\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 301, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/301\hfil A variational principle] {A variational principle for boundary-value problems with non-linear boundary conditions} \author[D. Yang \hfil EJDE-2015/301\hfilneg] {Dianwu Yang} \address{Dianwu Yang \newline School of Mathematical Sciences, University of Jinan, Jinan 250022, China} \email{ss\_yangdw@ujn.edu.cn} \thanks{Submitted August 15, 2015. Published December 7, 2015.} \subjclass[2010]{34B15, 58E30} \keywords{Boundary value problem; non-linear boundary value condition; \hfill\break\indent variational principle} \begin{abstract} In this article, we establish a variational principle for a class of boundary-value problems with a suitable non-linear boundary conditions. As an application of the variational principle, we study the existence of classical solutions for boundary-value problems. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \allowdisplaybreaks \section{Introduction} By using the variational principle, boundary-value problems have been studied by numerous mathematicians (see \cite{Aver03, Bona10, Xie14, Tian11, Zhan12, Bona09, Bona11, Aver10, Sun12, Niet09, Tian10, Tian12, Zhan10} and references therein). In \cite{Aver03, Bona10}, the authors studied equations with the boundary condition $u(0)=u(1)=0$. In \cite{Tian11, Zhan12, Bona09}, the authors studied Sturm-Liouville boundary-value problems. In \cite{Xie14, Bona11}, the authors studied Neumann boundary-value problems. In \cite{Aver10}, Han studied the periodic boundary-value problems. In \cite{Sun12, Niet09, Tian10, Tian12, Zhan10}, the authors applied variational methods to impulsive differential equations. In all the references above, the boundary conditions are linear. In this article, we consider a boundary-value problem with non-linear boundary conditions: \begin{equation} \label{eq11} \begin{gathered} x''=f(t,x),\quad t\in[0,1], \\ H(x(0),x(1))=0,\\ \nabla H(x(0),x(1))J [(x'(0),-x'(1))-\nabla I(x(0),x(1))]^T=0. \end{gathered} \end{equation} Here, $H$ and $I: R^2\to R$ are continuously differentiable, and $$ J=\begin{pmatrix} 0& -1\\ 1 &0 \end{pmatrix} $$ is the standard symplectic matrix. Also, we assume that the set $\mathcal{A}=\{(x,y):H(x,y)=0\}$ is nonempty. If $H(x,y)=x^2+y^2$ and $I(x,y)=0$, problem \eqref{eq11} becomes a Dirichlet boundary value problem. If $H(x,y)=x-y$ and $I(x,y)=0$, problem \eqref{eq11} becomes a periodic boundary value problem. If $H(x,y)=x+y$ and $I(x,y)=0$, then problem \eqref{eq11} becomes a antiperiodic boundary value problem. This article is organized as follows: in section 2, we construct a variational functional for \eqref{eq11}. In section 3, we obtain sufficient conditions for \eqref{eq11} to have a solution. \section{Variational structure} Let $W$ be the Sobolev space of functions $x: [0,1]\to R$ with a weak derivative $x'\in L^2(0,1; R)$. The inner product on $W$ is \begin{equation} \label{eq21} (x,y)=\int^1_0[x'(t)y'(t)+x(t)y(t)]dt \end{equation} and the corresponding norm is $\|\cdot\|$. For each $x\in W$, there exists a real number $\xi\in(0,1)$ such that $$ x(\xi)=\int_0^1x(t)dt. $$ Then \begin{equation} \label{eq22} \begin{aligned} |x(t)|&=|x(\xi)+\int_{\xi}^tx'(s)ds|\\ &\leq\Big(\int_0^1x^2(t)dt\Big)^{1/2}+\Big(\int_0^1(x'(t))^2dt\Big)^{1/2} \leq \sqrt{2}\|x\|. \end{aligned} \end{equation} To establish a variational principle for \eqref{eq11}, we assume that $f$ satisfies the condition \begin{itemize} \item[(H1)] $f(t,x)$ is measurable in $t$ for each $x\in \mathbb{R}$, continuous in $x$ for almost every $t\in [0,1]$, and there exists $h_k\in L^1(0,1)$ for any $k>0$ such that $$ |f(t,x)|\leq h_k(t) $$ for almost every $t\in[0,1]$ and all $|x|\leq k$. \end{itemize} Under this condition, we define the functional $\phi$ on $W$ by \begin{equation} \label{eq23} \phi(x)=\int_0^1[\frac{1}{2}(x'(t))^2+F(t,x(t))]dt+I(x(0),x(1)) \end{equation} where $F(t,x)=\int_0^xf(t,u)du$. Then $\phi$ is continuously differentiable, weakly lower semi-continuous and \begin{equation} \label{eq24} (\phi'(x),y)=\int_0^{1}[x'(t)y'(t)+f(t,x(t))y(t)]dt +\nabla I(x(0),x(1)) (y(0),y(1)) \end{equation} for all $y\in W$, see \cite{Mawh89}. Let $Y$ be a $C^1$-manifold defined by $$ Y=\{x\in W: H(x(0),x(1))=0\}. $$ Then, $Y$ is weakly closed since $W$ can be compactly imbedded in $C[0,1]$. The following theorem is our main result. \begin{theorem} \label{thm2.1} Assume that $f$ satisfies {\rm (H1)} and that the following condition is satisfied, \begin{itemize} \item[(H2)] $\nabla H(x, y)\neq 0$ for each $(x, y)$ satisfying $H(x, y)=0$, or $\mathcal{A}$ is a discrete set. \end{itemize} If $x$ is a critical point of the functional $\phi$ defined by \eqref{eq23} on $Y$, then $x(t)$ is a solution of \eqref{eq11}. \end{theorem} \begin{proof} For a given $u$ in $Y$, let $DY(u)$ denote the tangent space to $Y$ at $u$. If $x$ is a critical point of the functional $\phi$ on $Y$, then for any $y\in DY(x)$ we have $(\phi'(x), y)=0$. It follows from \eqref{eq24} that \begin{equation} \label{eq25} \int_0^{1}[x'(t)y'(t)+f(t,x(t))y(t)]dt+\nabla I(x(0),x(1))\cdot (y(0),y(1))=0. \end{equation} We define $\omega\in C(0,1; R)$ by \begin{equation} \label{eq26} \omega(t)=\int_0^tf(s, x(s))ds. \end{equation} By Fubini's theorem and \eqref{eq25}, we obtain that for any $y\in DY(x)$, \begin{equation} \label{eq27} \begin{aligned} &\int_0^1[x'(t)-\omega(t)]y'(t)dt\\ &=-\int_0^1f(t, x(t))y(t)dt-\nabla I(x(0),x(1))\cdot (y(0),y(1))\\ &\quad -\int_0^1y'(t)\int_0^tf(s, x(s))dsdt\\ &=-y(1)\int_0^1f(t, x(t))dt-\nabla I(x(0),x(1))\cdot (y(0),y(1)). \end{aligned} \end{equation} We complete this proof by considering two cases. When $\nabla H(x(0), x(1))\neq 0$, we have \begin{equation} \label{eq28} DY(x)=\{y\in W: \nabla H(x(0),x(1))\cdot (y(0),y(1))=0\}. \end{equation} In \eqref{eq27}, we can choose \[ y(t)=\sin(2n\pi t),\quad n=1,2,\dots, \] and \[ y(t)=1-\cos(2n\pi t),\quad n=1,2,\dots. \] It follows from \eqref{eq27} that $$ \int_0^1[x'(t)-\omega(t)]\sin(2n\pi t)dt =\int_0^1[x'(t)-\omega(t)]\cos(2n\pi t)dt=0, \quad n=1,2,\dots. $$ A theorem for Fourier series implies that \begin{equation} \label{eq29} x'(t)-\omega(t)=x'(0) \end{equation} on $[0, 1]$. Thus, we have $x''(t)=f(t,x(t))$ and \begin{equation} \label{eq210} \int_0^1f(t, x(t))dt=x'(1)-x'(0). \end{equation} Integrating both sides of \eqref{eq29} over $[0, 1]$, we have \begin{equation} \label{eq211} x(1)-x(0)-\int_0^1(1-t)f(t, x(t))dt=x'(0). \end{equation} Set $y(t)=\nabla H(x(0),x(1))\cdot (t,t-1)$. It is easy to show that $y\in DY(x)$ as $(y(0),y(1))=J\nabla H(x(0),x(1))$. Inserting $y(t)$ into \eqref{eq25} we obtain \begin{align*} &\big[x(1)-x(0)-\int_0^1(1-t)f(t, x(t))dt\Big]\nabla H(x(0),x(1))\cdot (1,1)\\ &+\nabla I(x(0),x(1))J\nabla H(x(0),x(1)) +\int_0^1f(t, x(t))dt\nabla H(x(0),x(1))\cdot (1,0)=0. \end{align*} From \eqref{eq210} and \eqref{eq211}, the above equality implies \[ \nabla H(x(0),x(1))J[(x'(0),-x'(1))-\nabla I(x(0),x(1))]^T=0. \] When the $\mathcal{A}$ is a discrete set, $(x(0), x(1))$ is a isolated point of $\mathcal{A}$. Applying the implicit function theorem we obtain $\nabla H(x(0),x(1))=0$, so that $$ DY(x)=\{y\in W: y(0)=y(1)=0\}. $$ It is easy to show that $x(t)$ is a solution of problem \eqref{eq11}. This completes the proof. \end{proof} \section{Solutions to boundary-value problems} As an application of Theorem \ref{thm2.1}, we consider the existence of solutions for problem \eqref{eq11}. \begin{theorem} \label{thm3.1} Assume that {\rm (H1), (H2)} hold, and that the following conditions are satisfied: \begin{itemize} \item[(H3)] The set $\mathcal{A}$ is bounded. \item[(H4)] There is a positive constant $l$ with $l<2$, and a positive function $c\in L^1(0,1)$ such that $$ F(t,x)\geq -c(t)(1+|x|^l) $$ for almost every $t\in[0,1]$ and all $x\in \mathbb{R}$. \end{itemize} Then \eqref{eq11} has at least one solution. \end{theorem} \begin{proof} Let $y$ be in $Y$. By (H3), there exists a positive number $M$ such that $$ y^2(0)+y^2(1)\leq M^2. $$ This implies \begin{equation} \label{eq31} |y(t)|=|y(0)+\int_0^ty'(t)dt|\leq M+\int_0^1|y'(t)|dt \leq M+(\int_0^1[y'(t)]^2dt)^{1/2}. \end{equation} Set $$ M_1=\min_{x^2+y^2\leq M^2}I(x,y). $$ Then, from (H4), \eqref{eq23} and \eqref{eq31}, we have \begin{align*} \phi(y) &\geq\frac{1}{2}\int_0^1[y'(t)]^2dt-\int_0^{1}c(t)(1+|y(t)|^l)dt+M_1\\ &\geq\frac{1}{2}\int_0^1[y'(t)]^2dt+M_2(\int_0^1[y'(t)]^2dt)^{\frac{l}{2}}+M_3 \end{align*} for some $M_2$ and $M_3$. It follows that $$ \lim_{\|y\|\to \infty}\phi(y)=+\infty, $$ since $\|y\|\to \infty$ if and only if $\int_0^1[y'(t)]^2dt\to \infty$. Hence, $\phi|Y$ is bounded from blow. Therefore, there exists a critical point of $\phi$ on $Y$. By Theorem \ref{thm2.1}, problem \eqref{eq11} has at least one solution. \end{proof} \begin{theorem} \label{thm3.2} Assume that {\rm (H1)--(H3)} hold, and that the following conditions are satisfied: \begin{itemize} \item[(H5)] There is a positive function $c\in L^1(0,1)$ such that $$ F(t,x)\geq -c(t)(1+x^2) $$ for almost every $t\in[0,1]$ and all $x\in \mathbb{R}$. \item[(H6)] $2\int_0^1c(t)dt<1$. \end{itemize} Then \eqref{eq11} has at least one solution. \end{theorem} \begin{proof} For each $y\in Y$, from (H5), \eqref{eq23} and \eqref{eq31}, we obtain \begin{align*} \phi(y) &\geq\frac{1}{2}\int_0^1[y'(t)]^2dt-\int_0^{1}c(t)(1+y^2(t))dt+M_1\\ &\geq(\frac{1}{2}-\int_0^{1}c(t)dt)\int_0^1[y'(t)]^2dt +M_4(\int_0^1[y'(t)]^2dt)^{1/2}+M_5 \end{align*} for some $M_4$ and $M_5$. Assumption (H6) implies $$ \lim_{\|y\|\to \infty}\phi(y)=+\infty. $$ Therefore, problem \eqref{eq11} has at least one solution. \end{proof} \begin{theorem} \label{thm3.3} Assume that {\rm (H1), (H2)} hold, and that the following conditions are satisfied: \begin{itemize} \item[(H7)] There is a positive function $c\in L^1(0,1)$ and positive constants $k_1$, $l$ with $l<2$ such that $$ F(t,x)\geq k_1x^2-c(t)(1+|x|^l) $$ for almost every $t\in[0,1]$ and all $x\in \mathbb{R}$. \item[(H8)] There are positive constants $k_2$ and $k_3$ such that $I(x, y)\geq-k_2x^2-k_3y^2$. \item[(H9)] $4(k_2+k_3)<\min\{1, 2k_1\}$. \end{itemize} Then \eqref{eq11} has at least one solution. \end{theorem} \begin{proof} Assumptions (H7) and (H8), and \eqref{eq23} imply \begin{align*} \phi(y)&\geq\frac{1}{2}\int_0^1[y'(t)]^2dt+k_1\int_0^1y^2(t)dt- \int_0^{1}c(t)(1+|y(t)|^l)dt-k_2y^2(0)-k_3y^2(1)\\ &\geq(\frac{1}{2}\min\{1, 2k_1\}-2k_2-2k_3)\|y\|^2-\int_0^{1}c(t)(1+|y(t)|^l)dt). \end{align*} for each $y\in Y$. From (H9) we obtain $$ \lim_{\|y\|\to \infty}\phi(y)=+\infty. $$ Therefore \eqref{eq11} has at least one solution. \end{proof} \subsection*{Acknowledgments} This research was supported by the Natural Science Foundation of Shandong Province of PR China (ZR2011AL007). \begin{thebibliography}{99} \bibitem{Aver03} D. Averna, G. Bonanno; \emph{A three critical points theorem and its applications to the ordinary Dirichlet problem}, Topol. Methods Nonlinear Anal., 22 (2003): 93-104. \bibitem{Bona10} G. Bonanno, A. Chinn\`{i}; \emph{Existence of three solutions for a perturbed two-point boundary value problem}, Appl. Math. Lett., 23 (2010): 807-811. \bibitem{Xie14} J. Xie, Z. Luo; \emph{Existence of three distinct solutions to boundary value problem of nonlinear differential equations with a $p$-Laplacian operator}, Appl. Math. Lett., 27 (2014): 101-106. \bibitem{Tian11} Y. Tian, W. Ge; \emph{Multiple solutions of Sturm-Liouville boundary value problem via lower and upper solutions and variational methods}, Nonlinear Anal. TMA, 74 (2011): 6733-6746. \bibitem{Zhan12} Q. Zhang, F. Li, X. Zhu; \emph{Multiple sign-changing solutions to the Sturm-Liouville boundary value problem with resonance}, Appl. Math. Comput., 219 (2012): 1061-1072. \bibitem{Bona09} G. Bonanno, G. Riccobono; \emph{Multiplicity results for Sturm-Liouville boundary value problems}, Appl. Math. Comput., 210 (2009): 294-297. \bibitem{Bona11} G. Bonanno, G. D'Agu\`{i}; \emph{A critical point theorem and existence results for a nonlinear boundary value problem}, Nonlinear Anal., 72 (2010): 1977-1982. \bibitem{Aver10} Z. Han, \emph{Solutions of periodic boundary value problems for second-order nonlinear differential equations via variational methods}, Appl. Math. Comput., 217(2011): 6516-6525. \bibitem{Sun12} H. Sun, Y. Li, J. J. Nieto, Q. Tang; \emph{Existence of Solutions for Sturm-Liouville Boundary Value Problem of Impulsive Differential Equations}, Abstr. Appl. Anal., (2012) Article ID 707163, 19 pages. \bibitem{Niet09} J. J. Nieto, D. O'Regan; \emph{Variational approach to impulsive differential equations}, Nonlinear Anal. RWA, 10 (2009): 680-690. \bibitem{Tian10} Y. Tian, W. Ge; \emph{Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations}, Nonlinear Anal. TMA, 72 (2010): 277-287. \bibitem{Tian12} Y. Tian, W. Ge; \emph{Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods}, J. Math. Anal. Appl., 387 (2012): 475-489. \bibitem{Zhan10} H. Zhang, Z. Li; \emph{Variational approach to impulsive differential equations with periodic boundary conditions}, Nonlinear Anal. RWA, 11(2010): 67-78. \bibitem{Mawh89} J. Mawhin, M. Willem; \emph{Critical Point Theory and Hamiltonian Systems}, Springer-Verlag, New York (1989). \end{thebibliography} \end{document}