\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 297, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/297\hfil Singular critical elliptic problems] {Singular critical elliptic problems with fractional Laplacian} \author[X. Wang, J. Yang \hfil EJDE-2015/297\hfilneg] {Xueqiao Wang, Jianfu Yang} \address{Xueqiao Wang \newline Department of Mathematics, Jiangxi Normal University\\ Nanchang, Jiangxi 330022, China} \email{wangxueqiao1989@126.com} \address{Jianfu Yang \newline Department of Mathematics, Jiangxi Normal University\\ Nanchang, Jiangxi 330022, China} \email{jfyang\_2000@yahoo.com} \thanks{Submitted September 6, 2015. Published December 3, 2015.} \subjclass[2010]{35J20, 35J25, 35J61} \keywords{Fractional Laplacian; singular critical problem; \hfill\break\indent non-contractible domain} \begin{abstract} In this article, we consider the existence of solutions of the critical problem with a Hardy term for fractional Laplacian \begin{gather*} (-\Delta)^s u -\mu \frac u{|x|^{2s}}= u^{2^*_s-1} \quad \text{in }\Omega,\\ u>0 \quad \text{in }\Omega, \\ u=0 \quad \text{on }\partial \Omega, \end{gather*} where $\Omega\subset \mathbb{R}^N$ is a smooth bounded domain and $0\in\Omega$, $\mu$ is a positive parameter, $N>2s$ and $s\in(0,1)$, $2^*_{s} =\frac{2N}{N-2s}$ is the critical exponent. $(-\Delta)^s$ stands for the spectral fractional Laplacian. Assuming that $\Omega$ is non-contractible, we show that there exists $\mu_0>0$ such that $0<\mu<\mu_0$, there exists a solution. We also discuss a similar problem for the restricted fractional Laplacian. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} In this article, we consider the existence of solutions for the critical problem with a Hardy term and fractional Laplacian \begin{equation} \label{ePsm} \begin{gathered} (-\Delta)^s u -\mu \frac u{|x|^{2s}} = u^{2^*_s-1} \quad \text{in }\Omega,\\ u>0 \quad \text{in } \Omega, \\ u=0 \quad \text{on } \partial \Omega \end{gathered} \end{equation} in a smooth bounded domain $\Omega\subset \mathbb{R}^N$ and $0\in\Omega$, where $\mu$ is a positive parameter, $N>2s$ and $s\in(0,1)$, $2^*_{s} =\frac{2N}{N-2s}$ is the critical exponent. The operator $(-\Delta)^s$ is the spectral Laplacian defined in section 2. In the case $s=1$, such a problem has been extensively studied, see \cite{CM, FG, GY, J, RW, T} etc. It is known that problem \eqref{ePsm} with $s=1$ has no nontrivial solutions if $\mu\geq 0$ and $\Omega$ is star shaped \cite{AA}. However, the situation becomes different if the domain $\Omega$ has nontrivial topology. In \cite{KW}, a nontrivial solution was found for problem \eqref{ePsm} with $s=1$ and $\mu=0$, if $\Omega$ is an annulus. Then it was shown in \cite{BC} that there exists a nontrivial solution of \eqref{ePsm} with $s=1$ and $\mu=0$, if $\Omega$ has nontrivial topology. If $\mu>0$, there is a Hardy term in \eqref{ePsm} with $s=1$. In \cite{HS}, it proved that problem \eqref{ePsm} with $s=1$ admits a solution in a non-contractible domain. Since \eqref{ePsm} with $s=1$ is a critical problem, it involves the ground state solution of the problem in the whole space \begin{equation} \label{eP1m} \begin{gathered} -\Delta u -\mu \frac u{|x|^{2}}= u^{2^*-1} \quad \text{in }\mathbb{R}^N,\\ u>0 \quad \text{in } \mathbb{R}^N. \end{gathered} \end{equation} The ground state solutions of \eqref{eP1m} are found in \cite{Ta} for $\mu=0$ and in \cite{T} for $\mu\neq 0$. Recently, Secchi et al \cite{SSS} proved that Coron type problem admits a solution for problem \eqref{ePsm} with $\mu=0$ and the restricted fractional Laplacian; see section 2 for a definition. Similarly, the argument in \cite{SSS} relies on, among other things, the explicit form