23}. Then problem \eqref{21} with the boundary value condition \eqref{22} has unique solution $u^*$. \end{theorem} \begin{proof} By using Lemma \eqref{23}, the problem is equivalent to the integral equation \[ u(s,t)=\int_{\epsilon}^TG(t,\xi)f(s,\xi,u(s,\xi),v(s,\xi))d{\xi}, \] where \[ G(t,\xi)=\begin{cases} \frac{t^{\alpha-1}(\eta-\xi)^{\alpha-1}-t^{\alpha-1} (T-\xi)^{\alpha-1}}{({\eta}^{\alpha-1}-T^ {\alpha-1})\Gamma(\alpha)}-\frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)} &\epsilon\leq \xi\leq \eta\leq t\leq T\\[4pt] \frac{-t^{\alpha-1}-(T-\xi)^{\alpha-1}}{({\eta}^{\alpha-1}-T^ {\alpha-1})\Gamma(\alpha)}-\frac{(t-\xi)^{\alpha-1}}{\Gamma(\alpha)} &\epsilon\leq \eta\leq \xi\leq t\leq T\\[4pt] \frac{-t^{\alpha-1}(T-\xi)^{\alpha-1}}{({\eta}^{\alpha-1}-T^ {\alpha-1})\Gamma(\alpha)}&\epsilon\leq \eta\leq t\leq \xi\leq T \end{cases} \] Define the operator $A:P\times P\to E$ by \[ A(u(s,t),v(s,t))=\int_{\epsilon}^TG(t,\xi)f(s,\xi,u(s,\xi),v(s,\xi))d{\xi}. \] Then $u$ is solution for the problem if and only if $u=A(u,u)$. It is easy to see to check that the operator $A$ is increasing in $u$ and decreasing in $v$ on $P$. By assumptions of theorem we have; \begin{itemize} \item[(A7)] there exists $h\in P$ with $h\neq \theta$ such that $$ M_1h(t)\leq\int_{\epsilon}^TG(t,\xi)f(s,\xi,u(s,\xi),v(s,\xi))d{\xi}\leq M_2h(t), $$ thus $A(h,h)\in P_h$, \item[(A8)] for any $u,v\in P$ and $c,c'\in (0,1)$ such that $c'\leq c$ , there exists $\varphi(c)\in ({c}^2,1]$ and $\varphi$ is decreasing such that $$ A(cu,c^{-1}v)+A(cu,{c'}^{-1}v)\geq 2\frac{\varphi(c)}{c}A(u,v). $$ \end{itemize} Now by using theorem \eqref{a}, the operator $A$ has a unique fixed point $u^*$ in $P_h$. Therefore the boundary value problem \eqref{21} has unique solution $u^*$. \end{proof} \begin{thebibliography}{99} \bibitem{AEO1} Agarwal. R. P,; El-Gebeily, M. A.; O'Regan, D; \emph{Generalized contractions in partially ordered metric spaces}, Appl. Anal. 87(2008) 1-8. \bibitem{BD} Baleanu, D.; Nazemi, S. Z.; Rezapour, S.; \emph{Attractivity for a k-dimensional system of fractional functional differential equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations}. J. Inequal. Appl. 2014, 2014: 31, 14 pp. \bibitem{BD1} Baleanu, D.; Mohammadi, H.; Rezapour, S.; \emph{The existence of solutions for a nonlinear mixed problem of singular fractional differential equations}. Adv. Difference Equ. 2013, 2013: 359, 12 pp. \bibitem{BB} Berinde, V.; Borcut, M; \emph{Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces}. Applied Mathematics and Computation 218 (10) (2012) 5929-5936. \bibitem{Burgic} Burgic, Dz.; Kalabusic, S.; Kulenovic, M. R. S.; \emph{Global attractivity results for mixed monotone mappings in partially ordered complete metric spaces}. Fixed Point Theory Appl. Article ID 762478 (2009). \bibitem{Drici} Drici, Z.; McRae, F. A.; Vasundhara Devi, J.; \emph{Fixed point theorems for mixed monotone operators with PPF dependence}, Nonlinear Anal. TMA 69 632-636 (2008). \bibitem{Gnana} Gnana