\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 302, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/302\hfil Asymptotic behavior] {Asymptotic behavior for second-order differential equations with nonlinear slowly time-decaying damping and integrable source} \author[M. Balti \hfil EJDE-2015/302\hfilneg] {Mounir Balti} \address{Mounir Balti \newline Universit\'e de Carthage, Institut Pr\'eparatoire aux Etudes Scientifiques et Techniques, B.P. 51, 2070 La Marsa, Tunisia.\newline Facult\'e des sciences de Tunis, Laboratoire EDP-LR03ES04 Universit\'e de Tunis El Manar, Tunis, Tunisia} \email{mounir.balti@gmail.com} \thanks{Submitted November 24, 2015. Published December 11, 2015.} \subjclass[2010]{34A12, 34A34, 34A40, 34D05} \keywords{Dissipative dynamical system; asymptotic behavior; \hfill\break\indent nonautonomous asymptotically small dissipation; gradient system} \begin{abstract} In this article we establish convergence to the equilibrium of all global and bounded solutions of a gradient-like system of second-order with slow dissipation. Also we estimate the rate of convergence. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and main results} In this article we study the asymptotic behaviour of global and bounded solutions of the following gradient like system \begin{equation} \label{equa pr} \begin{gathered} \ddot{x}(t) +a( t) \| \dot{x}(t)\|^{\alpha }\dot{x}(t) +\nabla \Phi (x ( t)) =g( t) \\ x( 0) =x_0\in \mathbb{R}^N,\quad \dot{x}( 0) =x_1\in \mathbb{R}^N \end{gathered} \end{equation} where $N\in \mathbb{N}^{\ast }$, $\alpha \geq0$, $\Phi \in W_{\rm loc}^{2,\infty }(\mathbb{R}^N,\mathbb{R})$, $g\in L^1({\mathbb{R}}_+,{\mathbb{R}}^N)$, $a\in L^\infty({\mathbb{R}}_+)$, $a\geq 0$. We denote by $S$ the set of critical points of $\Phi$: \[ S=\{ x\in \mathbb{R}^N:\nabla \Phi (x) =0\}. \] Recently, Haraux and Jendoubi \cite{HaJe13} studied the asymptotic behavior of global solutions to the nonlinear differential equation \begin{equation} \label{EquHJ} \ddot{x}( t) +a(t)\dot{x}( t) +\nabla \Phi (x( t) ) =0. \end{equation} They prove among other things that if $a(t)\geq \frac{c}{(1+t)^{\beta }}$ with $\beta\geq 0$ small enough and $S=\arg\min \Phi$ then the solution converge as $t$ goes to infinity to $S$. Moreover, they proved that if the potential $\Phi$ satisfies an adapted uniform Lojasiewicz gradient inequality then the solution converge to some point $b\in S$. The purpose of this paper is to generalize the results obtained by the authors of \cite{HaJe13} to the equation \eqref{equa pr}. Before stating the results of this paper, recall that equation \eqref{EquHJ} with $a(t)=1$ has been studied by several authors. When $\Phi$ is analytic, Haraux and Jendoubi \cite{HaJe98} (see also \cite{AABR02,Ch03,ChHaJe09, HaJe01}) proved convergence to equilibrium of all global and bounded solutions. Now when the potential $\Phi$ is assumed to be convex and still in the case where $a(t)=1$, Attouch et al \cite{AtGoRe00} proved a similar convergence result. Equation \eqref{EquHJ} in the case where $a(t)$ tends to 0 was initiated by Cabot et al \cite{CabotEnglerGadat} in the case where the potential $\Phi$ is convex (see also \cite{CabotFrankel,JeMa14}). The main results of this paper read as follows. \begin{theorem}\label{Omegalimit} Let $\Phi \in W_{\rm loc}^{2,\infty }( \mathbb{R}^N, \mathbb{R})$, $a\in L^\infty(\mathbb{R}_{+})$ be a positive function, and $x\in W_{\rm loc}^{2,1 }\cap L^\infty ( \mathbb{R}_{+},\mathbb{R}^N ) $ be a solution of \eqref{equa pr}. Assume that \begin{itemize} \item[(H1)] $S=\arg \min \Phi$. \item[(H2)] There exists $\delta >0$, $d>0$ such that $\| g(t) \| \leqslant \frac{d}{( 1+t) ^{1+\delta }}$. \item[(H3)] There exists $\beta \in ]0,1[,\ c>0$ for all $t\geqslant 0$, $a( t) \geqslant \frac{c}{( 1+t) ^{\beta }}$. \end{itemize} Then \begin{equation} \label{Vitessetend0} \lim_{t\to +\infty} \| \dot{x}( t) \| +\operatorname{dist}(x( t) ,S) =0. \end{equation} \end{theorem} \begin{theorem} \label{ThePrincipal} Let $\Phi \in W_{\rm loc}^{2,\infty }(\mathbb{R}^N,\mathbb{R})$, $a\in L^{\infty }(\mathbb{R}_{+})$ be a positive function. Let $x\in W_{\rm loc}^{2,1}\cap W^{1,\infty }(\mathbb{R}_{+},\mathbb{R}^N)$ a solution of \eqref{equa pr}. Assume {\rm (H1), (H2)} and that \begin{itemize} \item[(H4)] There exists $\theta \in ]0,\frac{1}{2}]$ for all $b\in S\exists \sigma _{b}>0$, $\exists C_{b}>0$ for all $x\in B(b,\sigma _{b})$, $\| \nabla \Phi ( x) \| \geqslant C_{b}|\Phi ( x) -\Phi ( b) | ^{1-\theta }$. \item[(H5)] There exists $c>0$, $\exists \beta \geq 0$: $\alpha +\beta \in ]0,\inf ( \frac{\theta }{1-\theta };\delta ) [$ and $a(t) \geq c/( 1+t) ^{\beta }$ for all $t\geq 0$. \end{itemize} Then there exists $b^{\ast }\in S$, $T>0$ and $M>0$ such that for every $t>T$ \begin{equation*} \| x( t) -b^{\ast }\| \leqslant Mt^{-\lambda } \end{equation*} where \begin{equation*} \lambda =\inf \Big( \big[ \frac{\theta -( \alpha +\beta ) ( 1-\theta ) }{( 1-\theta ) ( \alpha +2) -1} \big] ,\big[ \frac{\delta -( \alpha +\beta ) }{( \alpha +1) }\big] \Big) . \end{equation*} \end{theorem} \begin{remark} \label{rmk1.3} \rm (1) If $g=0$ and $\alpha=0$, we recover a result previously obtained by Haraux and Jendoubi, see \cite[Theorem 2.3]{HaJe13}. (2) If $\beta=0$, we recover a result obtained by Ben Hassen and Chergui, see \cite[Theorem 1.6]{BenHassenChergui}. \end{remark} \begin{remark} \label{rmk1.4} \rm Assumption {\rm (H4)} is satisfied if one of the following two conditions is satisfied \begin{itemize} \item $F$ is a polynomial \cite{Kurd05}, or \item $F$ is analytic and $S$ is compact \cite{Chergui08}. \end{itemize} \end{remark} \begin{remark} \label{rmk1.5} \rm Let us observe that the condition $\alpha+\beta<\delta$ in (H5) is necessary. Here is an example of a nonconvergent solution of the following scalar equation \begin{equation} \label{equCE} \ddot{x}(t) + \vert \dot{x}(t)\vert^\alpha\frac{\dot{x}(t)}{(1+t)^\beta} =g(t). \end{equation} Let $x(t)=\cos(\ln(1 + t))$ be a solution of \eqref{equCE}. Then we can easily see that $g$ satisfies assumption (H2) with $\delta=\alpha+\beta$ and that $x$ is a non convergent solution of \eqref{equCE} with $\Phi=0$. Note also that in this case assumption (H4) holds true with $\theta=1/2$. \end{remark} \begin{remark} \label{rmk1.6} \rm The hypothesis that $\alpha+\beta<\frac{\theta}{1-\theta}$ in (H5) is in some sense optimal. Haraux \cite{Ha90} gives an example of a function $f$ such that the $\omega-$limit set of a global and bounded solution of the following equation \begin{equation*} \ddot{x}(t) + \vert \dot{x}(t)\vert\dot{x}(t) +f(x)=0 \end{equation*} is equal to an interval and then this solution does not converge. The nonlinearity can be chosen such that its primitive satisfies assumption $(H4)$ with $\theta=1/2$. \end{remark} \begin{remark} \label{rmk1.7} \rm Theorems \ref{Omegalimit} and \ref{ThePrincipal} remain true if the dissipation term $a( t) \| \dot{x}(t)\|^{\alpha }\dot{x}(t)$ in the equation \ref{equa pr} is replaced by $a(t)\gamma(\dot{x}(t))$ where $\gamma: \mathbb{R}^N \to \mathbb{R}^N$ is a continuous function satisfying \[ \langle \gamma(v),v \rangle \geq \rho_1 \| v \|^{\alpha+2}, \quad \| \gamma(v) \| \leq \rho_2 \| v \| ^{\alpha+1} \quad \forall v \in \mathbb{R}^N, \] with $0<\rho_1< \rho_2<\infty$ and $\alpha$ is as in Theorems \ref{Omegalimit} and \ref{ThePrincipal}. \end{remark} \section{Proof of Theorem \protect\ref{Omegalimit}} We define the two functions \begin{gather} E( t) =\frac{1}{2}\| \dot{x}( t) \| ^2+\Phi ( x( t) ) -\min \Phi, \nonumber\\ K( t) =E( t) +\int_t^{+\infty }\frac{M}{(1+s)^{\frac{-\beta +( 1+\delta ) ( \alpha +2) }{\alpha +1}}}ds \label{6-1} \end{gather} where \begin{equation*} M=\big( \frac{c}{2}\big)^{-\frac{1}{\alpha +1}}d^{\frac{\alpha +2}{\alpha +1}}, \end{equation*} $c$ is as in (H6) and $d$ is as in (H2). Note that by hypotheses (H4)--(H6), we have $\frac{-\beta +( 1+\delta ) ( \alpha +2) }{\alpha +1}>1$ and $K$ is well defined. Now by differentiating $E$ we