\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 292, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2015/292\hfil Multiplicity of positive solutions] {Multiplicity of positive solutions for second-order differential inclusion systems depending on two parameters} \author[Z. Yuan, L. Huang, C. Zeng \hfil EJDE-2015/292\hfilneg] {Ziqing Yuan, Lihong Huang, Chunyi Zeng} \address{Ziqing Yuan \newline College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China} \email{junjyuan@sina.com} \address{Lihong Huang (corresponding author)\newline College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China} \email{lhhuang@hnu.edu.cn} \address{Chunyi Zeng \newline Department of Foundational Education, Southwest University for Nationalities, \newline Chengdu, Sichuan 610000, China} \email{ykbzcy@163.com} \thanks{Submitted February 20, 2015. Published November 30, 2015.} \subjclass[2010]{49J40, 35R70, 35L85} \keywords{Neumann problem; differential inclusion system; locally Lipschitz; \hfill\break\indent nonsmooth critical point} \begin{abstract} We consider the two-point boundary-value system \begin{gather*} -u''_i+u_i\in\lambda\partial_{u_i}F(u_1,\ldots,u_n) +\mu\partial_{u_i}G(u_1,\ldots,u_n),\\ u'_i(a)=u'_i(b)=0\quad u_i\geq 0,\quad 1\leq i\leq n. \end{gather*} Applying a version of nonsmooth three critical points theorem, we show the existence of at least three positive solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In the previous decades, there has been a lot of interest in scalar periodic problems driven by the one dimension $p$-laplacian. Some results can be found in \cite{b2,m2,w1,s1} and references therein. We mention the works by Guo \cite{g2}, Pino et al \cite{p2}, Fabry and Fayad \cite{f1} and Dang and Oppenheimer \cite{d1}. The authors used degree theory and assumed that the right-hand side nonlinearity $f(t,\zeta)$ is jointly continuous in $t\in T=[a,b]$ and $\zeta\in\mathbb{R}$. Their conditions on $f$ are also asymptotic and there is no interaction between the nonlinearity and the Fu\v{c}ik spectrum of the one-dimensional $p$-laplacian. Especially, Heidarkhani and Yu \cite{h1} considered the existence of at least three solutions for a class of two-point boundary-value systems of the form \begin{equation}\label{1.20} \begin{gathered} -u''_i+u_i=\lambda\partial_{u_i}F(u_1,\ldots,u_n) +\mu\partial_{u_i}G(u_1,\ldots,u_n),\\ u'_i(a)=u'_i(b)=0 \end{gathered} \end{equation} for $1\leq i\leq n$, where $F,G:[a,b]\times\mathbb{R}^n\to\mathbb{R}$ are $\rm C^1$-functionals with respect to $(u_1,\ldots,u_n)\in\mathbb{R}^n$ for a.e. $x\in [a,b]$. From the above results, a natural question arises: what will happen when the potential functions $F$ and $G$ are not differentiable in \eqref{1.20}? This is the main point of interest in our paper. Here, we extend the main results in \cite{h1} to a class of perturbed Motreanu-Panagiotopoulos functionals \cite{m3}, which raises some essential difficulties. The presence of non-differentiable function probably leads to no solution of \eqref{1.20} in general. Therefore to overcome this difficulty, setting $f_i=\partial_{u_i}F(u_1,\ldots,u_n)$ and $g_i=\partial_{u_i}G(u_1,\ldots,u_n)$, we consider such functions $f_i$ and $g_i$, which are locally essentially bounded measurable and we fill the discontinuity gaps of $f_i$ and $g_i$, replacing $f_i$ and $g_i$ by intervals $[f^-_i(u_1,\ldots,u_n),f^+_i(u_1,\ldots,u_n)]$ and $[g^-_i(u_1,\ldots,u_n),g^+_i(u_1,\ldots,u_n)]$, where \begin{gather*} f^-_i(u_1,\ldots,u_n) =\lim_{\delta\to 0^+}\operatorname{ess\,inf}_{|u'_i-u_i|<\delta} \partial_{u_i}F(u_1,\ldots,u'_i,\ldots,u_n), \\ f^+_i(u_1,\ldots,u_n)=\lim_{\delta\to 0^+}\operatorname{ess\,sup}_{|u'_i-u_i| <\delta}\partial_{u_i}F(u_1,\ldots,u'_i,\ldots,u_n), \\ g^-_i(u_1,\ldots,u_n)=\lim_{\delta\to 0^+}\operatorname{ess\,inf}_{|u'_i-u_i|<\delta} \partial_{u_i}G(u_1,\ldots,u'_i,\ldots,u_n), \\ g^+_i(u_1,\ldots,u_n)=\lim_{\delta\to 0^+}\operatorname{ess\,sup}_{|u'_i-u_i| <\delta}\partial_{u_i}G(u_1,\ldots,u'_i,\ldots,u_n). \end{gather*} Then $f^-_i(u_1,\ldots,u_n)$, $g^-_i(u_1,\ldots,u_n)$ are lower semi-continuous, and $f^+_i(u_1,\ldots,u_n)$, $g^+_i(u_1,\ldots,u_n)$ are upper semi-continuous. So instead of \eqref{1.20} we consider the following second-order Neumann inclusion systems on a bounded interval $[a,b]$ in $\mathbb{R}$ $(a0$ and $a_1>0$ such that $|\omega_1|+\ldots+|\omega_n|\leq k_1(|u_1|+\ldots+|u_n|)+a_1$ for all $(u_1,\ldots,u_n)\in\mathbb{R}^n$ and all $\omega_i\in \partial_{u_i}F(u_1,\ldots,u_n)$ $(1\leq i\leq n)$; \item[(A3)] There exists $k_2>0$ and $a_2>0$ such that $|\xi_1|+\ldots+|\xi_n|\leq k_2(|u_1|+\ldots+|u_n|)+a_2$ for all $(u_1,\ldots,u_n)\in\mathbb{R}^n$ and all $\xi_i\in \partial_{u_i}G(u_1,\ldots,u_n)~(1\leq i\leq n)$. \end{itemize} Our main results are the following: \begin{theorem} \label{thm1.1} Assume that {\rm (A1)--(A3)} are satisfied and there exist $2n+3$ positive constants $d,e,r\eta_i,\gamma_i$, for $1\leq i\leq n$, such that $d+e0, \end{align*} where \[ A_1=\{(\zeta_1,\ldots,\zeta_n)|\sum_{i=1}^{n}\zeta_i^2 \leq \frac{2de}{b-a}\sum^n_{i=1}\eta_i^2\}; \] \end{itemize} then, there exist $\lambda',\lambda''\in(0,\nu]$, $0<\nu<\frac{1}{2nk_1}$, $\lambda'<\lambda''$, $\mu_1>0$ and $\sigma_1>0$ such that for every $\lambda\in[\lambda',\lambda'']$ and $\mu\in(0,\mu_1)$, system \eqref{1.1} has at least three positive solutions in $(W^{1,2}([a,b]))^n$ whose norms are less than $\sigma_1$. \end{theorem} If $n=1$, then system \eqref{1.1} turns into \begin{equation}\label{1.3} \begin{gathered} -u''+u\in\lambda\partial_{u}F(u)+\mu\partial_{u}G(u),\\ u'(a)=u'(b)=0, \quad u\geq 0. \end{gathered} \end{equation} From Theorem \ref{thm1.1}, we have the following result. \begin{corollary} \label{coro1.1} Assume that the following conditions are satisfied: \begin{itemize} \item[(A1')] $F$ and $G$ are regular on $\mathbb{R}$; \item[(A2')] There exists $k_3>0$ and $a_3>0$ such that $|\omega|\leq k_3|u|+a_3$ for all $u\in\mathbb{R}$ and all $\omega\in \partial_{u}F(u)$; \item[(A3')] There exists $k_4>0$ and $a_4>0$ such that $|\xi|\leq k_4|u|+a_4$ for all $u\in\mathbb{R}$ and all $\xi\in \partial_{u}G(u)$; \end{itemize} and there exist five positive constants $d,e,r,\eta,\gamma$ such that $d+e0$, where $A_2=\{u|-\eta(\frac{2de}{b-a})^{1/2}\leq u \leq \eta(\frac{2de}{b-a})^{1/2}\}$; \end{itemize} then, there exist $\lambda',\lambda''\in(0,\nu]$, $0<\nu<\frac{1}{2nk_3}$, $\lambda'<\lambda''$, $\mu_1>0$ and $\sigma_1>0$ such that for every $\lambda\in[\lambda',\lambda'']$ and $\mu\in(0,\mu_1)$, system \eqref{1.3} has at least three positive solutions in $W^{1,2}([a,b])$ whose norms are less than $\sigma_1$. \end{corollary} Next, we give an example that illustrate Theorem \ref{thm1.1} (and Corollary \ref{coro1.1}). Set \[ F(u)=\begin{cases} 10^{199}e^{-9900}ue^{-u^3}& u\geq 10,\\ u^{200} e^{-u^4} &00$ such that for every $\nu,\omega\in U$, $$ |\varphi (\nu)-\varphi(\omega)|\leq L\|\nu-\omega\|. $$ If $\varphi$ is locally Lipschitz on bounded sets, then clearly it is locally Lipschitz. \end{definition} \begin{definition} \label{def2.2} \rm Let $\varphi: X\to \mathbb{R}$ be a locally Lipschitz functional and $u, \nu\in X$, the generalized derivative of $\varphi$ in $u$ along the direction $\nu$, is $$ \varphi^{0}(u; \nu)=\limsup_{\omega\to u, \tau\to 0^{+}} \frac{\varphi(\omega+\tau\nu)-\varphi(\omega)}{\tau}. $$ It is easy to see that the function $\nu\to\varphi^{0}(u;\nu)$ is sublinear, continuous and so is the support function of a nonempty, convex and $w^{*}-$ compact set $\partial \varphi (u)\subset X^{*}$, $$ \partial \varphi (u)=\{u^{*}\in X^{*}:\langle u^{*},\nu\rangle_{X} \leq\varphi^{0}(u; \nu)\}. $$ If $\varphi\in C^{1}(X)$, then $\partial\varphi(u)=\{\varphi'(u)\}$. \end{definition} Clearly, these definitions extend those of the G\^{a}teaux directional derivative and gradient. \begin{definition} \label{def2.3} \rm A mapping $A:X\to X^*$ is of type $(S)_+$, for every sequence $\{u_n\}$ such that $u_n\rightharpoonup u \in X $ and $$ \limsup_n\langle A(u_n), u_n-u\rangle\leq 0, $$ one has $u_n\to u$. \end{definition} \begin{definition} \label{def2.4} \rm Let $\varphi:X\to\mathbb{R}$ be a locally Lipschitz functional and $\mathcal{X}:X\to\mathbb{R}\cup\{+\infty\}$ be a proper, convex, lower semicontinuous (l.s.c.) functional whose restriction to the set $$ \operatorname{dom}(\mathcal{X})=\{u\in X:\mathcal{X}(u)<+\infty\} $$ is continuous, then $\varphi+\mathcal X$ is a Motreanu-Panagiotopouls functional. \end{definition} In most applications, $C$ is a nonempty, closed, convex subset of $X$; the indicator of $C$ is the function $\mathcal{X}_C:X\to \mathbb{R}\cup\{+\infty\}$ defined by $$ \mathcal{X}_C=\begin{cases} 0&\text{if }u\in C,\\ +\infty&\text{if }u\not\in C. \end{cases} $$ It is easy to see that $\mathcal{X}_C$ is proper, convex and l.s.c., while its restriction to ${\rm dom}(\mathcal{X})=C$ is the constant 0. \begin{definition} \label{def2.5} \rm Let $\varphi+\mathcal{X}$ be a Motreanu-Panagiotopouls functional, $u\in X$. Then, $u$ is a critical point of $\varphi+\mathcal{X}$ if for every $v\in X$ $$ \varphi^\circ(u;v-u)+\mathcal{X}(v)-\mathcal{X}(u)\geq 0. $$ \end{definition} The next propositions will be used later. \begin{proposition}[\cite{c3}] \label{prop2.1} Let $h:X\to\mathbb{R}$ be locally Lipschitz on $X$. Then \begin{itemize} \item[(i)] $h^{\circ}(u;v)=\max\{\langle\omega,v\rangle_X:\omega\in\partial h(u)\}$ for all $u,v\in X$, \item[(ii)] (Lebourg's mean value