Bhaskar, T.; Lakshmikantham, V; \emph{Fixed point theorems in partially ordered metric spaces and applications}, Nonlinear Anal. 65 (2006) 1379-1393. \bibitem{Guo1} Guo, D; Lakskmikantham, V.; \emph{Coupled fixed points of nonlinear operators with applications}, Nonlinear Anal. (1987) 11 (5): 623-632. \bibitem{Guo2} Guo. D.; \emph{Fixed points of mixed monotone operators with application}, Appl. Anal. 34 (1988) 215-224. \bibitem{Guo3} Guo, D.; Lakskmikantham, V.; \emph{Nonlinear Problems in Abstract Cones}. Academic Press, New York, 1988. \bibitem{Guo4} Guo, D.; \emph{Partial Order Methods in Nonlinear Analysis}. Jinan, Shandong Science and Technology Press, 2000 (in Chinese). \bibitem{Harjani} Harjani, J.; Lopez, B.; Sadarangani, K.; \emph{Fixed point theorems for mixed monotone operators and applications to integral equations}. Nonlinear Anal. TMA 74 1749-1760 (2011). \bibitem{Liang} Liang, K.; Li, J.; Xiao, T. J.; \emph{New Existence and uniqueness theorems of positive fixed points for mixed monotone operators with perturbation}, Comput. Math. Appl. 50(2005) 1569-1578. 215-224. \bibitem{Liang2} Liang, Y. X.; Wu, Z. D.; \emph{Existence and uniqueness of fixed points for mixed monotone operators with applications}. Nonlinear Anal. TMA 65 1913-1924 (2006). \bibitem{N1} Nieto. J. J.; Rodriguez-Lopezm R; \emph{Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation}, Order 22 (2005) 223-239. \bibitem{N2} Nieto. J.J.; Rodriguez-Lopez, R; \emph{Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equation}, Acta Math. Sin.(Engl.Ser.) (2007) 23 (12): 2205-2212. \bibitem{Ran} Ran, A. C. M.; Reurings, M. C. B,; \emph{A fixed point theorem in partially ordered sets and some applications to matrix equations}, Proc. Amer. Math. Soc. 132 (2004) 1435-1443. \bibitem{Kar1} Roldan, A.; Martinez-Moreno, J.; Roldan, C.; Karapinar, E.; \emph{Some remarks on multidimentional fixed point theorems}, Fixed Point Theory, 15(2014) No.2, 545-558. \bibitem{Kar2} Samet, B.; Karapinar, K.; Aydi, H.; Rajic, V.; \emph{Discussion on some coupled fixed point theorems}, Fixed Point Theory and Applications, 2013, 2013:50 (10 March 2013). \bibitem{Zhai2} Zhai, C. B.; Hao, M. R.; \emph{Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value}, Nonlinear Anal. 75 (2012), 2542-2551. \bibitem{Zhai1} Zhai, C. B.; Zhang, L. L.; \emph{New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems}. J. Math. Anal. Appl. 382, 594-614 (2011). \bibitem{Zhang1} Zhang, S. S.; \emph{Coupled fixed points for mixed monotone condensing operators and an existence theorem of the solution for a class of functional equations arising in dynamic programming}, J. Math. Anal. Appl. 160 468-479 (1991). \bibitem{Zhang2} Zhang, Z. T.; Wang, K. L.; \emph{On fixed point theorems of mixed monotone operators and applications}, Nonlinear Anal. TMA 70, 3279-3284 (2009). \bibitem{Zhao} Zhao, Z. Q.; \emph{Existence and uniqueness of fixed points for some mixed monotone operators}, Nonlinear Anal. TMA 73, 1481-1490 (2010). \end{thebibliography} \end{document}