obtain \begin{equation*} E'( t) =-a\| \dot{x}( t) \|^{2+\alpha }+\langle g( t) ;\dot{x}( t)\rangle. \end{equation*} By the Cauchy-Schwarz inequality we obtain \begin{equation*} E'( t) \leq -\frac{c}{( 1+t) ^{\beta }} \| \dot{x}( t) \| ^{2+\alpha }+\Big( \frac{c}{ 2( 1+t) ^{\beta }}\Big) ^{\frac{1}{\alpha +2}}\| \dot{x} ( t) \| \Big( \frac{c}{2( 1+t) ^{\beta }} \Big) ^{-\frac{1}{\alpha +2}}\| g( t) \| . \end{equation*} Thanks to Young's inequality we obtain \begin{align*} E'( t) &\leq -\frac{c}{2( 1+t) ^{\beta }} \| \dot{x}( t) \| ^{2+\alpha }+\Big( \frac{c}{ 2( 1+t) ^{\beta }}\Big) ^{-\frac{1}{\alpha +1}}\| g( t)\|^{\frac{\alpha +2}{\alpha +1}} \\ &\leq -\frac{c}{2( 1+t) ^{\beta }}\| \dot{x}( t) \| ^{2+\alpha }+\frac{M}{( 1+t) ^{\frac{-\beta +( 1+\delta ) ( \alpha +2) }{\alpha +1}}}. \end{align*} Now by differentiating $K$ we obtain \begin{equation*} K'( t) \leq -\frac{c}{2( 1+t) ^{\beta }} \| \dot{x}( t) \| ^{2+\alpha }. \end{equation*} So $K$ is a decreasing and positive function. Hence \begin{equation} \dot{x}\in L^{\infty }({\mathbb{R}}_+,{\mathbb{R}}^N) \label{3} \end{equation} and there exists $l\in \mathbb{R}_{+}$ such that \begin{equation*} \lim_{t\to +\infty} K( t) =\lim_{t\to +\infty } E( t) =l. \end{equation*} We define the function \begin{equation*} {\mathcal{E}}(t) =E(t) +\int_t^{+\infty }\langle g(s),\dot{x}(s) \rangle ds. \end{equation*} Using \eqref{3} and (H2) which implies that $g\in L^1$, we see that $ \lim_{t\to\infty } {\mathcal{E}}( t) = \lim_{t\to+\infty }E(t)$ and ${\mathcal{E}}'( t) =-a ( t )\| \dot{x}(t) \| ^{2+\alpha }$. Then we obtain \begin{equation} \label{1} \int_0^\infty a ( t ) \| \dot{x}(t)\| ^{2+\alpha }\,dt<\infty. \end{equation} Let $r>0$ and assume that there exists $\varepsilon >0$ and $t_0>0$ such that for all $t\geqslant t_0$ \begin{equation*} \int_t^{t+r}\| \dot{x}( s) \| ^{2+\alpha }ds\geq \varepsilon. \end{equation*} Then \begin{equation*} \int_t^{t+r}a( s) \| \dot{ x}( s) \| ^{2+\alpha }ds\geq \frac{\varepsilon c}{( 1+t+r) ^{\beta }}\quad \forall t\geqslant t_0\,. \end{equation*} It follows that \begin{align*} \int_{t_0}^{+\infty }a( s) \| \dot{x}( s)\| ^{2+\alpha }ds &\geq \sum_{n=0}^{+\infty }\int_{t_0+nr}^{t_0+( n+1) r}a( s) \| \dot{x}( s) \| ^{2\ast \alpha }ds \\ &\geq \sum_{n=0}^{+\infty }\frac{\varepsilon c}{(1+t_0+( n+1) r) ^{\beta }} =\infty \end{align*} which contradicts \eqref{1}. Then for every $n\in \mathbb{N}^{\ast }$, there exists $t_{n}\geq n$ such that \begin{equation*} \int_{t_{n}}^{t_{n}+r}\| \dot{x}( t) \| ^{2+\alpha }dt\leq \frac{1}{n}. \end{equation*} Hence there exists a real sequence $( t_{n}) _{n}$ such that $ \lim_{n\to\infty }t_{n}=\infty $ and \begin{equation} \lim_{n\to +\infty } \int_{t_{n}}^{t_{n}+r}\| \dot{x}( t) \| ^{2+\alpha }dt=0. \label{4} \end{equation} By \eqref{3}, $x$ and $\dot{x}$ are bounded, and then by the equation \eqref{equa pr}, $\ddot{x}$ is bounded. Hence $\dot{x}$ is Lipschitz continuous. Thanks to the Cauchy-Schwarz inequality we obtain for all $t\in [ t_{n},t_{n}+r]$ \begin{align*} | \| \dot{x}( t_{n}+t) \| ^{2+\alpha }-\| \dot{x}( t_{n}) \| ^{2+\alpha }| &= ( 2+\alpha ) | \int_{t_{n}}^{t_{n}+t}\| \dot{x }( s) \| ^{\alpha }<\dot{x}( s) ,\ddot{x} ( s) >ds| \\ &\leq ( 2+\alpha ) ( \int_{t_{n}}^{t_{n}+t}\| \dot{x }( s) \| ^{\alpha +1}\| \ddot{x}(s) \| ds) \\ &\leqslant ( 2+\alpha ) \| \dot{x}\| _{\infty}^{\alpha/2}\| \ddot{x}\| _{\infty }(\int_{t_{n}}^{t_{n}+r}\| \dot{x}( s) \| ^{\frac{\alpha }{2}+1}ds) \\ &\leq ( 2+\alpha ) \| \dot{x}\| _{\infty}^{\alpha/2} \| \ddot{x}\| _{\infty }\sqrt{r} (\int_{t_{n}}^{t_{n}+r}\| \dot{x}( s) \| ^{\alpha+2}ds) ^{1/2}. \end{align*} Then from \eqref{4} we obtain \begin{equation} \label{5} \lim_{n\to\infty }\sup_{s\in [ 0,r] }\| \dot{x}(t_{n}+s) \| =0. \end{equation} Since $x$ is a bounded function and $\nabla \Phi $ is a Lipschitz continuous function on every bounded domain, then there exists $\lambda >0$ such that for all $( t,s) \in \mathbb{R}_{+}^2$ \[ \| \nabla \Phi ( x( t) ) -\nabla \Phi ( x( s) ) \| \leq \lambda \| x(t) -x( s) \| . \] Then \begin{equation} \label{estgradPhi} \begin{aligned} \big\| r\nabla \Phi ( x( t_{n}) )-\int_{t_{n}}^{t_{n}+r}\nabla \Phi ( x( s))\,ds\big\| &\leq \int_{t_{n}}^{t_{n}+r}\| \nabla \Phi ( x( t_{n}) ) -\nabla \Phi ( x( s)) \| ds \\ &\leq \lambda \int_{t_{n}}^{t_{n}+r}\| x( t_{n}) -x( s) \| ds \\ &\leq \lambda \int_{t_{n}}^{t_{n}+r}\int_{t_{n}}^{s}\| \dot{x} ( u) \| du\,ds \\ &\leq \lambda r^2\sup_{s\in [ 0,r] } \| \dot{x}( t_{n}+s) \| . \end{aligned} \end{equation} Since \[ \int_{t_{n}}^{t_{n}+r}\nabla \Phi ( x( s) )ds =-\int_{t_{n}}^{t_{n}+r}\ddot{x}( t) dt -\int_{t_{n}}^{t_{n}+r}a( t) \| \dot{x}( t)\| ^{\alpha }\dot{x}( t)dt +\int_{t_{n}}^{t_{n}+r}g( t) dt, \] then \begin{equation} \lim_{n\to +\infty} \int_{t_{n}}^{t_{n}+r}\nabla \Phi ( x( s) ) ds=0. \label{6} \end{equation} Combining \eqref{5}, \eqref{estgradPhi} and \eqref{6} yields \begin{equation} \lim_{n\to +\infty} \| \nabla \Phi ( x(t_{n}) ) \| =0. \label{7} \end{equation} Hence \begin{equation*} l=\lim_{t\to +\infty} E( t) =\underset{ n\to +\infty }{\lim }E( t_{n}) =\lim_{n\to +\infty} \Phi ( x( t_{n}) ) -\min \Phi . \end{equation*} Since $( x( t_{n}) ) _{n}$ is a bounded sequence, we can extract a subsequence, still denoted by $( x( t_{n}) ) _{n}$ such that $ \lim_{n\to\infty }x( t_{n}) =a$. From \eqref{7} we obtain \begin{equation*} \lim_{n\to +\infty} \nabla \Phi ( x( t_{n}) ) =0=\nabla \Phi ( a) . \end{equation*} Then $a\in S$. By (H1), $S=\arg \min \Phi $, and then it follows that $\lim_{t\to\infty }E( t) =0$, so $ \lim_{t\to\infty }\| \dot{x}( t) \| =0$ and $ \lim_{t\to\infty }\Phi ( x( t) ) =\min \Phi $. Assume that \begin{equation*} \lim_{t\to\infty } \operatorname{dist}( x( t) ,S) \neq 0. \end{equation*} Then there exists $\varepsilon >0$ and $t_{n} \to \infty $ such that \begin{equation} d( x( t_{n}) ,S) \geqslant \varepsilon. \label{8} \end{equation} Therefore, we can extract a subsequence still denoted by $( t_{n}) $ such that \begin{equation*} \lim_{n\to +\infty} x( t_{ n}) =a. \end{equation*} Then $ \lim_{n\to \infty}\Phi ( x( t_{n })) =\Phi ( a) =\min \Phi$ that is $a\in S$, which contradicts \eqref{8}. \section{Proof of theorem \ref{ThePrincipal}} To prove Theorem \ref{ThePrincipal}, we need some lemmas. We begin with the following lemma proved by Alvarez et al \cite{AABR02}, here we give a slightly different proof. \begin{lemma} \label{LojUniforme} Under hypothesis {\rm (H4)}, let $\Gamma $ be a compact subset of ${\mathbb{R}}^N$ such that \begin{equation*} \exists K\in {\mathbb{R}}: \forall a\in \Gamma\ \Phi (a)=K . \end{equation*} Then there exist $\sigma, C>0$ and $\theta \in (0,1/2)$ such that \begin{equation} [ d(u,\Gamma )\leq \sigma \Rightarrow \| \nabla \Phi (u)\| \geq C|\Phi (u)-K|^{1-\theta }] . \label{2} \end{equation} \end{lemma} \begin{proof} Using (H4), there exists $\theta \in ]0,1/2]$ such that for all $a\in \Gamma $ there exists $C_{a}>0$, $\sigma _{a}>0$ such that \begin{equation} \| \nabla \Phi (u)\| \geq C_{a}|\Phi (u)-\Phi (a)|^{1-\theta }\quad \forall u\in B( a,\sigma _{a}) . \label{LojIneq} \end{equation} Since $\Gamma $ is compact, then there exists $( a_1,\dots ,a_{n}) \in \Gamma ^{n}$ such that \begin{equation*} \Gamma \subset ( \cup_{i=1}^{n}B( a_{i},\frac{\sigma _{a_{i}}}{2}) ) . \end{equation*} We choose $\sigma =\inf \sigma _{a_{i}}/2$ and $C=\inf C_{a_{i}}$. Let $u\in {{{\mathbb{R}}}}^N$ such that $d(u,\Gamma )\leq \sigma $. Then there exists $a\in \Gamma $ such that $d(u,a)\leq \sigma $ and $i\in \{1,2,\dots ,n\} $ such that $a\in B( a_{i},\frac{\sigma _{a_{i}}}{2}) $. Hence we obtain $d(u,a_{i})\leq \sigma _{a_{i}}$. From \eqref{LojIneq} we obtain \[ \| \nabla \Phi (u)\| \geq C_{a}|\Phi (u)-\Phi (a)|^{1-\theta } \geq C|\Phi (u)-K|^{1-\theta }. \] \end{proof} \begin{lemma} \label{PrinComp} Let $f$ and $g:\mathbb{R}_{+}\to \mathbb{R}_{+}$ be two continuously differentiable functions, $h:\mathbb{R}_{+}^2\to \mathbb{R}$ be continuously differentiable function, and $T\geq 0$ be such that for all $t\geq