\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 294, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/294\hfil Nonlinear Ritz approximation] {Nonlinear Ritz approximation for Fredholm functionals} \author[M. A. Abdul Hussain \hfil EJDE-2015/294\hfilneg] {Mudhir A. Abdul Hussain} \address{Mudhir A. Abdul Hussain Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq} \email{mud\_abd@yahoo.com} \thanks{Submitted December 24, 2014. Published November 30, 2015.} \subjclass[2010]{34K18, 34K10} \keywords{Bifurcation theory; Lyapunov-Schmidt local method; \hfill\break\indent nonlinear fourth-order differential equation} \begin{abstract} In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Many of the nonlinear problems that appear in Mathematics and Physics can be written in the operator equation form \begin{equation} f(u,\lambda)=b, \quad u\in O\subset X, \; b\in Y, \; \lambda\in \mathbb{R}^n, \label{e1.1} \end{equation} where $f$ is a smooth Fredholm map of index zero and $X$, $Y$ are Banach spaces and $O$ is open subset of $X$. For these problems, the method of reduction to finite dimensional equation, \begin{equation} \theta(\xi,\lambda)=\beta, \quad \xi\in M, \; \beta\in N, \label{e1.2} \end{equation} can be used, where $M$ and $N$ are smooth finite dimensional manifolds. A passage from \eqref{e1.1} into \eqref{e1.2} (variant local scheme of Lyapunov -Schmidt) with the conditions that equation \eqref{e1.2} has all the topological and analytical properties of \eqref{e1.1} (multiplicity, bifurcation diagram, etc) can be found in \cite{l1,s1,s2,v1}. Suppose that $f:\Omega \subset E\to F$ is a nonlinear Fredholm map of index zero. A smooth map $f:\Omega \subset E\to F$ has variational property, if there exists a functional $V:\Omega \subset E\to R$ such that $f=\operatorname{grad}_{H}V$ or equivalently, $$ \frac{\partial V}{\partial u}(u,\lambda)h =\langle f(u,\lambda),h\rangle_{H}, \quad \forall u\in \Omega, \; h\in E, $$ where $\langle \cdot,\cdot \rangle_{H}$ is the scalar product in Hilbert space $H$. In this case, the solutions of equation $f(u,\lambda)=0$ are the critical points of functional $V(u,\lambda)$. Suppose that $f:E \to F$ is a smooth Fredholm map of index zero, $E$, $F$ are Banach spaces and $$ \frac{\partial V}{\partial u}(u,\lambda)h =\langle f(u,\lambda),h\rangle_{H}, \quad h\in E. $$ where $V$ is a smooth functional on $E$. Also it is assumed that $E\subset F \subset H$, where $H $is a Hilbert space. By using a method of finite dimensional reduction (Local scheme of Lyapunov-Schmidt) the problem $$ V(u,\lambda) \to \operatorname{extr}\quad u\in E, \; \lambda \in \mathbb{R}^n $$ can be reduced into equivalent problem $$ W(\xi,\lambda) \to \operatorname{extr} \quad \xi\in \mathbb{R}^n $$ The function $W(\xi,\lambda)$ is called key function. If $N=\operatorname{span}{\{e_1,\dots ,e_{n}}\}$ is a subspace of $E$, where $ e_1,\dots , e_{n}$ is an orthonormal set in $H$, then the key function $W(\xi,\lambda)$ can be defined in the form of $$ W(\xi,\lambda)=\inf_{u:\langle u,e_i \rangle =\xi_i\, \forall i} V(u,\lambda), \quad \xi=(\xi_1,\dots ,\xi_{n}). $$ The function $W$ has all the topological and analytical properties of the functional $V$ (multiplicity, bifurcation diagram, etc.) \cite{s1}. The study of bifurcation solutions of functional $V$ is equivalent to the study of bifurcation solutions of key function. If $f$ has a variational property, then the equation $$ \theta(\xi,\lambda)=\operatorname{grad}W(\xi,\lambda)=0 $$ is called bifurcation equation. Now we formulate one of the most important theorem of bifurcation analysis \cite{d1}. \begin{theorem}[\cite{d1}] \label{thm1.1} If