of the minimizer of the problem \begin{equation}\label{eq:1.1} \Lambda_s = \inf_{u\in \dot H^s(\mathbb{R}^{N}), u\not\equiv 0} \frac{\int_{\mathbb{R}^N}|(-\Delta)^{s/2} u(x)|^2\,dx} {\big(\int_{\mathbb{R}^N}|u(x)|^{2^*_s}\,dx\big)^{2/ 2^*_s}}, \end{equation} where the space $\dot H^s(\mathbb{R}^{N})$ is defined as the completion of $C^\infty_0(\mathbb{R}^{N})$ under the norm \begin{equation}\label{eq:1.2} \|u\|_{\dot H^s(\mathbb{R}^{N})}^2 = \int_{\mathbb{R}^N}|\xi|^{2s}|\hat u(\xi)|^2\,d\xi, \end{equation} here $\hat u$ denotes the Fourier transform of $u$. In $\mathbb{R}^N$, the operator $(-\Delta)^{s/2}$, $s\in \mathbb{R}$ is defined by the Fourier transform \begin{equation}\label{eq:1.3} (\widehat{(-\Delta)^{s/2}u})(\xi) = |\xi|^s\hat u(\xi) \end{equation} for $u\in C^\infty_0(\mathbb{R}^N)$. Therefore, for $s>0$, we have \begin{equation}\label{eq:1.4} \|(-\Delta)^{s/2}u\|_{L^2(\mathbb{R}^N)}^2 = \int_{\mathbb{R}^N}|\xi|^{2s}|\hat u(\xi)|^2\,d\xi. \end{equation} For $N>2s$, the minimizing problem $\Lambda_s$ in \eqref{eq:1.1} is related to the fractional Sobolev embedding $\dot H^s(\mathbb{R}^{N})\hookrightarrow L^{\frac{2N}{N-2s}}(\mathbb{R}^{N})$. The continuity of this inclusion corresponds to the inequality \begin{equation}\label{eq:1.5} \|u\|^{2}_{L^{2^*_s}(\mathbb{R}^{N})} \leq \Lambda_s^{-1}\|u\|^2_{\dot H^s(\mathbb{R}^{N})}. \end{equation} The best constant $\Lambda_s$ in \eqref{eq:1.5} was computed in \cite{CT}. A minimizer $u$ of $\Lambda_s$ weakly solves the problem \begin{equation}\label{eq:1.6} (-\Delta)^s u = |u|^{2^*_{s,\alpha}-2} u\quad\text{in } \mathbb{R}^N \end{equation} up to a multiplying constant. Using the moving plane method for integral equations, Chen et al \cite{CLO} classified the solutions of an integral equation, which is related to problem \eqref{eq:1.6}. Positive regular solutions of \eqref{eq:1.6}, and then the minimizers of $\Lambda_s$ are precisely given by \begin{equation}\label{eq:1.9} U_\varepsilon(x) = \Big(\frac {\varepsilon}{\varepsilon^2 +|x-x_0|^2} \Big)^{\frac{N-2s}2} \end{equation} for $\varepsilon>0$ and $x_0\in \mathbb{R}^N$. In this paper, we consider the existence of solutions of problem \eqref{ePsm} with $0<\mu<\mu_H$ and $s\in (0,1)$ in a non-contractible domain $\Omega$, where $\mu_H$ is the best constant in the Hardy inequality. Problem \eqref{ePsm} is related to the variational problem \begin{equation}\label{eq:1.10} \Lambda_{s,\mu} = \inf_{u\in \dot H^s(\mathbb{R}^{N}), u\not\equiv 0} \frac{\|(-\Delta)^{s/2}u\|_{L^2(\mathbb{R}^N)}^2 - \mu \int_{\mathbb{R}^{N}}\frac{|u(x)|^2}{|x|^{2s}}\,dx} {\big(\int_{\mathbb{R}^N}|u(x)|^{2^*_s}\,dx\big)^{\frac 2{2^*_s}}}. \end{equation} Although minimizers of $\Lambda_{1,\mu}$ were found explicitly in \cite{T} for $s =1$, it is not the case for $s\in(0,1)$. So in our argument, we need to avoid using it. Our main result for the spectral Laplacian is as follows. \begin{theorem}\label{thm:1.1} Suppose $\Omega$ is not contractible. Then, there exists $0<\mu_0<\mu_H$ such that for each $\mu\in(0,\mu_0)$, there exists a solution of $(P_{s,\mu})$. \end{theorem} For the restricted fractional Laplacian $(-\Delta_{|\Omega})^s$, we consider the problem \begin{equation} \label{ePsmR} \begin{gathered} (-\Delta_{|\Omega})^s u -\mu \frac u{|x|^{2s}} = u^{2^*_s-1} \quad \text{in }\Omega,\\ u>0\quad \text{in } \Omega, \\ u=0 \quad \text{on } \mathbb{R}^N\setminus \Omega. \end{gathered} \end{equation} Similarly, we have the following result. \begin{theorem}\label{thm:1.2} Suppose $\Omega$ is not contractible. Then, there exists $0<\mu_0<\mu_H$ such that for each $\mu\in(0,\mu_0)$, there exists a solution of \eqref{ePsmR}. \end{theorem} The article is organized as