T$, \begin{gather*} f'( t) +h( t,f( t) ) \leq g'(t) +h( t,g( t) ) , \\ f( T) \leq g( T). \end{gather*} Then for all $t\geq T$, $f( t) \leq g( t)$. \end{lemma} \begin{proof} Let $k:\mathbb{R}_{+}\to \mathbb{R}$ be a function such that \[ k'( t) =\begin{cases} \frac{h( t,g( t) ) -h( t,f( t) ) }{g( t) -f( t) } &\text{if }g( t) \neq f( t) \\[4pt] \partial _2h( t,f( t) ) &\text{if }g( t) =f( t) \end{cases} \] and $\phi :\mathbb{R}_{+}\to \mathbb{R};t\longmapsto e^{k( t)}( g-f) ( t)$. Then for all $t\geq T$, \[ \phi '( t) =[ ( g-f) '(t) +k'( t) ( g-f) ( t)] e^{k( t) }\geq 0. \] So $\phi $ is an increasing function in $[T,+\infty [ $. Finally we see that for all $t\in $ $[T,+\infty [ $ we obtain $f( t) \leq g( t)$. \end{proof} \begin{lemma}\label{IneqDiff} Let $H\in W_{\rm loc}^{1,1}(\mathbb{R}_{+},\mathbb{R}_{+})$. Assume that there exist constants $k_1>0$, $k_2\geq 0$, $T>0$, $\mu >1>\beta $ and $\gamma >\beta >0$ such that for almost every $t\geq T$ we have \begin{equation*} H'( t) +\frac{k_1}{(1+t)^{\beta }}( H(t)) ^{\mu }\leq \frac{k_2}{( 1+t)^{\gamma }}. \end{equation*} Then there exists $M>0$ such that for all $t\geq T$, \begin{equation*} H( t) \leq \frac{M}{( 1+t) ^{c}} \end{equation*} where \begin{equation*} c=\inf \Big( \frac{\gamma -\beta }{\mu },\frac{1-\beta }{\mu -1}\Big) . \end{equation*} \end{lemma} \begin{proof} Let $M>0$ such that $k_1M^{\mu }-cM>k_2$ and $M>H( T) ( 1+T) ^{c}$. We define the function $\phi:{\mathbb{R}}_+\to \mathbb{R}$ by \begin{equation*} \phi ( t) =\frac{M}{( 1+t) ^{c}}. \end{equation*} Hence for all $t\geq T$, we have \begin{align*} \phi'( t) +\frac{k_1}{( 1+t)^{\beta }}(\phi ( t) )^{\mu } &=\frac{k_1M^{\mu }}{( 1+t) ^{\beta +c\mu }}( 1-\frac{cM^{1-\mu }}{k_1( 1+t) ^{1-\beta +c( 1-\mu ) }}) \\ &\geq \frac{k_1M^{\mu }}{( 1+t) ^{\beta +c\mu }}( 1-\frac{ cM^{1-\mu }}{k_1}) \\ &\geq \frac{k_2}{( 1+t)^{\gamma }} \\ &\geq H'( t) +\frac{k_1}{( 1+t) ^{\beta }}( H( t) ) ^{\mu }. \end{align*} Since $\phi ( T) \geq H( T) $, thanks to Lemma \ref{PrinComp}, for all $t\geq T$, we obtain \[ H( t) \leq \phi ( t) =\frac{M}{( 1+t)^{c}}. \] \end{proof} \begin{proof}[Proof of Theorem \ref{ThePrincipal}] Let $\varepsilon >0$. We define the function \begin{equation} H(t)={\mathcal{E}}( t) +\frac{\varepsilon \| \nabla \Phi ( x( t) ) \| ^{\alpha }}{( 1+t) ^{\beta }}\langle \nabla \Phi (x(t)),\dot{x}(t)\rangle+\frac{\varepsilon }{2} \int_t^{\infty }\frac{\| \nabla \Phi (x(s))\| ^{\alpha }\| g(s)\| ^2}{(1+s)^{\beta }}\,ds. \label{9} \end{equation} By differentiating $H$ we obtain \begin{align*} H'( t) &= -a( t) \| \dot{x}(t) \| ^{\alpha +2}-\frac{\varepsilon \beta }{( 1+t) ^{\beta +1}}\| \nabla \Phi ( x( t) ) \| ^{\alpha }\langle \nabla \Phi ( x( t) ) ,\dot{x}( t) \rangle \\ &\quad +\frac{\varepsilon }{( 1+t) ^{\beta }}\| \nabla \Phi ( x( t) ) \| ^{\alpha }\langle \nabla ^2\Phi ( x( t) ) \dot{x}( t) ,\dot{x} ( t) \rangle \\ &\quad +\frac{\varepsilon }{( 1+t) ^{\beta }}\alpha \| \nabla \Phi ( x( t) ) \| ^{\alpha -2}\langle \nabla ^2\Phi ( x( t) ) \dot{x}( t) ,\nabla \Phi ( x( t) ) \rangle \langle \nabla \Phi ( x( t) ) ,\dot{x}( t)\rangle \\ &\quad -\frac{\varepsilon a( t) }{( 1+t) ^{\beta }} \| \dot{x}( t) \| ^{\alpha }\| \nabla \Phi ( x( t) ) \| ^{\alpha }\langle \nabla \Phi ( x( t) ) ,\dot{x}( t) \rangle -\frac{\varepsilon }{( 1+t) ^{\beta }}\| \nabla \Phi ( x) \| ^{2+\alpha } \\ &\quad +\frac{\varepsilon }{( 1+t) ^{\beta }}\| \nabla \Phi ( x( t) ) \| ^{\alpha }\langle \nabla \Phi ( x( t) ) ,g( t) \rangle -\frac{ \varepsilon }{2}\frac{\| \nabla \Phi (x(t))\| ^{\alpha }\| g(t)\| ^2}{(1+t)^{\beta }}. \end{align*} By the Cauchy-Schwarz inequality and by setting $M_1=\|\nabla^2\Phi ( x) \| _{\infty }$ and $M_2=\| a\| _{\infty }$ we obtain \begin{align*} H'(t) &\leq -a( t) \| \dot{x}( t) \| ^{\alpha +2}-\frac{\varepsilon }{( 1+t) ^{\beta }} \| \nabla \Phi ( x) \| ^{2+\alpha } +\frac{\varepsilon \beta }{( 1+t) ^{\beta +1}}\| \dot{x}( t) \| \| \nabla \Phi ( x( t) )\| ^{\alpha +1} \\ &\quad +\frac{\varepsilon M_1( \alpha +1) }{( 1+t) ^{\beta }}\| \dot{x}( t) \| ^2\| \nabla \Phi ( x( t) ) \| ^{\alpha } +\frac{\varepsilon M_2}{( 1+t) ^{\beta }}\| \dot{x} ( t) \| ^{\alpha +1}\| \nabla \Phi ( x( t) ) \| ^{\alpha +1} \\ &\quad +\frac{\varepsilon }{( 1+t) ^{\beta }}\| \nabla \Phi ( x( t) ) \| ^{\alpha }\| \nabla \Phi (x(t))\| \| g(t)\| -\frac{\varepsilon }{2}\frac{\| \nabla \Phi (x(t))\| ^{\alpha }\| g(t)\| ^2}{(1+t)^{\beta }}. \end{align*} By Young's inequality, there exist $C_1,C_2>0$ such that \begin{align*} H'(t) &\leq -a( t) \| \dot{x}( t) \| ^{2+\alpha }-\frac{\varepsilon }{2( 1+t) ^{\beta }} \| \nabla \Phi ( x( t) ) \|^{2+\alpha } \\ &\quad +\frac{\varepsilon \beta }{( 1+t) ^{\beta +1}}( \| \dot{x}( t) \| ^{\alpha +2}+\| \nabla \Phi ( x( t) ) \| ^{\alpha +2}) \\ &\quad +\frac{\varepsilon }{( 1+t) ^{\beta }}( C_1\| \dot{x}( t) \| ^{\alpha +2}+\frac{1}{8}\| \nabla \Phi ( x( t) ) \| ^{\alpha +2}) \\ &\quad +\frac{\varepsilon }{( 1+t) ^{\beta }}( C_2\| \dot{x}( t) \| ^{( \alpha +2) ( \alpha +1) }+\frac{1}{8}\| \nabla \Phi ( x( t) ) \| ^{\alpha +2}) . \end{align*} By using \eqref{Vitessetend0}, there exists $T>0$ such that \begin{equation} \label{vitesseinf1} \| \dot{x}(t)\| <1\quad \forall t\geq T. \end{equation} Then we obtain that for all $t\geq T$ (with $T$ large enough so that $(1/((1+T)^{\beta)}\leq 1/8$), \begin{equation*} H'( t) \leqslant \Big( \frac{-c+\varepsilon (\beta +C_1+C_2)}{( 1+t) ^{\beta }}\Big) \| \dot{x}(t) \| ^{2+\alpha } -\frac{\varepsilon }{8(1+t)^{\beta }}\| \nabla \Phi ( x( t) ) \|^{2+\alpha }. \end{equation*} By choosing $\varepsilon $ small enough, we obtain that for all $t\geqslant T$, \begin{equation} \label{7-2} H'( t) \leqslant -\frac{\varepsilon }{8( 1+t) ^{\beta }}( \| \dot{x}( t) \| ^{2+\alpha }+\| \nabla \Phi ( x( t) ) \|^{2+\alpha }) . \end{equation} So $H$ is nonincreasing on $[T,\infty )$ and $\lim_{t\to \infty }H(t)=0$. From \eqref{9} together with the Cauchy-Schwarz inequality we obtain for all $t>T$, \begin{align*} &[ H(t)] ^{(1-\theta )(\alpha +2)} \\ &\leq \Big[ {\mathcal{E}}( t) +\frac{\varepsilon \| \nabla \Phi ( x( t) ) \| ^{\alpha +1}}{( 1+t) ^{\beta }}\| \dot{x}(t)\| +\frac{\varepsilon }{2} \int_t^{\infty }\frac{\| \nabla \Phi (x(s))\| ^{\alpha }\| g(s)\| ^2}{(1+s)^{\beta }}\,ds\Big] ^{(1-\theta )(\alpha +2)} \end{align*} By using the inequality $\big(\sum_{i=1}^{5} a_i\big)^\lambda \leq 5^\lambda \sum_{i=1}^5 a_i^\lambda$ for $a_i$ nonnegative for all $i$ and $0\leq\lambda\leq2$, we obtain that for all $t\geq T$, \begin{equation} \label{EstiH} \begin{aligned} {}[ H(t)]^{(1-\theta )(\alpha +2)} &\leq C_3\big[ \frac{1}{2}\| \dot{x}( t) \|^2 \big] ^{(1-\theta )(\alpha +2)}+C_3[ \Phi ( x( t) ) -\min \Phi ] ^{(1-\theta )(\alpha +2)} \\ &\quad +C_3\Big[ \int_t^{+\infty }\langle g( s) ,\dot{x}( s) \rangle\,ds \Big] ^{(1-\theta )(\alpha +2)}\\ &\quad +C_3\Big[ \frac{\varepsilon \| \nabla \Phi ( x( t) ) \| ^{\alpha +1}}{( 1+t) ^{\beta }}\| \dot{x}(t)\|\Big] ^{(1-\theta )(\alpha +2)}\\ &\quad + C_3\Big[ \frac{\varepsilon }{2}\int_t^{\infty }\frac{\| \nabla \Phi (x(s))\| ^{\alpha }\| g(s)\| ^2}{(1+s)^{\beta }}\,ds\Big] ^{(1-\theta )(\alpha +2)}. \end{aligned} \end{equation} where $C_3=5^{(1-\theta )(\alpha +2)}$. By using \eqref{vitesseinf1} and since $2(1-\theta )(\alpha +2)\geq \alpha +2$ we have \begin{equation} [ \| \dot{x}(t)\| ^2]^{(1-\theta )(\alpha +2)}\leq \| \dot{x }(t)\| ^{\alpha +2} \label{EstimaVitesse} \end{equation} Now by using (H4) and Lemma \ref{LojUniforme} we obtain that for all $t\geq T$, \begin{equation} [ \Phi ( x( t) ) -\min \Phi ] ^{(1-\theta )(\alpha +2)}\leq \| \nabla \Phi (x(t))\| ^{\alpha +2}. \label{EstimaPhi} \end{equation} Young's inequality yields \begin{equation} \label{Estimag} \begin{aligned} &\Big| \int_t^{\infty }\langle g(s),\dot{x}(s)\rangle\,ds\Big|^{(1-\theta ) (\alpha +2)}\\ &\leq K({\rho })\Big( \int_t^{+\infty }\| g(s)\| ^{\frac{\alpha +2}{\alpha +1}}(1+t)^{\frac{\beta }{\alpha +1} }\,ds\Big) ^{(\alpha +2)(1-\theta )} \\ &\quad + \rho ( \int_t^{+\infty }\frac{\| \dot{x}(s)\| ^{\alpha +2}}{ (1+t)^{\beta }}\,ds) ^{(1-\theta )(\alpha +2)} , \end{aligned} \end{equation} where $\rho $ is a small positive constant which will be fixed in the sequel. Using (H2) we obtain \begin{equation} \Big( \int_t^{+\infty }\| g(s)\| ^{\frac{\alpha +2}{\alpha +1} }(1+t)^{\frac{\beta }{\alpha +1}}\,ds\Big) ^{(\alpha +2)(1-\theta )} \leq C_{4}(1+t)^{-\chi}, \label{Estimag+1} \end{equation} where \[ \chi =\frac{1+\alpha \delta +2\delta -\beta }{1+\alpha }(\alpha +2)(1-\theta ). \] Once again, by applying Young's inequality and using the fact that $(1-\theta )(\alpha +2)\geq 1$, we obtain that for all $t\geq T$, \begin{equation} \label{Equationphivitx} \begin{aligned} &C_3\Big[ \frac{\varepsilon \| \nabla \Phi ( x( t) ) \| ^{\alpha +1}}{( 1+t) ^{\beta }}\| \dot{x} (t)\| \Big] ^{(1-\theta )(\alpha +2)} \\ &\leq C_5[ \frac{\|\nabla \Phi (x(t))\| ^{\alpha +2} +\| \dot{x}(t)\| ^{\alpha +2}}{(1+t)^{\beta }}] ^{(1-\theta )(\alpha +2)} \\ &\leq C_5(\| \nabla \Phi (x(t))\| ^{\alpha +2}+\| \dot{x} (t)\| ^{\alpha +2}). \end{aligned} \end{equation} Now, since $x$ is bounded and by (H2), we obtain \begin{equation} C_3\Big[ \frac{\varepsilon }{2}\int_t^{\infty }\frac{\| \nabla \Phi (x(s))\| ^{\alpha }\| g(s)\| ^2}{(1+s)^{\beta }}\,ds\Big] ^{(1-\theta )(\alpha +2)}\leq C_{6}(1+t)^{-\eta }, \label{EstimaPhig} \end{equation} where $\eta =(1+2\delta +\beta )(1-\theta )(\alpha +2)$. By combining \eqref{EstiH}, \eqref{EstimaVitesse}, \eqref{EstimaPhi}, \eqref{Estimag}, \eqref{Estimag+1}, \eqref{Equationphivitx} and \eqref{EstimaPhig} we obtain \begin{equation} \label{estimHavantFinal} \begin{aligned} &[ H(t)] ^{(1-\theta )(\alpha +2)} \\ &\leq C_{7}(\| \dot{x} (t)\| ^{\alpha +2}+\| \nabla \Phi (x(t))\| ^{\alpha +2}) \\ &\quad +C_{8}(1+t)^{-\chi }+C_{9}(1+t)^{-\eta } +\rho \Big(\int_t^{+\infty }\frac{\| \dot{x}(s)\| ^{\alpha +2}} {(1+t)^{\beta }} \,ds\Big) ^{(1-\theta )(\alpha +2)} \\ &\leq C_{7}(\| \dot{x}(t)\| ^{\alpha +2}+\| \nabla \Phi (x(t))\| ^{\alpha +2}) \\ &\quad +C_{10}(1+t)^{-\chi }+\rho \Big( \int_t^{+\infty }\frac{\| \dot{x}(s)\| ^{\alpha +2}}{(1+t)^{\beta }}\,ds\Big) ^{(1-\theta)(\alpha +2)} , \end{aligned} \end{equation} where we use the fact that $\eta >\chi $ in the last inequality. On the other hand, by integrating \eqref{7-2} over $(t,\infty )$, we obtain \[ \Big( \int_t^{\infty }\frac{\| \dot{x}(s)\| ^{\alpha +2}}{ (1+t)^{\beta }}\,ds\Big) ^{(1-\theta )(\alpha +2)} \leq \Big( \frac{8}{\varepsilon }H(t)\Big) ^{(1-\theta )(\alpha +2)}. \] Now by choosing $\rho $ in \eqref{Estimag} such that $\rho (8/\varepsilon)^{(1-\theta )(\alpha +2)}<1/2$, estimate \eqref{estimHavantFinal} becomes \begin{equation} [ H(t)]^{(1-\theta )(\alpha +2)}\leq C_{11}(\| \dot{x}(t)\| ^{\alpha +2}+\| \nabla \Phi (x(t))\| ^{\alpha +2})+C_{12}(1+t)^{-\chi}. \end{equation} Now, by combining \eqref{7-2} with the above inequality, we obtain that for all $t\geq T$ \begin{align*} -H'( t) &\geq \frac{\varepsilon }{8( 1+t) ^{\beta }}( \| \dot{x}( t) \| ^{2+\alpha}+\| \nabla \Phi ( x( t) ) \| ^{2+\alpha }) \\ &\geq C_{13}\frac{[H(t)]^{(1-\theta )(\alpha +2)}}{(1+t)^{\beta }} -C_{14}(1+t)^{-\chi -\beta }. \end{align*} We finally obtain the differential inequality \[ H'( t) +\frac{C_{13}}{( 1+t) ^{\beta }}[ H( t) ] ^{( 2+\alpha ) ( 1-\theta ) }\leqslant \frac{C_{14}}{( 1+t) ^{^{\chi +\beta }}}. \] By using Lemma \ref{IneqDiff}, there exists $M>0$ such that for all $t\geq T$, \begin{equation*} H( t) \leq \frac{M}{( 1+t) ^{\nu }} \end{equation*} where \begin{align*} \nu &=\inf \Big( \frac{\chi }{( 2+\alpha ) ( 1-\theta) }, \frac{1-\beta }{( 2+\alpha ) ( 1-\theta ) -1}\Big) \\ & = \inf \Big( \delta +\frac{1+\delta -\beta }{1+\alpha },\frac{1-\beta }{ ( 2+\alpha ) ( 1-\theta ) -1}\Big) . \end{align*} Once again from \eqref{7-2}, \[ \frac{\varepsilon }{8( 1+t) ^{\beta }}\| \dot{x}(t) \| ^{2+\alpha }\leq -H'( t) . \] Then for all $t>T$, \[ \int_t^{2t}\frac{\varepsilon }{8( 1+s) ^{\beta }}\| \dot{x}( s) \| ^{2+\alpha }ds \leq H( t) \leq \frac{M}{( 1+t)^{\nu }}. \] H\"older's inequality yields \begin{align*} \int_t^{2t}\| \dot{x}( s) \| ds &\leq t^{\frac{1+\alpha }{2+\alpha }}\Big( \int_t^{2t}\| \dot{x} (s) \| ^{2+\alpha }ds\Big) ^{\frac{1}{2+\alpha }} \\ &\leq t^{\frac{1+\alpha }{2+\alpha }}\Big( \frac{8( 1+2t) ^{\beta }}{\varepsilon }\int_t^{2t}\frac{\varepsilon }{8( 1+s) ^{\beta }}\| \dot{x}( s) \| ^{2+\alpha }ds\Big) ^{\frac{1}{2+\alpha }} \\ &\leq t^{\frac{1+\alpha }{2+\alpha }}\Big( \frac{8( 1+2t)^{\beta }}{\varepsilon }\frac{M}{( 1+t)^{\nu }} \Big)^{\frac{1}{2+\alpha }} \leq \frac{C_{15}}{t^{\lambda }}, \end{align*} where \begin{align*} \lambda &=\frac{\nu }{2+\alpha }-\frac{\alpha +1+\beta }{2+\alpha } \\ &=\inf \Big( \big[ \frac{\theta -( \alpha +\beta ) ( 1-\theta ) }{( 1-\theta ) ( \alpha +2) -1}\big] ,\big[ \frac{\delta -( \alpha +\beta ) }{( \alpha +1) }\big] \Big)>0 . \end{align*} Then \begin{align*} \int_t^{+\infty }\| \dot{x}( s) \| ds &\leq \sum_{n=0}^{+\infty }\int_{2^{n}t}^{2^{n+1}t}\| \dot{x} ( s) \| ds \\ &\leq \sum_{n=0}^{+\infty }\frac{C_{15}}{2^{n\lambda }t^{\lambda }}\\ &\leq \frac{C_{15}}{t^{\lambda }( 1-2^{-\lambda }) } \end{align*} and the result follows since \[ \| x(t) -x(\tau)\| \leq \int_t^\tau \| \dot{x} (s)\|\, ds \leq \int_t^{\infty } \| \dot{x}(s)\| ds. \] \end{proof} \begin{thebibliography}{99} \bibitem{AtGoRe00} H. Attouch, X. Goudou, P. Redont; \emph{The heavy ball with friction method, {I}. The continuous dynamical system: global exploration of the local minima of a real-valued function asymptotic by analysis of a dissipative dynamical system}. Commun. Contemp. Math. \textbf{2} (2000),1-34. \bibitem{AABR02} F. Alvarez, H. Attouch, J. Bolte, P. Redont; \emph{A second-order gradient-like dissipative dynamical system with Hessian-driven damping}. Application to optimization and mechanics. J. Math. Pures Appl. (9) \textbf{ 81} (2002), 747-779. \bibitem{BenHassenChergui} I. Ben Hassen, L. Chergui; \emph{Convergence of global and bounded solutions of some nonautonomous second order evolution equations with nonlinear dissipation}. J. Dyn. Differ. Equations \textbf{23} (2011), 315-332. \bibitem{CabotEnglerGadat} A. Cabot, H. Engler, S. Gadat; \emph{On the long time behavior of second order differential equations with asymptotically small dissipation}. Trans. Amer. Math. Soc. \textbf{361} (2009), 5983-6017. \bibitem{CabotFrankel} A. Cabot, P. Frankel; \emph{Asymptotics for some semilinear hyperbolic equations with non-autonomous damping}. J. Differential Equations \textbf{252} (2012), 294-322. \bibitem{Chergui08} L. Chergui; \emph{Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity}, J. Dyn. Differ. Equations \textbf{20} (2008), 643-652. \bibitem{Ch03} R. Chill; \emph{On the Lojasiewicz-Simon gradient inequality}. J. Funct. Anal. \textbf{201} (2003), 57-601. \bibitem{ChHaJe09} R. Chill, A. Haraux, M. A. Jendoubi; \emph{Applications of the Lojasiewicz-Simon gradient inequality to gradient-like evolution equations}. Anal. Appl. (Singap.) \textbf{7} (2009), 35-372. \bibitem{Kurd05} D. D'Acunto, K. Kurdyka; \emph{Explicit bounds for the Lojasiewicz exponent in the gradient inequality for polynomials}, Ann. Polon. Math. 87 (2005), 51-61. \bibitem{Ha90} A. Haraux; \emph{Syst\`emes dynamiques dissipatifs et applications}, Masson, Paris, 1990. \bibitem{HaJe98} A. Haraux, M. A. Jendoubi; \emph{Convergence of solutions of second-order gradient-like systems with analytic nonlinearities}. J. Differential Equations \textbf{144} (1998), 313-320. \bibitem{HaJe01} A.~Haraux, M.~A. Jendoubi; \emph{Decay estimates of the solutions to some evolution problems with an analytic nonlinearity}. Asymptotic Analysis. \textbf{26} (2001) 21-36. \bibitem{HaJe13} A. Haraux, M. A. Jendoubi; \emph{Asymptotics for a second order differential equation with a linear}, slowly time-decaying damping term. Evol. Equ. Control Theory \textbf{2} (2013), 461-470. \bibitem{JeMa14} M. A. Jendoubi, R. May; \emph{Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term}. Applicable Analysis 94 (2015), 435-443. \end{thebibliography} \end{document}