theorem) Let $u$ and $v$ be two points in $X$, then there exists a point $\zeta$ in the open segment between $u$ and $v$ and $\omega_{\zeta}\in\partial h(\zeta)$ such that $$ h(u)-h(v)=\langle\omega_{\zeta},u-v\rangle_X. $$ \end{itemize} \end{proposition} We say that $h$ is regular at $u\in X$ (in the sense of Clarke \cite{c3}) if for all $z\in X$ the usual one-sided directional derivative $$ h'(u;z)=\lim_{t\to 0^+}\frac{h(u+tz)-h(u)}{t} $$ exists and $h'(u;z)=h^\circ(u;z)$. Moreover, we say that $h$ is regular on $X$, if it is regular in every point $u\in X$. \begin{proposition} \label{prop2.2} Let $h:X\to\mathbb{R}$ be a locally Lipschitz function which is regular at $(u_1,\ldots,u_n)\in X$, then \begin{itemize} \item[(i)] \[ \partial h(u_1,\ldots,u_n)\subset\partial_{u_1}h(u_1, \ldots,u_n)\times\ldots\times\partial_{u_n}h(u_1,\ldots,u_n), \] where $\partial_{u_i}h(u_1,\ldots,u_n)$ denotes the partial generalized gradient of \\ $h(u_1,\ldots,u_i,\ldots,u_n)$ to $u_i$ for $1\leq i\leq n$. \item[(ii)] $h^\circ (u_1,\ldots,u_n; v_1,\ldots,v_n)\leq h^\circ_1(u_1,\ldots,u_n;v_1)+\ldots+ h^\circ_n(u_1,\ldots,u_n;v_n)$ for all $(v_1,\ldots,v_n)\in X$. \end{itemize} \end{proposition} \begin{proof} For the proof of (i), see \cite[Proposition 2.3.15]{c3}. From Proposition \ref{prop2.1} (i), it follows that there exists a $\omega\in\partial h(u,v)$ such that $h^\circ(u;v)=\langle\omega,v\rangle_X$. From (i) we have $\omega=(\omega_1,\ldots,\omega_n)$, where $\omega_i\in \partial_{u_i}h(u_1,\ldots,u_n)$ $(1\leq i\leq n)$, and using the definition of the generalized gradient, we derive $h^\circ (u;v)=\langle\omega_1,v_1\rangle_{W^{1,2}([a,b])}+\ldots +\langle\omega_n,v_n\rangle_{W^{1,2}([a,b])} \leq h^\circ_1(u_1,\ldots,u_n;v_1)+\ldots+ h^\circ_n(u_1,\ldots,u_n;v_n)$. \end{proof} The following theorems are the main tools for proving our main results. \begin{theorem}[see \cite{i1}] \label{thm2.1} Let $(X,\|\cdot\|)$ be a reflexive Banach space, $\Lambda\subset\mathbb{R}$ an interval, $C$ a nonempty, closed, convex subset of $X$, $\mathcal{N}\in C^1(X,\mathbb{R})$ a sequentially weakly l.s.c. functional, bounded on any bounded subset of $X$, such that $\mathcal{N}'$ is of type $(S)_+$, $\Gamma:X\to\mathbb{R}$ is a locally Lipschitz functional with compact gradient, and $\rho_1\in\mathbb{R}$. Assume also that the following conditions hold: \begin{itemize} \item[(i)] $\sup_{\lambda\in\Lambda}\inf_{u\in C}[\mathcal{N}(u) +\lambda (\rho_1-\Gamma(u))]<\inf_{u\in C} \sup_{\lambda\in\Lambda}[\mathcal{N}(u)+\lambda (\rho_1-\Gamma(u))]$; \item[(ii)] $\lim_{\|u\|\to+\infty}[\mathcal{N}(u)-\lambda \Gamma(u)] =+\infty$ for every $\lambda\in\Lambda$. \end{itemize} Then there exist $\lambda',~\lambda''\in\Lambda~(\lambda'<\lambda'')$ and $\sigma_1>0$ such that for every $\lambda\in[\lambda',\lambda'']$ and every locally Lipschitz functional $\mathcal{G}:X\to\mathbb{R}$ with compact gradient, there exists $\mu_1>0$ such that for every $\mu\in (0,\mu_1)$, the functional $\mathscr{N}-\lambda\Gamma-\mu\mathcal{G}+\mathcal{X}_C$ has at least three critical points whose norms are less than $\sigma_1$. \end{theorem} \begin{theorem}[\cite{b1}] \label{thm2.2} Let $X$ be a nonempty set and $\Phi$, $\Psi$ two real functions on $X$. Assume that $\Phi(u)\geq 0$ for every $u\in X$ and there exists $u_0\in X$ such that $\Phi(u_0)=\Psi(u_0)=0$. Further, assume that there exist $u_1\in X$, $r>0$ such that $\Phi(u_1)>r$ and $$ \sup_{\Phi(u)1$ and for every $\rho \in\mathbb{R}$ satisfying $$ \sup_{\Phi(u)0$ and $u\in X$, $$ \varphi(u)=\Phi(u)-\lambda\Psi(u)-\mu J(u)+\mathcal{X}_C(u). $$ The next lemma displays some properties of $\Phi$. \begin{lemma} \label{lem3.1} $\Phi\in C^1(X,\mathbb{R})$ and its gradient, defined for $u,v\in X$ by $$ \langle \Phi'(u),v\rangle=\int^b_a\nabla u(x)\nabla v(x)\,{\rm d}x $$ is of type $(S)_+$, where $u=(u_1,\ldots,u_n)$ and $v=(v_1,\ldots,v_n)$. \end{lemma} The proof of the above lemma is similar to the one in Chabrowski \cite[Section 2.2]{c1}. We omit it here. Next we consider some properties of $\Psi$. \begin{lemma} \label{lem3.2} If {\rm (A1)--(A2)} are satisfied, then $\Psi(u):X\to\mathbb{R}$ is a locally Lipschitz function with compact gradient. Moreover, \begin{equation}\label{3.1} \Psi^\circ (u_1,\ldots,u_n;v_1,\ldots,v_n) \leq\int^b_a F^\circ(u_1,\ldots,u_n;v_1,\ldots,v_n)\,{\rm d}x, \end{equation} for all $(u_1,\ldots,u_n),(v_1,\ldots,v_n)\in X$. \end{lemma} \begin{proof} First, let $u=(u_1,\ldots,u_n)$, $v=(v_1,\ldots,v_n)\in X$ be fixed elements. Using the regularity of $F$ and Lebourg's mean value theorem (see Proposition \ref{prop2.1}) we derive a $\omega\in\partial F(\zeta_1,\ldots,\zeta_n)$ such that $$ F(u)-F(v)=\langle\omega,u-v\rangle, $$ where $(\zeta_1,\ldots,\zeta_n)$ is in the open line segment between $(u_1,\ldots,u_n)$ and $(v_1,\ldots,v_n)$. Using Proposition \ref{prop2.2}, there exist $\omega_i\in \partial_{\zeta_i}F(\zeta_1,\ldots,\zeta_n)$ $(1\leq i\leq n)$, such that \begin{equation}\label{3.2} F(u_1,\ldots,u_n)-F(v_1,\ldots,v_n)=\omega_1(u_1-v_1)+\ldots+\omega_n(u_n-v_n). \end{equation} From (A1) and \eqref{3.2}, we obtain \begin{equation}\label{3.3} \begin{aligned} &|F(u_1,\ldots,u_n)-F(v_1,\ldots,v_n)|\\ &\leq (|\omega_1|+\ldots+|\omega_n|)(|u_1-v_1|+\ldots+|u_n-v_n|)\\ &\leq [k_1(|u_1|+\ldots+|u_n|+|v_1|+\ldots+|v_n|)+a_1](|u_1-v_1|+\ldots+|u_n-v_n|) . \end{aligned} \end{equation} Using \eqref{3.3}, H\"older's inequality and the fact the embedding $W^{1,2}([a,b])\hookrightarrow L^2([a,b])$ is continuous, we derive \begin{align*} &|\Psi (u_1,\ldots, u_n)-\Psi (v_1,\ldots, v_n)|\\ &\leq nk_1\sum^n_{i=1}(\|u_i\|_2+\|v_i\|_2+m_1)(\|u_1-v_1\|_2+\ldots+\|u_n-v_n\|_2)\\ &\leq c_1 \sum^n_{i=1}(\|u_i\|+\|v_i\|+m_1)(\|u_1-v_1\|+\ldots+\|u_n-v_n\|) \end{align*} for some $c_1>0$, $m_1>0$ and $\|\cdot\|_2$ denotes the $L^2-$norm. From this relation it follows that $\Psi$ is locally Lipschitz on $X$. Now choose $u=(u_1,\ldots,u_n)$, $h=(h_1,\ldots,h_n)\in X$, since $F(u_1,\ldots,u_n)$ is continuous, $F^\circ (u_1,\ldots,u_n;h_1,\ldots,h_n)$ can be expressed as the upper limit of $$ \frac{F(u^0_1+th_1,\ldots,u^0_n+th_n)-F(u^0_1,\ldots,u^0_n)}{t}, $$ where $t\to 0^+$ taking rational values and $(u^0_1,\ldots,u^0_n)\to (u_1,\ldots,u_n)$ taking values in a countable dense subset of $X$. Therefore, the map \[ x\mapsto F^\circ (u_1(x),\ldots,u_n(x);h_1(x),\ldots,h_n(x)) \] is also measurable. By (A2), the map $x\mapsto F^\circ (u_1(x),\ldots,u_n(x);h_1(x),\ldots,h_n(x))$ belongs to $L^1([a,b])$. Since $X$ is separable, there exist functions $(u^k_1,\ldots,u^k_n)\in X$ and numbers $t_k\to 0^+$ such that $(u^k_1,\ldots,u^k_n)\to (u_1,\ldots,u_n)$ in $X$ and $$ \Psi^\circ(u_1,\ldots,u_n;h_1,\ldots,h_n) =\lim_{k\to+\infty}\frac{\Psi(u^k_1+t_k h_1,\ldots,u^k_n+t_k h_n) -\Psi(u^k_1,\ldots,u^k_n)}{t_k}. $$ We define $g_n:[a,b]\to\mathbb{R}\cup\{+\infty\}$ by \begin{align*} g_k(x) &=-\frac{F(u^k_1+t_k h_1,\ldots,u^k_n+t_k h_n)-F(u^k_1,\ldots,u^k_n)}{t_k} +k_1(|h_1|+\ldots+|h_n|)\\ &\quad\times \Big(|u^k_1|+\ldots+|u^k_n|+|u^k_1+t_k h_1| +\ldots+|u^k_n+t_k h_n|+\frac{a_1}{k_1}\Big). \end{align*} Then the function $g_k$ is measurable and nonnegative (see \eqref{3.3}). From Fatou's Lemma, we have $$ I=\limsup_{k\to+\infty}\int^b_a[-g_k(x)]\,{\rm d}x \leq\int^b_a\limsup_{k\to+\infty}[-g_k(x)]\,{\rm d}x=H. $$ Let $L_k=B_k+g_k$, where $$ B_k(x)=\frac{F(u^k_1+t_k h_1,\ldots,u^k_n+t_k h_n)-F(u^k_1,\ldots,u^k_n)}{t_k}. $$ From the Lebesgue dominated convergence theorem, we obtain \begin{align*} &\limsup_{k\to+\infty}\int^b_a L_k(x)\,{\rm d}x\\ &=2k_1\int_{a}^b(|h_1(x)|+\ldots+|h_n(x)|)\Big(|u_1(x)|+\ldots +|u_n(x)|+\frac{a_1}{2k_1}\Big)\,{\rm d}x. \end{align*} Hence, we derive \begin{align*} I&=\limsup_{k\to+\infty}\frac{\Psi(u^k_1+t_k h_1,\ldots,u^k_n+t_k h_n) -\Psi(u^k_1,\ldots,u^k_n)}{t_k}-\lim_{k\to+\infty}\int^b_aL_k\,{\rm d}x\\ &=\Psi^\circ(u_1,\ldots,u_n;h_1,\ldots,h_n) -2k_1\int_{a}^b(|h_1(x)|+\ldots+|h_n(x)|)\\ &\quad\times \Big(|u_1(x)|+\ldots+|u_n(x)|+\frac{a_1}{2k_1}\Big)\,{\rm d}x. \end{align*} Now, we obtain the estimates $H\leq H_B-H_L$, where $H_B=\int^b_a\limsup_{k\to+\infty}B_k(x)\,{\rm d}x$ and $H_L=\int^b_a\liminf_{k\to+\infty}L_k(x)\,{\rm d}x$. Since $(u^k_1(x),\ldots,u^k_n(x))\to(u_1(x),\ldots,u_n(x))$ a.e. in $[a,b]$ and $t_k\to 0^+$, we derive $$ H_L=2k_1\int_{a}^b(|h_1(x)|+\ldots+|h_n(x)|) \Big(|u_1(x)|+\ldots+|u_n(x)|+\frac{a_1}{2k_1}\Big)\,{\rm d}x. $$ On the other hand, \begin{align*} H_B &=\int^b_a\limsup_{k\to+\infty}\frac{F(u^k_1+t_k h_1,\ldots,u^k_n +t_k h_n)-F(u^k_1,\ldots,u^k_n)}{t_k}\,{\rm d}x\\ &\leq\int^b_a\limsup_{(u^0_1,\ldots,u^0_n)\to(u_1,\ldots,u_n),\, t\to 0^+} \frac{F(u^0_1+t h_1,\ldots,u_n^0+t h_n)-F(u^0_1,\ldots,u^0_n)}{t}\,{\rm d}x\\ &=\int^b_a F^\circ (u_1,\ldots,u_n;h_1,\ldots,h_n)\,{\rm d}x, \end{align*} which implies \eqref{3.1}. At last, we prove that $\partial\Psi$ is compact. Let $\{u^k\}_{k\geq 1}$ be a sequence in $X$, where $u^k=(u_{1}^k,\ldots,u_{n}^k)$, such that $\|u^k\|\leq M$ and choose $\omega^k\in\partial\Psi(u^k)$, where $\omega^k=(\omega_{1}^k,\ldots,\omega_{n}^k)$, $k\geq 1$, $k\in\mathbb{N}$ and $M>0$. From (A1), for every $v=(v_1,\ldots,v_n)\in X$, we obtain \begin{align*} &\langle\omega^k,v\rangle\\ &\leq\int^b_a|\omega^k(x)||v(x)|\,{\rm d}x \leq\int^b_a k_1 \Big(|u_1^k|+\ldots+|u_n^k|+\frac{a_1}{k_1}\Big)(|v_1|+\ldots+|v_n|)\,{\rm d}x\\ &\leq k_1\Big[\Big(\int^b_a (|u_1^k|+\ldots+|u_n^k|)^2\,{\rm d}x\Big)^{1/2} +\frac{a_1}{k_1}(b-a)^{1/2}\Big]\\ &\quad\times \Big(\int^b_a (|v_1|+\ldots +|v_n|)^2\,{\rm