a mapping $\tilde{f}(\cdot,\xi):E\cap N^\bot\to F\cap N^\bot$ is proper and the condition $\langle \frac{\partial f}{\partial x}(x)h,h \rangle >0$ is satisfied for every $(x,h)$ in $E\times ((E\cap N^\bot) \setminus 0)$, then the marginal mapping $\varphi:\xi\to \sum_{i=1}^{n}\xi_ie_i+h(\xi)$, (where $h(\xi)$ is defined by equation $\tilde{f}(h,\xi)=0$), establishes a one-to-one correspondence between critical points of key function $W(\xi,\lambda)$ and critical points of the (given) functional $V(u,\lambda)$. Moreover, the local singularity rings of the corresponding functions at the points $\xi$ and $\varphi(\xi)$ are isomorphic to each other and, if two simple critical points correspond to each other, then their Morse indices are equal to each other. \end{theorem} \begin{definition}[\cite{d1}] \label{def1.1}\rm The set of all $\lambda$ for which the function $W(\xi,\lambda)$ has degenerate critical points is called Caustic and denoted by $\Sigma$. $$ \Sigma={\{\lambda \in R:\frac{\partial W}{\partial \xi}=0,\; \frac{\partial^{2} W}{\partial \xi^{2}}=0}\}. $$ \end{definition} It is well known that in the Lyapunov-Schmidt method, the space $E$ is decomposed into two orthogonal subspaces and then every element $u \in E$ can be written in the unique form as a sum of two elements such that the solution of the equation \eqref{e1.1} consists of the homogeneous solution and the particular solution. Sapronov and his group \cite{d1,z1} used the complement solution to find the function $W(\xi,\lambda)$ which denotes the linear Ritz approximation of the functional $V(u,\lambda)$. The study of boundary value problems by using Lyapunov-Schmidt reduction can be found in \cite{a1,a2,a3,a4,a5,d1}. Most of the authors that work this way have studied the linear Ritz approximation of Fredholm functional. A review for the finite dimensional reduction can be found in \cite{d1,s1,s2,s3,s4,z1}. In \cite{a5} the author introduced an example to find nonlinear approximation of bifurcation solutions of the fourth-order differential equation $$ \frac{d^4u}{dx^4} + \alpha \frac{d^2u}{dx^2} + \beta u +u^3 =0 $$ In \cite{a6} the author introduce a general method for finding nonlinear Ritz approximation of Fredholm functionals. To the best of our information the method is new. In this paper we find the nonlinear Ritz approximation of a functional $V(u,\lambda)$ which denotes the potential of the nonlinear operator $$ f(u,\lambda)=\frac{d^4u}{dx^4} + \lambda \frac{d^2u}{dx^2} + u+u^2+ u^3. $$ \section{Modified Lyapunov-Schmidt reduction} Consider the nonlinear Fredholm operator of index zero $f:E\to F$ defined by \begin{equation} f(u,\lambda)=0, \quad \lambda \in \mathbb{R}^n , \; u\in \Omega\subset E \label{e2.1} \end{equation} where $E$, $F$ are real Banach spaces and $\Omega$ is an open subset of $E$. Assume that the operator $f$ has a variational property, i.e, there exists a functional $V:\Omega \subset E\to R$ such that $f=\operatorname{grad}_{H}V$ where $\Omega$ is a bounded domain. The operator $f$ can be written as $$ f(u,\lambda)=Au+Nu=0, $$ where $A=\frac{\partial f}{\partial u}(u_0,\lambda)$ is a linear continuous Fredholm operator, $\frac{\partial f}{\partial u}(u_0,\lambda)$ the Frechet derivative of the operator $f$ at the point $u_0$ and $N$ the nonlinear operator. In this article we consider the operator $A$ as a differential operator. By using Lyapunov-Schmidt reduction, the decomposition is obtained below $$ E=M \oplus M^{\bot}, \quad F=\tilde{M} \oplus \tilde{M}^{\bot} $$ where $M=\ker A$ is the null space of the operator $A$, $\dim M=\dim \tilde{M}=n$ and $M^{\bot}$, $\tilde{M}^{\bot}$ are the orthogonal