follows. After some preparations in section 2, we prove Theorems \ref{thm:1.1} and \ref{thm:1.2} in section 3. \section {Sobolev-Hardy inequality} In this section, we develop some properties of minimizers of $\Lambda_{s,\mu}$, and give the definition of fractional operator $(-\Delta)^s$. First, we define for each $s\geq 0$, the fractional Sobolev space \[ H^s(\mathbb{R}^N) = \{u\in L^2(\mathbb{R}^N): |\xi|^s\hat u(\xi)\in L^2(\mathbb{R}^N)\} \] via the Fourier transform \[ \hat u(\xi) = \frac 1{(2\pi)^{N/2}}\int_{\mathbb{R}^N}e^{-ix\cdot\xi}u(x)\,dx . \] For $s\in(0,1)$, it is known from \cite{NPV} that there holds \begin{equation}\label{eq:2.1} \int_{\mathbb{R}^N}|\xi|^{2s}|\hat u(\xi)|^2\,d\xi = C_{s,N}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}}\,dx\,dy, \end{equation} where $C_{s,N}$ is a positive constant. This provides an alternative norm \[ \|u\|_{\dot{H}^s(\mathbb{R}^{N})} = \Big(\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}} \frac{|u(x) - u(y)|^2}{|x-y|^{N+2s}}\,dx\,dy\Big)^{1/2} \] on $\dot H^s(\mathbb{R}^N)$. If $N>2s$, the optimal constant $\mu_{s,N}$ was found in \cite{Y} for the fractional Hardy inequality \begin{equation}\label{eq:2.2} \mu_H\int_{\mathbb{R}^{N}}\frac{|u(x)|^2}{|x|^{2s}}\,dx \leq \int_{\mathbb{R}^{N}}|\xi|^{2s}|\hat u(\xi)|^2\,d\xi, \end{equation} where $u\in C_0^\infty(\mathbb{R}^N)$. By a denseness argument, we have \begin{equation}\label{eq:2.3} \mu_H\int_{\mathbb{R}^{N}}\frac{|u(x)|^2}{|x|^{2s}}\,dx \leq \int_{\mathbb{R}^{N}}|(-\Delta)^{s/2} u(x)|^2\,dx \end{equation} for $u\in \dot H^s(\mathbb{R}^N)$, where $\mu_H = 4^s\frac {\Gamma^2(\frac{N+2s}4)}{\Gamma^2(\frac{N-2s}4)}$. If $0<\mu< \mu_H$, we may verify that \[ |u|_{\dot{H}^s(\mathbb{R}^{N})} := \Big(\|(-\Delta)^{s/2}u\|_{L^2(\mathbb{R}^N)}^2 - \mu \int_{\mathbb{R}^{N}}\frac{|u(x)|^2}{|x|^{2s}}\,dx\Big)^{1/2} \] defines an equivalent norm on $\dot H^s(\mathbb{R}^N)$. Therefore, there exists $C>0$ such that for any $u\in \dot H^s(\mathbb{R}^{N})$, \begin{equation}\label{eq:2.4} \Big(\int_{\mathbb{R}^N}|u(x)|^{2^*_s}\,dx\Big)^{\frac 2{2^*_s}} \leq C \Big[\int_{\mathbb{R}^N}|(-\Delta)^{s/2} u(x)|^2\,dx - \mu \int_{\mathbb{R}^{N}}\frac{|u(x)|^2}{|x|^{2s}}\,dx\Big], \end{equation} where $2^*_s =\frac{2N}{N-2s}$. Define \begin{equation}\label{eq:2.5} \Lambda_{s,\mu} = \inf_{u\in \dot H^s(\mathbb{R}^{N}), u \not\equiv 0}\frac{|u|^2_{\dot{H}^s(\mathbb{R}^{N})}} {\big(\int_{\mathbb{R}^N}|u(x)|^{2^*_s}\,dx\big)^{\frac 2{2^*_s}}}. \end{equation} It is proved in \cite{GS} that $\Lambda_{s,\mu}>0$ is achieved if $\mu\geq 0$. We remark that any minimizer of $\Lambda_{s,\mu}$ does not change sign, and is radially symmetric. Indeed, let $u$ be a minimizer. By formula (A.11) in \cite{SV}, \[ \int_{\mathbb{R}^N}|(-\Delta)^{s/2}|u||^2\,dx \leq \int_{\mathbb{R}^N}|(-\Delta)^{s/2}u|^2\,dx. \] Hence, $|u|$ is also a minimizer, and we have $u>0$. Denote by $u^*$ the symmetric-decreasing rearrangement of $u$. By strict rearrangement inequalities in \cite{FS}, $u^*$ is also a minimizer of $\Lambda_{s,\mu}$. Therefore, by strict rearrangement inequalities again, $u(x) = u^*(x-A)$ for some $A\in \mathbb{R}^N$. Moreover, any minimizer $u$ of $\Lambda_{s,\mu}$ weakly solves \eqref{ePsm} with $\Omega = \mathbb{R}^N$ up to multiplying a constant. In the case $\Omega = \mathbb{R}^N$, since both $u(x)$ and $u^*(x)$ solve equation \eqref{ePsm} , and \eqref{ePsm} is not translation invariant, we obtain that $A = 0$, that is $u = u^*$. Next, we define fractional Laplacians in a bounded domain. There are two types of fractional Laplacians in bounded domainds, one is the spectral fractional Laplacian, another one is the restricted fractional Laplacian. In a bounded domain $\Omega\subset \mathbb{R}^N$, we define the spectral fractional Laplacian $(-\Delta)^s$ as follows. Let $\{\lambda_k,\varphi_k\}^\infty_{k=1}$ be the eigenvalues and corresponding eigenfunctions of the Laplacian operator $-\Delta$ in $\Omega$ with zero Dirichlet boundary values on $\partial\Omega$ normalized by $\|\varphi_k\|_{L^2(\Omega)} = 1$, i.e. \[ -\Delta \varphi_k = \lambda_k \varphi_k\quad\text{in } \Omega;\quad \varphi_k = 0\quad{\rm on}\ \partial\Omega. \] For any $u\in L^2(\Omega)$, we may write $$u = \sum_{k=1}^\infty u_k\varphi_k, \quad{\rm where}\quad u_k = \int_\Omega u\varphi_k\,dx.$$ We define the space \begin{equation}\label{eq:2.6} H=\{u=\sum_{k=1}^\infty u_k\varphi_k\in L^2(\Omega): \sum_{k=1}^\infty \lambda_k^{2s}u_k^2<\infty\}, \end{equation} which is equipped with the norm \[ \|u\|_{H} =\Big(\sum_{k=1}^\infty \lambda_k^{2s}u_k^2\Big)^{1/2}. \] For any $u\in H$, the spectral fractional Laplacian $(-\Delta)^s$, is defined by \begin{equation}\label{eq:2.6a} (-\Delta)^su = \sum_{k=1}^\infty \lambda_k^su_k\varphi_k. \end{equation} The space $H$ defined in \eqref{eq:2.6} is the interpolation space $(H^2_0(\Omega), L^2(\Omega))_{s,2}$, see \cite{A,LM,Tar}. It was shown in \cite{LM} that $(H^2_0(\Omega), L^2(\Omega))_{s,2} = H^s_0(\Omega)$ if $00. \] Then up to subsequence, there exist $\{x_n\}\subset\mathbb{R}^N$, $\lambda_n\in(0,\infty)$ such that \[ v_n\rightharpoonup v\not\equiv 0\quad \text{in } \dot H^s(\mathbb{R}^N), \] where $v_n(x): = \lambda_n^{\frac{N-2s}2}u_n(x_n+ \lambda_n x)$. \end{lemma} Using Lemma \ref{lem:3.1}, we have a description of $(PS)_c$ sequences. By a $(PS)_c$ sequences for $I_\mu$ we mean a sequence $\{u_n\}\subset H^s_0(\Omega)$ such that $I_\mu(u_n) \to c$ and $I'_\mu(u_n) \to 0$. \begin{proposition}\label{prop:3.1} Let $\mu\in (0,\mu_H)$ and $\{u_n\}\subset\mathcal{N}_{\mu,\Omega} $ be a sequence such that for $00. \end{equation} Therefore, we have \[ u_n \rightharpoonup u\quad\text{in } H^s_0(\Omega), \quad u_n\to u \quad\text{in } L^{2^*_s-1}(\Omega), \quad u_n\to u \quad\text{a.e. } \Omega. \] By the assumption that problem \eqref{ePsm} does not have nontrivial solution, we have $u=0$. Extend $u_n$ to be zero outside $\Omega$, then the extension of $u_n$ belongs to $H^s(\mathbb{R}^N)$, see \cite[Theorem 7.40]{A}. By \eqref{eq:3.2} and Lemma \ref{lem:3.1}, there exist $\{x_n\}\subset\mathbb{R}^N$, $\lambda_n\in(0,\infty)$ such that \[ v_n\rightharpoonup v\not\equiv 0\quad \text{in } \dot H^s(\mathbb{R}^N), \] where $v_n(x): = \lambda_n^{\frac{N-2s}2}u_n(x_n+ \lambda_n x)$, and $u_n$ has been extended to $\mathbb{R}^N$ by setting $u_n = 0$ outside $\Omega$. We also have $v_n\in H^s_0(\Omega_n)$, where $\Omega_n=\{x\in \mathbb{R}^N: x_n+\lambda_n x\in \Omega\}$. Moreover, $v_n$ satisfies \begin{equation}\label{eq:3.3} (-\Delta)^s v_n -\mu\frac {\lambda_n^{2s} v_n}{|x_n + \lambda_n x|^{2s}} - v_n^{2_s^*-1}\to 0 \end{equation} and \begin{equation}\label{eq:3.4} \begin{split} &\frac 12\int_{\Omega_n}\big( |(-\Delta)^{s/2}v_n|^2 -\mu\frac{\lambda_n^{2s}v_n^2}{|x_n + \lambda_n x|^{2s}}\big)\,dx -\frac 1{2_s^*}\int_{\Omega_n} |v_n|^{2_s^*}\,dx\\ &= \frac 12\int_\Omega\big( |(-\Delta)^{s/2}u_n|^2 -\mu\frac{u_n^2}{|x|^{2s}}\big)\,dx -\frac 1{2_s^*}\int_\Omega |u_n|^{2_s^*}\,dx\to c\\ \end{split} \end{equation} as $n\to\infty$. We may assume that $\lambda_n\to\lambda_0\geq 0$. If $\lambda_0>0$, since $u_n\rightharpoonup 0$ in $\dot H^s(\mathbb{R}^N)$, we have $v_n\rightharpoonup 0$ in $\dot H^s(\mathbb{R}^N)$, which is a contradiction. We may assume, up to a sequence, $\frac{x_n}{\lambda_n}\to x_0\in \mathbb{R}^N$ or $|\frac{x_n}{\lambda_n}|\to\infty$ as $n\to\infty$. If $|\frac{x_n}{\lambda_n}|\to\infty$ as $n\to\infty$, by \eqref{eq:3.2}, we see that the limit function $v$ satisfies \begin{equation}\label{eq:3.5} (-\Delta)^s v = v^{2_s^*-1} \quad \text{in } \mathbb{R}^N. \end{equation} Thus, equations \eqref{eq:3.3} and \eqref{eq:3.4} imply \[ \begin{split} c_0 & > c = \lim_{n\to\infty}\Big\{\frac 12\int_{\Omega_n}\big( |(-\Delta)^{s/2}v_n|^2 -\mu\frac{\lambda_n^{2s}v_n^2}{|x_n + \lambda_n x|^{2s}}\big)\,dx -\frac 1{2_s^*}\int_{\Omega_n} |v_n|^{2_s^*}\,dx\Big\}\\ &= \frac sN\lim_{n\to\infty}\int_{\Omega_n}\big( |(-\Delta)^{s/2}v_n|^2 -\mu\frac{\lambda_n^{2s}v_n^2}{|x_n + \lambda_n x|^{2s}}\big)\,dx\\ &\geq\frac sN\int_{\Omega_n} |(-\Delta)^{s/2}v|^2\,dx\geq c_0,\\ \end{split} \] which is impossible. So we have $\frac{x_n}{\lambda_n}\to x_0 \in \mathbb{R}^N$, which yields $\lim_{n\to\infty}|x_n| = 0$. It follows that $v$ satisfies \[ (-\Delta)^s v -\mu\frac {v}{|x_0 + x|^{2s}} = v^{2_s^*-1} \quad \text{in } \mathbb{R}^N. \] By the translation, we may assume $x_0 = 0$. Indeed, let $\tilde v_n(x) = v_n(x-\frac {x_n}{\lambda_n})$. Then $\tilde v_n\rightharpoonup \tilde v$ in $\dot H^s(\mathbb{R}^N)$. By \eqref{eq:3.3}, $\tilde v_n$ satisfies \begin{equation}\label{eq:3.5a} (-\Delta)^s\tilde v_n -\mu\frac {\tilde v_n}{|x|^{2s}} - \tilde v_n^{2_s^*-1}\to 0 \end{equation} as $n\to\infty$ and $\tilde v$ satisfies \[ (-\Delta)^s\tilde v -\mu\frac {\tilde v}{|x|^{2s}} = \tilde v^{2_s^*-1} \quad \text{in } \mathbb{R}^N. \] Now, we prove that $$ \lim_{n\to 0}\int_{\mathbb{R}^N}|(-\Delta)^{s/2}(\tilde v_n - \tilde v)|^2\,dx = 0. $$ Suppose on the contrary that \[ \lim_{n\to \infty}\int_{\mathbb{R}^N}|(-\Delta)^{s/2}(\tilde v_n - \tilde v)|^2\,dx > 0. \] Noting \begin{align*} &\lim_{n\to \infty}\int_{\mathbb{R}^N}|(-\Delta)^{s/2}(\tilde v_n - \tilde v)|^2\,dx + \int_{\mathbb{R}^N}|(-\Delta)^{s/2} \tilde v)|^2\,dx\\ &= \lim_{n\to \infty}\int_{\mathbb{R}^N}|(-\Delta)^{s/2}\tilde v_n|^2\,dx,\\ \end{align*} and by the Br\'{e}zis-Lieb lemma \cite{BL}, \begin{gather*} \lim_{n\to\infty}\|\tilde v_n-\tilde v\|^{2^*_s} + \|\tilde v\|^{2^*_s} = \lim_{n\to\infty}\|\tilde v_n\|^{2^*_s}, \\ \lim_{n\to \infty}\int_{\mathbb{R}^N}\frac{|\tilde v_n - \tilde v|^2}{|x|^{2s}}\,dx + \int_{\mathbb{R}^N}\frac{|\tilde v|^2}{|x|^{2s}}\,dx = \lim_{n\to \infty}\int_{\mathbb{R}^N}\frac{|\tilde v_n|^2}{|x|^{2s}}\,dx, \end{gather*} we find from \eqref{eq:3.5a} that \begin{equation}\label{eq:3.5b} \lim_{n\to \infty}\int_{\mathbb{R}^N}\big(|(-\Delta)^{s/2} (\tilde v_n - \tilde v)|^2 -\mu\frac{|\tilde v_n - \tilde v|^2}{|x|^{2s}} - |\tilde v_n-\tilde v|^{2^*_s} \big)\,dx = 0. \end{equation} That is, $\tilde v_n-\tilde v$ is close to the manifold $\mathcal{N}_{\mu,\mathbb{R}^N}$. Let $t_n$ be such that $t_n(\tilde v_n -\tilde v)\in \mathcal{N}_{\mu,\mathbb{R}^N}$. By \eqref{eq:3.5b}, we can show that $t_n\to 1$ as $n\to\infty$. Hence, $J_\mu(\tilde v_n-\tilde v) - J_\mu(t_n(\tilde v_n-\tilde v))\to 0$ as $n\to\infty$. But $J_\mu(t_n(\tilde v_n-\tilde v))\geq c_\mu$, it yields \[ \liminf_{n\to\infty}J_\mu(\tilde v_n-\tilde v)\geq c_\mu, \] and then \[ \liminf_{n\to\infty}J_\mu(\tilde v_n) \geq \liminf_{n\to\infty}J_\mu(\tilde v_n-\tilde v) + J_\mu(\tilde v)\geq 2c_\mu. \] This is a contradiction. Consequently, $\tilde v_n\to \tilde v $ strongly in $\dot H^s(\mathbb{R}^N)$ and $J_\mu(\tilde v) = c_\mu$. The proof is complete. \end{proof} In the case $\mu = 0$, we have the following result, its proof is similar to that of Proposition \ref{prop:3.1}. \begin{proposition}\label{prop:3.2} Let$\{u_n\}\subset\mathcal{N}_{0,\Omega} $ be a sequence such that \begin{equation}\label{eq:3.6} \lim_{n\to\infty}I(u_n) \leq c_0,\quad \lim_{n\to\infty} I'(u_n) = 0. \end{equation} Then, there exist $\{\lambda_n\}\subset \mathbb{R}^N_+\}$ and $\{x_n\}\subset\mathbb{R}^N$ such that \[ \lim_{n\to\infty}\lambda_n = 0,\quad \lim_{n\to\infty}x_n = 0,\quad \lim_{n\to\infty}\|u_n - u^0_{\lambda_n,x_n}\|_{\dot H^s} = 0, \] where $u^0$ is a minimizer of $c_0$. \end{proposition} For each set $A\subset \mathbb{R}^N$ and each point $x\in \mathbb{R}^N$, $d(x,A)$ denotes the distance between $x$ and $A$. For each $d>0$, we denote $\Omega_d = \{x\in \mathbb{R}^N: d(x,\Omega)< d\}$ and $\Omega_d^i = \{x\in \Omega: d(x,\partial\Omega)> d\}$. For subsets $A, B\subset\mathbb{R}^N$, $A\cong B$ stands for that $A$ and $B$ are homotopy equivalent. Now, we choose $d>0$ so that $\Omega_d\cong \Omega$. Let \[ \beta(u) = \frac {\int_\Omega x|(-\Delta)^{s/2} u|^2\,dx} {\int_\Omega |(-\Delta)^{s/2} u|^2\,dx}\quad \text{for } u\in H^s_0(\Omega)\setminus\{0\}. \] \begin{lemma}\label{lem:3.2} There exists $\mu_0\in (0, \mu_H)$ such that for each $\mu\in(0,\mu_0)$ and $u\in \mathcal{N}_{\mu,\Omega}$ with $I(u)< c_0$, $\beta(u)\in \Omega_d$. \end{lemma} \begin{proof} Suppose on the contrary that there exist $\mu_n\in \mathbb{R}_+$ and $u_n\in \mathcal{N}_{\mu,\Omega}$ such that $\lim_{n\to\infty}\mu_n = 0$, $I_{\mu_n}(u_n)< c_0$ and $\beta(u_n)\not\in\Omega_d$ for all $n\geq 1$. We may assume that $\beta(u_n)\to x_0\in\mathbb{R}^N\setminus\Omega_d$. Since $\mu_n\to 0$, by the Hardy inequality, \[ \mu_n\int_\Omega \frac{u_n^2}{|x|^{2s}}\,dx \to 0 \] as $n\to \infty$. Hence, \begin{gather*} \lim_{n\to\infty}\int_\Omega|(-\Delta)^{s/2}u_n|^2\,dx = \lim_{n\to\infty}\int_\Omega|u_n|^{2^*_s}\,dx, \\ \lim_{n\to\infty} I_{\mu_n}(u_n) \leq c_0. \end{gather*} By Proposition \ref{prop:3.2}, there exist sequences $\{\lambda_n\}$ and $\{x_n\}\subset \mathbb{R}^N$ such that \[ \lim_{n\to\infty}\lambda_n = 0\quad\text{and}\quad \lim_{n\to\infty}\|u_n - u^0_{\lambda_n,x_n}\|_{\dot H^s} = 0. \] By the assumption, we have $\lim_{n\to\infty} x_n = x_0$. However, $x_0\not\in\Omega_d$, we have that $\lim_{n\to\infty}\|u_n - u^0_{\lambda_n,x_n}\|_{\dot H^s} \neq 0$. This is a contradiction. The assertion follows. \end{proof} Now, we choose $d_1>0$ such that $\Omega\cong \Omega_{d_1}^i$. Let \[ \lambda =\inf\{\frac \mu{|x|^{2s}}: x\in \Omega_d\}. \] Let $\xi\in C^\infty(\mathbb{R}_+)$ be such that $\xi(t) = 1$ for $t\in[0,\frac {d_1}2]$ and $\xi(t) = 0$ for $t\in [d_1, \infty)$. For each $(\varepsilon, z)\in \mathbb{R}_+\times\mathbb{R}^N$, we define \[ w_{\varepsilon,z}(x) = \tau_{\varepsilon,z}\xi(x-z)U_\varepsilon(x-z) \] for $x\in \mathbb{R}^N$, where $U_\varepsilon$ is given in \eqref{eq:1.9} and $\tau_{\varepsilon,z}$ is a positive constant such that $w_{\varepsilon,z}$ satisfying \[ \int_\Omega\big( |(-\Delta)^{s/2}w_{\varepsilon,z}|^2 -\lambda w_{\varepsilon,z}^2\big)\,dx = \int_\Omega |w_{\varepsilon,z}|^{2_s^*}\,dx. \] It is proved in \cite{BCP} that if $0\in\Omega$, \begin{gather*} \|\xi U_\varepsilon\|^2_{H^s_0(\Omega)} = \|U_\varepsilon\|^2_{H^s_0(\Omega)} + O(\varepsilon^{N-2s}); \\ \|\xi U_\varepsilon\|^2_{L^2(\Omega)} =\begin{cases} C\varepsilon^{2s} + O(\varepsilon^{2s}),&\text{if } N>4s, \\ -C\varepsilon^{2s}\log\varepsilon + O(\varepsilon^{2s}),&\text{if } N=4s, \end{cases} \\ \|\xi U_\varepsilon\|^{2^*_s-1}_{L^{2^*_s-1}(\Omega)} \geq C\varepsilon^{\frac{N-2s}2}\quad \text{if } N>2s. \end{gather*} Let \[ Q(u) = \frac 12\int_\Omega\big( |(-\Delta)^{s/2}u|^2 -\lambda u^2\big)\,dx -\frac 1{2_s^*}\int_\Omega |u|^{2_s^*}\,dx. \] Then, we may verify that \[ Q(w_{\varepsilon,z}) =\begin{cases} c_0 - \lambda C\varepsilon^{2s} + O(\varepsilon^{2s}),&\text{if } N>4s, \\ c_0+C\varepsilon^{2s}log\varepsilon + O(\varepsilon^{2s}),&\text{if } N=4s, \end{cases} \] for all $z\in \Omega_{d_1}^i$, it