d}x\Big)^{1/2}\\ &=k_1\Big[\Big(\int^b_a (|u_1^k|^2+\ldots+|u_n^k|^2+2|u_1^k||u_2^k|+\ldots +2|u_{n-1}^k||u_n^k|)\,{\rm d}x\Big)^{1/2} \\ &\quad +\frac{a_1}{k_1}(b-a)^{1/2}\Big] \Big(\int^b_a (|v_1|^2+\ldots+|h_n|^2+2|v_1||v_2|+\ldots +2|v_{n-1}||v_n|)\,{\rm d}x\Big)^{1/2}\\ &\leq k_1\Big[n\Big(\int^b_a(|u_1^k|^2+\ldots+|u_n^k|^2)\,{\rm d}x\Big)^{1/2} +\frac{a_1}{k_1}(b-a)^{1/2}\Big]\\ &\quad\times \Big(\int^b_a(|v_1|^2+\ldots+|v_n|^2)\,{\rm d}x\Big)^{1/2}\\ &\leq \Big(c^1\|u^k\|+\frac{a_1}{k_1}(b-a)^{1/2}\Big)\|v\|\\ &\leq \Big(c^1M+\frac{a_1}{k_1}(b-a)^{1/2}\Big)\|v\|, \end{align*} where $c^1$ is a positive constant. Hence $$ \|\omega^k\|_*\leq c^1M+\frac{a_1}{k_1}(b-a)^{1/2}=c^2\,. $$ This means that $\{\omega^k\}$ is bounded. Passing to a subsequence $\omega^k\rightharpoonup\omega\in X^*$, where $\omega=(\omega_1,\ldots,\omega_n)$. We need to prove that the convergence is strong. We proceed by contradiction. Suppose that there exists $\varepsilon>0$, such that for every $k\in\mathbb N$ $$ \|\omega^k-\omega\|_*>\varepsilon, $$ where $\omega^k=(\omega_{1}^k,\ldots,\omega_{n}^k)$. That is for all $k\in\mathbb N$, there exists a $v^k=(v_{1}^k,\ldots,v_{n}^k)\in B(0,1)\times\ldots\times B(0,1)$ such that \begin{equation}\label{3.4} \langle\omega^k-\omega,v^k\rangle>\varepsilon\,. \end{equation} Since $\{v^k\}_{k\geq 1}$ is bounded, passing to a subsequence, $v_n\rightharpoonup v=(v_{1}^0,\ldots,v_{n}^0)\in X$ and $\|v^k-v\|\to 0$, so for $k$ big enough, $$ |\langle\omega^k-\omega,v\rangle|<\frac{\varepsilon}{3},\quad |\langle\omega,v^k-v\rangle|<\frac{\varepsilon}{3},\quad \|v^k-v\|<\frac{\varepsilon}{3c^2}, $$ this implies \begin{align*} \langle\omega^k-\omega,v^k\rangle &=\langle\omega^k-\omega,v\rangle+\langle\omega^k,v^k-v\rangle -\langle\omega,v^k-v\rangle\\ &\leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+c^2\|v^k-v\|\\ &<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} =\varepsilon, \end{align*} which contradicts \eqref{3.4}. The proof is complete. \end{proof} Analogously, we deduce the properties of the function $J$. \begin{lemma} \label{lem3.3} If {\rm (A1)} and {\rm (A3)} are satisfied, then $J:X\to \mathbb{R}$ is a locally Lipschitz function with compact gradient and $$ J^\circ(u_1,\ldots,u_n;v_1,\ldots,v_n) \leq \int^b_aG^\circ (u_1,\ldots,u_n;v_1,\ldots,v_n)\,{\rm d}x $$ for all $(u_1,\ldots,u_n)$, $(v_1,\ldots,v_n)\in X$. \end{lemma} Now, we are in a position to establish the following proposition. \begin{lemma} \label{lem3.4} If {\rm (A1)--(A3)} are satisfied, then, for every $\lambda,\mu>0$, $\varphi:X\to\mathbb{R}\cup\{+\infty\}$ is a Motreanu-Panagiotopoulos function and the critical points $(u_1,\ldots,u_n)$ belong to $X$ of $\varphi$ is a weak solution of \eqref{1.20}. \end{lemma} \begin{proof} From Lemmas \ref{lem3.1}--\ref{lem3.3} the function $I=\Phi-\lambda\Psi-\mu J$ is locally Lipschitz; furthermore, $C$ is a closed convex subset of $X$ and $C\neq\emptyset$; thus $\varphi$ is a Motreanu-Panagiotopoulos function. Since $(u_1,\ldots,u_n)\in X$ is a critical point of $\varphi$, then $u\in C$ and for all $v=(v_1,\ldots,v_n)\in C$ we have \begin{align*} 0 &\leq I^\circ(u_1,\ldots,u_n;v_1,\ldots,v_n)\\ &=\int^b_a\sum^n_{i=1}(u'_iv'_i+u_iv_i)\,{\rm d}x+\lambda(-\Psi)^\circ (u_1,\ldots,u_n;v_1,\ldots,v_n)\\ &\quad+\mu(-J)^\circ (u_1,\ldots,u_n;v_1,\ldots,v_n)\\ &\leq \int^b_a\sum^n_{i=1}(u'_iv'_i+u_iv_i)\,{\rm d}x+\lambda\int^b_aF^\circ (u_1,\ldots,u_n;-v_1,\ldots,-v_n)\,{\rm d}x\\ &\quad +\mu\int^b_aG^\circ (u_1,\ldots,u_n;-v_1,\ldots,-v_n)\,{\rm d}x. \end{align*} From Proposition \ref{prop2.2} (ii), we have \begin{align*} 0&\leq \int^b_a\sum^n_{i=1}(u'_iv'_i+u_iv_i)\,{\rm d}x +\lambda\int^b_aF_{u_1}^\circ (u_1,\ldots,u_n;-v_1)\,{\rm d}x+\ldots\\ &\quad +\lambda\int^b_aF_{u_n}^\circ (u_1,\ldots,u_n;-v_n)\,{\rm d}x\\ &\quad +\mu\int^b_aG_{u_1}^\circ (u_1,\ldots,u_n;-v_1)\,{\rm d}x+\ldots +\mu\int^b_aG_{u_n}^\circ (u_1,\ldots,u_n;-v_n)\,{\rm d}x. \end{align*} Taking $v_1=\ldots=v_{i-1}=v_{i+1}=\ldots=v_n=0$ in the above inequality for $1\leq i\leq n$, then we lead to \eqref{1.2}, i.e., $(u_1,\ldots,u_n)$ is a weak solution of \eqref{1.1}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.1}] We apply Theorem \ref{thm2.1} to prove this theorem. For this purpose, it is easy to see that $X$ is a reflexive Banach space. We put $\Lambda=(0,\nu]$, where $0<\nu<\frac{1}{2nk_1}$. The functional $\Phi\in C^1 (X,\mathbb{R})$ is continuous and convex, hence weakly l.s.c. and obviously bounded on any bounded subset of $X$. Moreover, $\Phi'$ is of type $(S_+)$ (Lemma \ref{lem3.1}) and $\Psi$ is a locally Lipschitz function with compact gradient (Lemma \ref{lem3.2}). We only need to test conditions (i) and (ii) in Theorem \ref{thm2.1}. We first check condition (i). Let $v(x)=(v_1(x),\ldots,v_n(x))$ such that for $1\leq i\leq n$, \begin{equation}\label{3.5} v_i(x)=\begin{cases} \frac{e\gamma_i}{d}(x-a)^2 &\text{if } a\leq x\frac{de}{2}\sum^n_{i=1}\eta_i^2=r. \] Let $u_0=(0,\ldots,0)$, $u_1=(v_1,\ldots,v_n)$. From (A4), we have $\Psi(u_0)=0$, and $\Phi(u_0)=0$. From \cite{a1}, we obtain $$ \max_{x\in[a,b]}|u_i(x)|\leq \Big(\frac{2}{b-a}\Big)^{1/2}\|u_i\| $$ for all $u_i\in W^{1,2}([a,b]),~1\leq i\leq n$. Hence \begin{equation}\label{3.5a} \sup_{x\in[a,b]}\sum^n_{i=1}\frac{|u_i(x)|^2}{2} \leq \frac{2}{b-a}\sum^n_{i=1}\frac{\|u_i(x)\|^2}{2} \end{equation} for all $u=(u_1,\ldots,u_n)\in X$. From \eqref{3.5a}, for each $r>0$, \begin{equation}\label{3.5b} \begin{aligned} &\Phi^{-1}((-\infty,r))\\ &=\{u=(u_1,\ldots,u_n)\in X:\Phi(u)(b-a) \max_{(\zeta_1,\ldots,\zeta_n)\in A_1}F(\zeta_1,\ldots,\zeta_n). \end{equation} From (A4), (A5), \eqref{3.5}, \eqref{3.5b} and \eqref{3.6}, for all $u=(u_1,\ldots,u_n)\in X$, we have \begin{equation}\label{eqn:(3.7)} \begin{aligned} \sup_{u\in\Phi^{-1}((-\infty,r))}\Psi(u) &\leq\sup_{\sum^n_{i=1}|u_i(x)|^2 \leq\frac{4r}{b-a}}\int^b_a F(u_1(x),\ldots,u_n(x))\,{\rm d}x\\ &\leq \int^b_a\sup_{(\zeta_1,\ldots,\zeta_n)\in A_1}F(\zeta_1,\ldots,\zeta_n) \,{\rm d}x\\ &<\frac{\sum^n_{i=1}\eta_i^2}{c\sum^n_{i=1}\gamma^2_i}(b-a-(d+e)) F(de\gamma_1,\ldots,de\gamma_n)\\ &\leq \frac{r\int^{b-e}_{a+d}F(de\gamma_1,\ldots,de\gamma_n) \,{\rm d}x}{\Phi(v_1,\ldots,v_n)}\\ &\leq \frac{r\int^b_aF(v_1,\ldots,v_n)\,{\rm d}x}{\Phi(v_1,\ldots,v_n)} =\frac{r\Psi(v)}{\Phi(v)}. \end{aligned} \end{equation} Note that $0