complements of the subspaces $M$ and $\tilde{M}$ respectively. If $e_1, e_2, \dots , e_{n}$ is an orthonormal set in $H$ such that $Ae_i=\alpha_i(\lambda) e_i$, $ \alpha_i(\lambda)$ is continuous function, $i=1,\dots ,n$, then every element $u\in E$ can be represented in the unique form of $$ u=w+v, \quad w=\sum_{i=1}^{n} \xi_i e_i\in M, \quad M\bot v\in M^{\bot}, \; \xi_i=\langle u, e_i \rangle, $$ where $\langle \cdot, \cdot \rangle$ is the inner product in Hilbert space $H$. There exist projections $p:E\to M$ and $I-p:E\to M^\bot $ such that $w=pu$ and $(I-p)u=v$. Similarly, there exist projections $Q:F\to \tilde{M}$ and $I-Q:F\to \tilde{M}^\bot $ such that \begin{equation} f(u,\lambda)=Qf(u,\lambda)+(I-Q)f(u,\lambda)\quad \label{e2.2} \end{equation} or $$ f(w+v,\lambda)=Qf(w+v,\lambda)+(I-Q)f(w+v,\lambda) $$ It follows that $$ Qf(w+v,\lambda)+(I-Q)f(w+v,\lambda)=0 $$ and hence the result becomes \begin{gather*} Qf(w+v,\lambda)=0,\\ (I-Q)f(w+v,\lambda)=0. \end{gather*} The implicit function theorem implies that $$ W(\xi,\delta)=V(\Phi(\xi,\delta),\delta), \quad \xi=(\xi_1, \xi_2,\dots ,\xi_{n})^\top $$ where $\deg W\geq 2$, then the linear Ritz approximation of the functional $V$ is a function $W$ defined by \begin{equation} W(\xi, \delta)=V\Big(\sum_{i=1}^n \xi_i e_i,\delta\Big)=W_0(\xi)+W_1(\xi,\delta) \label{e2.3} \end{equation} where $W_0(\xi)$ is a homogenous polynomial of order $n\geq 3$ such that $W_0(0)=0$ and $W_1(\xi,\delta)$ is a polynomial function of degree less than $n$. Let $q_1,q_2,\dots ,q_{m}$ be the coefficients of the quadratic terms of the function $W_1(\xi,\delta)$, then the function $W_1(\xi,\delta)$ can be written in the form of $$ W_1(\xi,\delta)=W_2(\xi,\delta)+\sum_{k=1}^m q_{k} \xi_{k}^2 $$ where $\deg W_2=d$, $2< d < n$. The nonlinear Ritz approximation of the functional $V$ is a function $W$ defined by $$ W(\xi,\delta)=V\Big(\sum_{i=1}^n \xi_i e_i+\Phi(\sum_{i=1}^n \xi_i e_i,\delta),\delta\Big) $$ where $\Phi(w,\delta)=v(x,\xi,\delta)$, $v\in N^\bot$. To determine the nonlinear Ritz approximation of the functional $V$, Taylor's expansion of the functions $\mu_{k}(\xi)$ and $v(x,\xi,\delta)$ is used by assuming the following: \begin{gather*} q_{k}=\hat{q}_{k}+\mu_{k}(\xi)=\hat{q}_{k}+\sum_{j=2}^r D_{k}^{(j)}(\xi), \quad k=1,\dots ,m, \\ v(x,\xi,\delta)=\sum_{j=2}^r B^{(j)}(\xi). \end{gather*} where $D_{k}^{(j)}(\xi)$ and $B^{(j)}(\xi)$ are homogenous polynomials of degree j with coefficients $\mu_{ki}$ and $v_{ji}(x,\delta)$ respectively, $\xi=(\xi_1,\xi_2,\dots ,\xi_{n})$. Since $$ Qf(u,\lambda)=\sum_{i=1}^n \langle f(u,\lambda), e_i \rangle e_i=0 $$ it follows that $$ \sum_{i=1}^n \langle Au+Nu, e_i \rangle e_i=0 $$ Hence $$ \sum_{i=1}^n q_i\xi_i e_i+\sum_{i=1}^n \langle Nu, e_i \rangle e_i=0, \ \ \ \ q_i=\alpha_i(\lambda) $$ or \begin{equation} \sum_{i=1}^n q_i\xi_i e_i+\sum_{i=1}^n \Big[ \int_{\Omega} N(w+v) e_i \Big] e_i=0. \label{e2.4} \end{equation} From \eqref{e2.2} it follows that $$ (I-Q)f(u,\lambda)=f(u,\lambda)-Qf(u,\lambda)\,. $$ From $A(w+v)+N(w+v)=0$ it follows that \begin{equation} Av+N(w+v)+\sum_{i=1}^n q_i\xi_i e_i=0 \label{e2.5} \end{equation} Substituting the values of $q_i$, $\mu_i(\xi)$ and $v(x,\xi,\delta)$ in \eqref{e2.4} and \eqref{e2.5} yields \begin{gather} \sum_{i=1}^n \Big[\hat{q}_i+\sum _{j=2}^r D_i^{(j)}(\xi) \Big] \xi_i e_i+\sum_{i=1}^n \Big[ \int_{\Omega} N \Big( \sum_{i=1}^n \xi_i e_i+\sum_{j=2}^r B^{(j)} (\xi) \Big) e_i \Big] e_i=0,\label{e2.6}\\ A\Big( \sum_{j=2}^r B^{(j)}(\xi) \Big) +N \Big(\sum_{i=1}^n \xi_i e_i+\sum_{j=2}^r B^{(j)} (\xi) \Big)+\sum_{i=1}^n \Big(\hat{q}_i+\sum _{j=2}^r D_i^{(j)}(\xi) \Big)\xi_i e_i=0. \label{e2.7} \end{gather} To