implies that for all $z\in \Omega_{d_1}^i$, \begin{equation}\label{eq:3.7} Q(w_{\varepsilon,z}) 0$ small enough. \begin{lemma}\label{lem:3.3} Let $\mu\in(0,\mu_0)$. Then for $\varepsilon>0$ small, there holds \[ \sup\{I(t_{w_{\varepsilon,z},\mu}w_{\varepsilon,z}):z\in\Omega_{d_1}^i\}< c_0. \] \end{lemma} \begin{proof} Let $t = t_{w_{\varepsilon,z}}$. Since $\frac\mu{|x|^{2s}}>\lambda$ for $x\in\Omega$, \begin{align*} \frac {t^2}2\int_\Omega\big( |(-\Delta)^{s/2}w_{\varepsilon,z}|^2 -\lambda w_{\varepsilon,z}^2\big)\,dx &> \frac {t^2}2\int_\Omega\big( |(-\Delta)^{s/2}w_{\varepsilon,z}|^2 -\mu\frac{w_{\varepsilon,z}^2}{|x|^{2s}}\big)\,dx\\ &=\frac {t^{2^*_s}}{2}\int_\Omega w_{\varepsilon,z}^{2^*_s}\,dx\\ &=\frac {t^{2^*_s}}{2}\int_\Omega\big( |(-\Delta)^{s/2}w_{\varepsilon,z}|^2 -\lambda w_{\varepsilon,z}^2\big)\,dx. \end{align*} Therefore, $t<1$. It results from \eqref{eq:3.7} that \begin{align*} I_\mu(tw_{\varepsilon,z}) & = \frac{st^2}N\int_\Omega\big( |(-\Delta)^{s/2}w_{\varepsilon,z}|^2 -\mu\frac{w_{\varepsilon,z}^2}{|x|^{2s}}\big)\,dx\\ &\leq \frac{s}N\int_\Omega\big( |(-\Delta)^{s/2}w_{\varepsilon,z}|^2 -\lambda w_{\varepsilon,z}^2\big)\,dx t$ and $u\in\mathcal{N}_{\mu,\Omega}$ that \begin{gather*} I_{\mu}(\eta(s,u))< I_{\mu}(\eta(t,u)), \\ \lim_{t\to\infty}I_{\mu}(\eta(t,u))>-\infty\quad \text{implies that}\quad \lim_{t\to\infty}I'_{\mu}(\eta(t,u)) = 0. \end{gather*} For $\varepsilon$ given in Lemma \ref{lem:3.3}, we set $\omega = \{t_{w_{\varepsilon,z},\mu}w_{\varepsilon,z}: z\in\omega^i_{d_1}\}$. By the definition of $w_{\varepsilon,z}$, we have $w_{\varepsilon,z}\in H^s_0(\Omega)$ for each $z\in\omega$. Therefore, $\omega\subset \mathcal{N}_{\mu,\Omega}$, and $\sup\{I_\mu(\eta(t,u): t\geq 0)\}$ is bounded from below for each $u\in\omega$. By Proposition \ref{prop:3.1}, there exist $\{(\varepsilon_t, z_t\}\subset \mathbb{R}_+\times\Omega$ such that $\lim_{t\to\infty} z_t = 0$ and \[ \lim_{t\to\infty}\|\eta(t,u) - u^\mu_{\varepsilon_t,z_t}\|_{\dot H^s} = 0. \] Since $u^\mu$ is radially symmetric, we have \[ \lim_{t\to\infty}\beta(\eta(t,u)) = 0\in\Omega \] for all $u\in\omega$. On the other hand, by Lemma \ref{lem:3.2}, \[ \{\beta(\eta(t,u)): u\in\omega\}\subset \Omega_d. \] Since $\{\beta(\eta(0,u)):u\in\omega\} = \Omega^i_{d_1}$, we see that $\Omega^i_{d_1}$ is contractible in $\Omega_d$. This contradicts to the assumption that $\Omega^i_{d_1}\cong\Omega\cong\Omega_d$ and that $\Omega$ is not contractible. This shows that problem \eqref{ePsm} possesses a positive solution in $\mathcal{N}_{\mu,\Omega}$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm:1.2}] We remark that Lemma \ref{lem:3.1} can be applied in this case. The proof of Theorem \ref{thm:1.2} is similar to that of Theorem \ref{thm:1.1} with minor changes, we omit the details. \end{proof} \subsection*{Acknowledgments} This work was supported by the NNSF of China: 11271170 and 11371254, and by the GAN PO 555 program of Jiangxi. \begin{thebibliography}{00} \bibitem{A} R. A. Adams; \emph{Sobolev spaces}, Pure and Applied Mathematics, Vol. 65, Academic Press,New York-London, 1975. \bibitem{AA} J. P. G. Azorero, I. P. Alonso; \emph{Hardy inequalities and some elliptic and parabolic problems}, J. Diff. Equations, 144 (1998), 441-476. \bibitem{BC} A. Bahri, M. Coron; \emph{On a nonlinear elliptic equation involving critical Sobolev exponent: The effect of the topology of the domain}, Comm. Pure Appl. Math., 41 (1988), 253-294. \bibitem{BCP} B. Barrios, E. Colorado, A. De Pablo, U. S\'{a}nchez; \emph{On some critical problems for the fractional Laplacian oprator}, J. Diff. Equa., 252 (2012), 6133--6162. \bibitem{BCPa} C. Br\"{a}ndle, E. Colorado, A. De Pablo; \emph{A