determine the functions $v(x,\xi,\lambda)$ and $\mu_{k}(\xi)$ we equate the coefficients of $\hat{\xi}=\xi_1 \xi_2 \dots \xi_{n}$ in \eqref{e2.6} to find the value of $\mu_{ki}$ and after some calculations from \eqref{e2.7} it is obtained a linear ordinary differential equation in the variable $v_{ji}(x,\lambda)$. Solving the resulting equation one can find the value of $v_{ji}(x,\lambda)$. \section{Applications} In this section we introduced an example to study the bifurcation of periodic solutions of the nonlinear fourth-order differential equation \begin{equation} \frac{d^4u}{dx^4} + \lambda \frac{d^2u}{dx^2} + u+u^2+ u^3=0, \label{e3.1} \end{equation} by finding the nonlinear Ritz approximation of the energy functional $V(u,\lambda)$ given by $$ V(u,\lambda)=\int_0^{2\pi} \Big(\frac{(u'')^2}{2}-\lambda \frac{(u^{^{/}})^2}{2}+\frac{u^2}{2}+\frac{u^3}{3}+\frac{u^4}{4}\Big) dx. $$ To do this suppose that $f:E\to F$ is a nonlinear Fredholm operator of index zero defined by \begin{equation} f(u,\lambda)=\frac{d^4u}{dx^4} + \lambda \frac{d^2u}{dx^2} + u+u^2+ u^3 \label{e3.2} \end{equation} where $E=\Pi^{4}([0,2\pi],R)$ is the space of all periodic continuous functions that have derivative of order at most four, $F=\Pi_0([0,2\pi],R)$ is the space of all periodic continuous functions, $u=u(x)$ and $x\in[0,2\pi]$. Since the operator $f$ is variational, then there exists a functional $V$ such that $f$ is the gradient of $V$, $i.e.$ $$ f(u,\lambda)=\operatorname{grad}_{H}V(u,\lambda) $$ hence every solution of equation \eqref{e3.1} is a critical point of the functional $V$ \cite{d1}. Thus the study of the solutions of equation \eqref{e3.1} is equivalent to the study of an extreme problem $$ V(u,\lambda)\to \operatorname{extr}, \quad \ u\in E. $$ Analysis of bifurcation can be found by using the local method of Lyapunov-Schmidt, so by localizing the parameter $$ \lambda=\lambda_1+\mu(\xi),\quad \mu:\mathbb{R}\to\mathbb{R}\text{ is a continuous function} $$ the reduction leads to the function of one variable $$ W(\xi,\delta)=\inf_{\langle u, e \rangle =\xi} V(u,\delta). $$ It is well known that in the reduction of Lyapunov-Schmidt the function $W(\xi,\delta)$ is smooth. This function has all the topological and analytical properties of functional $V$ \cite{a6}. In particular, for small $\delta$ there is one-to-one corresponding between the critical points of functional $V$ and smooth function $W$, preserving the type of critical points (multiplicity, bifurcation diagram, index Morse, etc.) \cite{a6}. By using the scheme of Lyapunov-Schmidt, the linearized equation corresponding to the equation \eqref{e3.1} is given by $$ h'''+\lambda h''+ h=0, \quad h\in E $$ Let $N=\ker(A)=\operatorname{span}{\{e}\}$, $e=\sin(x)/\sqrt{\pi}$ and $A=f_{u}(0,\lambda)=\frac{d^{4}}{dx^{4}}+\lambda \frac{d^2}{dx^2}+1$, then every element $u\in E$ can be written in the form $$ u = w + v, \quad w=\xi e\in N, \quad \xi\in\mathbb{R}, \; v\in \hat{E}=N^{\perp}\cap E. $$ By the implicit function theorem, there exists a smooth map $\Phi:N\to \hat{E}$ such that $$ W(\xi,\delta)=V(\Phi(\xi,\delta),\delta), $$ and then the linear Ritz approximation of the functional $V$ is a function $W$ given by $$ W(\xi,\delta)=V(\xi e,\delta)=\xi^4+q \xi^2. $$ the nonlinear Ritz approximation of the functional $V$ is a function $W$ given by $$ W(\xi,\delta)=V(\xi e+\Phi(\xi,\delta),\delta), \quad v(x,\xi)=\Phi(\xi,\delta). $$ We will apply the method in section 2 to find the nonlinear Ritz approximation of the functional $V$. So from the Lyapunov-Schmidt method we note that the space $E$ can be decomposed in direct sum of two subspaces, $N$ and the orthogonal complement to $N$, $$ E = N \oplus \hat{E}, \quad \hat{E}=N^\bot \cap E = \{ v \in E:v \bot N\}. $$ Similarly, the space $F$ decomposed in direct sum of two subspaces, $N$ and orthogonal complement to $N$, $$ F = N \oplus \hat{F}, \quad \hat{F}=N^\bot \cap F = \{ v \in F:v \bot N\}. $$ There exist projections $p:E\to N$ and $I-p:E\to \hat{E}$ such that $pu=w$ and $(I-p)u=v$, ($I$ is the identity operator). Hence every vector $u\in E$ can be written in the form $$ u = w + v, \quad w\in N, \quad N\perp v\in\hat{E}. $$ Similarly, there exists projections $Q:F\to N$ and $I-Q:F\to \hat{F}$ such that \begin{equation} f(u,\lambda)=Qf(u,\lambda)+(I-Q)f(u,\lambda)\label{e3.3} \end{equation} Accordingly, \eqref{e3.2} can be written in the form \begin{gather*} Qf(w+v,\lambda)=0, \\ (I-Q)f(w+v,\lambda)=0. \end{gather*} To determine the nonlinear Ritz approximation of the functional $V$, the functions $v(x,\xi,\lambda)=O(\xi^{3})$ and $\mu(\xi)=O(\xi^{2})$ must be found in the form of power series in terms of $\xi$, as follows: \begin{equation} \begin{gathered} v(x,\xi)=v_0(x) \xi^3+v_1(x) \xi^4+v_2(x) \xi^5+\dots ,\\ \mu(\xi)=\mu_0 \xi^2+\mu_1 \xi^3+\mu_2 \xi^4+\dots, \end{gathered} \label{e3.4} \end{equation} and \eqref{e3.2} can be written in the form $$ f(u,\lambda)=Au+Tu=0, \quad Tu=u^2+u^{3}. $$ Since $$ Qf(u,\lambda)=\langle f(u,\lambda),\sin(x) \rangle \sin(x) =0, $$ we have $\langle Au+Tu ,\sin(x) \rangle \sin(x) =0$ and hence \begin{equation} -\pi \xi \mu(\xi)+\int_0^{2 \pi}(v+\xi \sin(x))^{2}\sin(x) \,dx +\int_0^{2 \pi} (v+\xi \sin(x))^3 \sin(x)\,dx=0. \label{e3.5} \end{equation} From \eqref{e3.3} and \eqref{e3.5} we have \begin{equation} v^{iv}+(\lambda_1+\mu(\xi))v''+v+(v+\xi \sin(x))^2+(v+\xi \sin(x))^3-\xi\mu(\xi) \sin(x)=0 \label{e3.6} \end{equation} As a consequence \begin{gather} \label{e3.7} \begin{aligned} &-\pi \xi \mu(\xi)+\int_0^{2 \pi} v^2 \sin(x) \,dx+2\xi\int_0^{2 \pi} v (\sin(x))^2 \,dx +\frac{3\pi}{4}\xi^3\\ &+3\xi^2 \int_0^{2 \pi} v (\sin(x))^3 \,dx +3\xi \int_0^{2 \pi} v^2 (\sin(x))^2 \,dx +\int_0^{2 \pi} v^3 \sin(x) \,dx=0, \end{aligned}\\ \begin{aligned} &v^{iv}+(\lambda_1+\mu(\xi))v''+v+v^2+2 v \xi \sin(x)+\xi^2 (\sin(x))^2\\ &+v^3+3 v^2 \xi \sin(x)+3 v \xi^2 (\sin(x))^2+\xi^3 (\sin(x))^3 -\xi \mu(\xi) \sin(x)=0. \end{aligned} \nonumber \end{gather} To determine the functions $v(x,\xi)$ and $\mu(\xi)$ first we substitute \eqref{e3.4} in \eqref{e3.7} and then we find the coefficients $\mu_0,\mu_1,\mu_2,v_0,v_1$ and $v_2$ by equating the terms of $\xi$ as follows: Equating the coefficients of $\xi^3$ we have the following two equations, \begin{equation} \begin{gathered} -\pi\mu_0+\frac{3\pi}{4}=0,\\ v_0^{(4)}+ \lambda_1 v_0''+ v_0+(\sin(x))^3- \mu_0 \sin(x)=0 \end{gathered} \label{e3.8} \end{equation} From the first equation in \eqref{e3.8} we have $\mu_0=3/4$. Substituting this value in the second equation of \eqref{e3.8}, we have the linear differential equation $$ v_0^{(4)}+ \lambda_1v_0''+v_0+ (\sin(x))^3-\frac{3}{4} \sin(x)=0, $$ and then we have \begin{equation} \label{e3.9} v_0^{(4)}+ \lambda_1 v_0''+ v_0-\frac{1}{4} \sin(3x)=0. \\ \end{equation} Then $$ v_0(x)= \frac{\sin(3x)}{256}. $$ Similarly, equating the coefficients of $\xi^4$ we have \begin{equation} \begin{gathered} -\pi\mu_1+2 \int _0^{2\pi} v_0(x) (\sin(x))^2 dx=0,\\ v_1^{(4)}+\lambda_1 v_1''+ v_1+2 v_0 \sin(x)-\mu_1=0. \end{gathered} \label{e3.10} \end{equation} From the first equation in \eqref{e3.10} we have $\mu_1=0$. Substituting this value in the second equation of \eqref{e3.10} we have \begin{equation} v_1^{(4)}+ \lambda_1 v_1''+ v_1+ \frac{\sin(x)\sin(3x)}{128}=0. \label{e3.11} \end{equation} Then $$ v_1(x)= \frac{-1}{256} \Big[\frac{\cos(2x)}{9}-\frac{\cos(4x)}{225}\Big]. $$ Equating the coefficients of $\xi^5$ we have \begin{equation} \begin{aligned} -\pi\mu_2+2 \int_0^{2\pi} v_1(x) (\sin(x))^2 dx +3 \int_0^{2\pi} v_0(x)(\sin(x))^3 dx=0, \\ v_2^{(4)}+ \lambda_1 v_2''+ v_2+ \mu_0 v_0''+ 2 v_1 \sin(x)+3 v_0 (\sin(x))^2-\mu_2 \sin(x)=0 \end{aligned} \label{e3.12} \end{equation} substituting the values of $v_0$ and $v_1$ in the first equation of \eqref{e3.12} and then solving this equation we find that $$ \mu_2=-\frac{23}{9216}. $$ Also, substituting the values of $\mu_0, v_0$ and $v_1$ and in the second equation of \eqref{e3.12} we have the linear differential equation \begin{equation} v_2^{(4)}+ \lambda_1 v_2''+ v_2+\frac{3}{1024}[7\sin(3x)+\sin(5x)] -\frac{6 \sin(3x)-\sin(x)}{11520}=0 \label{e3.13} \end{equation} Solving \eqref{e3.13} we have $$ v_2(x)=\Big[\frac{21}{65536}-\frac{1}{122880}\Big] \sin(3x) +\frac{1}{24}\Big[\frac{1}{8192}+\frac{1}{276480}\Big] \sin(5x). $$ Now substituting the values of $\mu_0,\mu_1,\mu_2,v_0,v_1$ and $v_2$ in \eqref{e3.4} we have the bifurcation equation \begin{equation} \label{e3.14} \begin{gathered} \begin{aligned} u(x,\xi)&=\frac{\xi \sin(x)}{\sqrt{\pi}}+\frac{\xi^3}{256\pi\sqrt{\pi}} \sin(3x)-\frac{\xi^4}{57600 \pi} \Big[25\cos(2x)-\cos(4x)\Big]\\ &\quad +\xi^5\Big(\Big[\frac{21}{65536\pi^2\sqrt{\pi}} -\frac{1}{122880\pi\sqrt{\pi}} \Big] \sin(3x)\\ &\quad +\frac{1}{24}\Big[\frac{1}{8192\pi^2\sqrt{\pi}} +\frac{1}{276480\pi\sqrt{\pi}}\Big] \sin(5x)\Big)+O(\xi^7) \end{aligned}\\ \lambda=\lambda_1+\frac{3}{4}\xi^2 -\frac{23}{9216}\xi^4 +O(\xi^6) \end{gathered} \end{equation} From the above result we deduced the following theorem. \begin{theorem} \label{thm3.1} The key function of the functional $V$ has the form \begin{equation} \begin{aligned} \hat{W}(\xi,\delta) &=U(\xi,\delta)+O(|\xi|^{20})+O(|\xi|^{20})O(|\delta|)\\ &=c_1\xi^{20}+c_2\xi^{18}+c_3\xi^{16}+c_4 \xi^{14}+c_5\xi^{12}+\alpha_1\xi^{10}+\alpha_2\xi^{8}\\ &\quad + \alpha_3\xi^{6}+c_6 \xi^{4}+\alpha_4\xi^{2} +O(|\xi|^{20})+O(|\xi|^{20})O(|\delta|), \end{aligned}\label{e3.15} \end{equation} where \begin{gather*} c_1=0.11742\times 10^{19}, \quad c_2=0.52310\times10^{21}, \quad c_3=0.47769\times10^{23},\\ c_4=0.23733\times10^{27},\quad c_5=-0.41660\times10^{29},\\ \alpha_1=-(0.63868\times 10^{31}+0.99142\times 10^{29}\lambda_1),\\ \alpha_2=-(0.11220\times 10^{32}\lambda_1+0.94599\times 10^{32}),\\ \alpha_3=0.31596\times 10^{35}-0.17154\times 10^{33}\lambda_1,\\\ c_6=-0.77749\times 10^{37},\quad \alpha_4=-(0.24658\times 10^{38}+0.12329\times 10^{38}\lambda_1) \end{gather*} \end{theorem} The prove of Theorem \ref{thm3.1} follows directly from the formula $$ \hat{W}(\xi,\delta)=V(\xi e+\Phi(\xi,\delta),\delta). $$ We note that $c_1,c_2,c_3,c_4,c_5,c_6$ are constants and $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ are parameters.The key function $\hat{W}(\xi,\delta)$ in Theorem \ref{thm3.1} is the required nonlinear Ritz approximation of the functional $V(\xi e+\Phi(\xi,\delta),\delta)$. The geometry of the bifurcation of critical points and the principal asymptotic of the branches of bifurcating points for the function $\hat{W}(\xi,\delta)$ are entirely determined by its principal part $U(\xi,\delta)$. The function has all the topological and analytical properties of functional $V$ , also the function have 19 critical points. The point $u(x)=\xi e+v(x,\xi)$ is a critical point of the functional $V(u,\lambda)$ if and only if the point $\xi$ is a critical point of the function $\hat{W}(\xi,\delta)$, (Theorem \ref{thm1.1}). This means that the existence of the solutions of equation \eqref{e3.2} depend on the existence of the critical points of the functional $V(u,\lambda)$ and then on the existence of the critical points of the function $\hat{W}(\xi,\delta)$. From this notation we can find a nonlinear approximation of the solutions of equation \eqref{e3.2} corresponding to each critical point of the function $\hat{W}(\xi,\delta)$. To avoid the singularities of the function $U(\xi,\delta)$ we must find the caustic, so from definition \ref{def1.1} the caustic of the function $U(\xi,\delta)$ is the set of all $\lambda_1$ satisfying the equation \begin{equation} \begin{aligned} &(\lambda_1+6.168595401)(\lambda_1+6.168557117)(\lambda_1+1.997966599)\\ &\times (\lambda_1-7.420188558)(\lambda_1-7.420220242) (\lambda_1^2+10.79759396 \lambda_1+39.30282312) \\ &\times (\lambda_1^2+10.79751137 \lambda_1+39.30229176) (\lambda_1^2+6.369291114 \lambda_1+42.39826243) \\ &\times (\lambda_1^2+6.369244386 \lambda_1+42.39775611) (\lambda_1^2+4.002037322 \lambda_1+4.004078787) \\ &\times (\lambda_1^2-0.1636805324 \lambda_1+46.42060955) (\lambda_1^2-0.1636921686 \lambda_1+46.42102879) \\ &\times (\lambda_1^2-7.233265906 \lambda_1+50.57130598) (\lambda_1^2-7.233315078 \lambda_1+50.57170600)\\ &\times (\lambda_1^2-12.74882579 \lambda_1+53.82009714) (\lambda_1^2-12.74888749 \lambda_1+53.82053975)\\ &=0. \end{aligned} \label{e3.16} \end{equation} The only real values satisfying the above equation are $$ \Sigma={\{-6.168595401,-6.168557117,-1.997966599,7.420188558,7.420220242}\}. $$ Hence the caustic dividing the real lines into following six sets \begin{gather*} (-\infty,-6.168595401),\; (-6.168595401,-6.168557117), \\ (-6.168557117,-1.997966599),\; (-1.997966599,7.420188558),\\ (7.420188558,7.420220242),\;(7.420220242,\infty) \end{gather*} every set has a fixed number of nondegenerate critical points. The spreading of real critical points of the function $U(\xi,\delta)$ is given below: If $\lambda_1\in (-\infty,-6.168595401)$, then we have five nondegenerate critical points (three minima and two maxima). If $\lambda_1\in (-6.168595401,-6.168557117)$, then we have five nondegenerate critical points (three minima and two maxima). If $\lambda_1\in (-6.168557117,-1.997966599)$, then we have five nondegenerate critical points (three minima and two maxima). If $\lambda_1\in (-1.997966599,7.420188558)$, then we have three nondegenerate critical points (two minima and one maximum). If $\lambda_1\in (7.420188558,7.420220242)$, then we have three nondegenerate critical points (two minima and one maximum). If $\lambda_1\in (7.420220242,\infty)$, then we have three nondegenerate critical points (two minima and one maximum). \smallskip To explain our results we have the following: We found that the linear Ritz approximation of the functional $V(u,\lambda)$ is the function $$ W(\xi,\delta)=\xi^{4}+q \xi^{2}; $$ the critical points of this function are degenerate when $q=0$, so for every $q\neq0$ we have three nondegenerate critical points of the function $W(\xi,\delta)$. Corresponding to each nondegenerate critical point we have a linear approximation solution of \eqref{e3.1} in the form of $w=\xi \sin(x)/\sqrt{\pi}$. These solutions have only the two geometric representations shown in Figure \ref{fig1}. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig1.png} \end{center} \caption{Graphs of the function $w=\xi \sin(x)/\sqrt{\pi}$.} \label{fig1} \end{figure} \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig2.png} \end{center} \caption{Graphs of the function \eqref{e3.14}.