concave-convex elliptic problem involving the fractional Laplacian}, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. \bibitem{BL} H. Br\'{e}zis, E. Lieb; \emph{A relation between pointwise convergence of functions and convergence of functionals}, Proc. Amer. Math, Soc., 88 (1983), 486-490. \bibitem{CS} L. Caffarelli, L. Silvestre; \emph{An extension problem related to the fractional Laplacian}, Comm. Partial Diff. Euqas., 32 (2007), 1245-1260. \bibitem{CM} P. Caldiroli, A. Malchiodi; \emph{Singular elliptic problems with critical growth}, Comm. Partial Diff. Equations, 27 (2002), 847-876. \bibitem{CLO} W. Chen, C. Li, B. Ou; \emph{Classification of solutions for an integral equation}, Comm. Pure Appl. Math., 59 (2006), 330-343. \bibitem {CT} A. Cotsiolis, N. K. Travoularis; \emph{Best constants for Sobolev inequalities for higher order fractional derivatives}, J. Math. Anal. Appl., 295 (2004), 225-236. \bibitem{FG} A. Ferrero, F. Gazalla; \emph{Existence of solutions for singular critical growth semilinear elliptic equations}, J. Diff. Equations, 177 (2001), 494-522. \bibitem{FS} R. L. Frank, R. Seiringer; \emph{Non-linear ground state representations and sharp Hardy inequalities}, Jour. Funct. Anal., 255(2008), 3407-3430. \bibitem{GS} N. Ghoussoub, S. Shakerian; \emph{Borderline variational problems involving fractional Laplacian and critical singilarities}, arXiv:1053.08193v2 (2015). \bibitem{GY} N. Ghoussoub, C. Yuan; \emph{Mutiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents}, Trans. Amer. Math. Soc., 352 (2000), 5703-5743. \bibitem{HS} N. Hirano, N. Shioji; \emph{Existence of positive solutions for a semilinear elliptic problem with critical Sobolev and Hardy terms}, Proc. Amer. Math. Soc., 134 (2006), 2585-2592. \bibitem{J} E. Jannelli; \emph{The role played by space dimension in elliptic critical problems}, J. Diff. Equations, 156 (1999), 407-426. \bibitem{KW} J. Kazdan, F. Warner; \emph{Remarks on some quasilinear elliptic equations}, J. Comm. Pure Appl. Math., 28 (1975), 567-597. \bibitem{LM} J.-L. Lions, E. Magenes; \emph{Probl\`emes aux limites non homog\`{e}nes et applications}. Vol. 1, Travaux et Recherches Math\`ematiques, No. 17, Dunod, Paris, 1968. \bibitem{NPV} E. Di Nezza, G. Palatucci, E. Valdinoci; \emph{Hitchhiker's guide to the fractional Sobolev spaces}, Bull. Sci. Math., 229(2012), 521-573. \bibitem{PP} G. Palatucci, A. Pisante; \emph{Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces}, Calc. Var. Partial Differential Equations, 50 (2014), 799¨C829. \bibitem{RW} F. Ruiz, M. Willem; \emph{Elliptic problem with critical exponents and Hardy potentials}, J. Diff. Equations, 190 (2003), 524-538. \bibitem{SSS} S. Secchi, N. Shioji, M. Squassina; \emph{Coron Problem for fractional equations}, arXiv:1041.5967v4 (2014). \bibitem{SV} R. Servadei, E. Valdinoci; \emph{Variational methods for non-local operators of elliptic type}, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. \bibitem{St} M. Struwe; \emph{Variational methods, applications to nonlinear partial differential equations and Hamiltonian systems}, Springer, 1996. \bibitem{Ta} G. Talenti; \emph{Best constant in Sobolev inequality}, Ann. Mat. Pura Appl., 110 (1976), 353-372. \bibitem{Tar} L. Tartar; \emph{An introduction to Sobolev spaces and interpolation spaces}, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin, 2007. \bibitem{T} S. Terracini; \emph{On positive entire solutions to a class of equations with singular coeffcient and critical exponent}, Adv. Diff. Equations, 1 (1996), 241-264. \bibitem{Y} D. Yafaev; \emph{Sharp constants in the Hardy-Rellich inequalities}, J. Funct. Anal, 168 (1999), 121-144. \end{thebibliography} \end{document}