} \label{fig2} \end{figure} In theorem \ref{thm3.1} we proved that the nonlinear Ritz approximation of the functional $V(u,\lambda)$ is the function \eqref{e3.15}. All critical points of this function are degenerate when $\lambda_1$ is a solution of \eqref{e3.16}, so for every $\lambda_1\in R\backslash \Sigma$ we have only three or five nondegenerate critical points. Corresponding to each nondegenerate critical point we have nonlinear approximation solution of \eqref{e3.1} in the form of function \eqref{e3.14}. These solutions have the four geometric representations shown in Figure \ref{fig2}. \subsection*{Acknowledgments} I would like to thank the anonymous referee for the useful comments and suggestions. \begin{thebibliography}{00} \bibitem{a1} M. A. Abdul Hussain; \emph{Corner Singularities of Smooth Functions in the Analysis of Bifurcations Balance of the Elastic Beams and Periodic Waves}, Ph. D. thesis, Voronezh- Russia. 2005. \bibitem{a2} M. A. Abdul Hussain; \emph{Bifurcation Solutions of Boundary Value Problem}, Journal of Vestnik Voronezh, Voronezh State University, No. 1, 2007, 162-166, Russia. \bibitem{a3} M. A. Abdul Hussain; \emph{Existence of Bifurcation Solutions of Nonlinear Wave Equation of Elastic Beams}, Journal of Mathematical Models and Operator Equations, Vol. 5, Voronezh State University, 2008, 149-157, Russia. \bibitem{a4} M. A. Abdul Hussain; \emph{Bifurcation Solutions of Elastic Beams Equation with Small Perturbation}, Int. J. Math. Anal. (Ruse) 3 (18) (2009), 879-888. \bibitem{a5} M. A. Abdul Hussain; \emph{Two Modes Bifurcation Solutions of Elastic Beams Equation with Nonlinear Approximation}, Communications in Mathematics and Applications journal, Vol. 1, no. 2, 2010, 123-131. India. \bibitem{a6} M. A. Abdul Hussain; \emph{Two-Mode Bifurcation in Solution of a Perturbed Nonlinear Fourth Order Differential Equation}, Archivum Mathematicum (BRNO), Tomus 48 (2012), 27-37, Czech Republic. \bibitem{a7} M. A. Abdul Hussain; \emph{A Method for Finding Nonlinear Approximation of Bifurcation Solutions of Some Nonlinear Differential Equations}, Journal of Applied Mathematics and Bioinformatics, vol. 3, no. 3, 2013, UK. \bibitem{b1} B. S. Bardin, S. D. Furta; \emph{Local existence theory for periodic wave moving of an infinite beam on a nonlinearly elastic support, Actual Problems of Classical and Celestial Mechanics}, Elf, Moscow, 13 –22 (1998). \bibitem{d1} B. M. Darinskii, C. L. Tcarev, Yu. I. Sapronov; \emph{Bifurcations of Extremals of Fredholm Functionals}, Journal of Mathematical Sciences, Vol. 145, No. 6, 2007. \bibitem{l1} B. V. Loginov; \emph{Theory of Branching Nonlinear Equations in Theconditions of Invariance Group}, Tashkent: Fan, 1985. \bibitem{m1} M. J. Mohammed; \emph{Bifurcation Solutions of Nonlinear Wave Equation}, M. Sc. thesis, Basrah Univ., Iraq, 2007. \bibitem{s1} Yu. I. Sapronov; \emph{Regular Perturbation of Fredholm Maps and Theorem about odd Field}, Works Dept. of Math., Voronezh Univ., 1973. V. 10, 82-88. \bibitem{s2} Yu. I. Sapronov; \emph{Finite Dimensional Reduction in the Smooth Extremely Problems}, Uspehi math., Science, 1996, V. 51, No. 1., 101-132. \bibitem{s3} Yu. I. Sapronov, E. V. Chemerzina; \emph{Direct parameterization of caustics of Fredholm functionals}, Journal of Mathematical Sciences, Vol. 142, No. 3, 2007, 2189-2197. \bibitem{s4} Yu. I. Sapronov, B. M. Darinskii; \emph{Discriminant sets and Layerings of Bifurcating Solutions of Fredholm Equations}, Journal of Mathematical Sciences, Vol. 126, No. 4, 2005, 1297-1311. \bibitem{v1} M. M. Vainberg, V. A. Trenogin; \emph{Theory of Branching Solutions of Nonlinear Equations}, M. Science, 1969. \bibitem{z1} V. R. Zachepa, Yu. I. Sapronov; \emph{Local Analysis of Fredholm Equation}, Voronezh, 2002. \end{thebibliography} \end{document}