\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 31, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/31\hfil Exact controllability of a wave equation] {Exact controllability problem of a wave equation in non-cylindrical domains} \author[H. Wang, Y. He, S. Li \hfil EJDE-2015/31\hfilneg] {Hua Wang, Yijun He, Shengjia Li} \address{Hua Wang \newline School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China} \email{197wang@163.com} \address{Yijun He \newline School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China} \email{heyijun@sxu.edu.cn} \address{Shengjia Li (corresponding author)\newline School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China} \email{shjiali@sxu.edu.cn} \thanks{Submitted December 6, 2014. Published January 30, 2015.} \subjclass[2000]{35L05, 93B05} \keywords{Exact controllability; non-cylindrical domain;\hfill\break\indent Hilbert uniqueness method} \begin{abstract} Let $\alpha: [0, \infty)\to(0, \infty)$ be a twice continuous differentiable function which satisfies that $\alpha(0)=1$, $\alpha'$ is monotone and $00$. We define the non-cylindrical domain $\widehat{Q}_{T}^{\alpha}$ by \[ \widehat{Q}_{T}^{\alpha}=\{(y, t)\in\mathbb{R}^{2}: 0T^*$, \eqref{11} is exactly controllable at time $T$. \end{theorem} Similarly, for the exact controllability problem, when the control is acting on the fixed endpoint, \begin{equation} \begin{gathered} u_{tt}(y, t)-u_{yy}(y, t)=0, \quad (y, t)\in \widehat{Q}_{T}^{\alpha}, \\ u(0, t)=v(t), \ u(\alpha(t), t)=0, \quad t\in (0, T),\\ u(y, 0)=u^{0}(y), \quad u_{t}(y, 0)=u^{1}(y), \quad y\in (0, 1), \end{gathered} \label{11'} \end{equation} we have the following result. \begin{theorem}\label{thm2} For any given $T>T_1^*$, \eqref{11'} is exactly controllable at time $T$. \end{theorem} \begin{remark} \rm When $\alpha(t)=1+kt$ for some constant $k\in(0, 1)$, $T^*$ is reduced to $T_k^*$ defined in \cite{CLG}, and Theorem \ref{thm1} is reduced to \cite[Theorem 1.1]{CLG}. \end{remark} \begin{remark} \rm Theorem \ref{thm2} extends the results in \cite{CS1} and \cite{CS2}. In fact, when $\alpha(t)=1+kt$, an exact controllability result of system \eqref{11'} has been proved for $0T^*$ where $T^*$ is given by \eqref{T*}, any $(w^0, w^1)\in L^2(0, 1)\times H^{-1}(0, 1)$ and $(w^0_d, w^1_d)\in L^2(0, 1)\times H^{-1}(0, 1)$, we can always find a control $v\in L^2(0, T)$ such that the corresponding solution by transposition $w$ of \eqref{12} satisfies $w(T)=w^0_d$, $w_t(T)=w^1_d$. \end{theorem} Similarly, \eqref{11'} can be transformed into the wave equation with variable coefficients, \begin{equation} \begin{gathered} w_{tt}-\big[\frac{\beta(x, t)}{\alpha(t)}w_{x}\big]_{x} +\frac{\gamma(x, t)}{\alpha(t)}w_{tx} +\frac{\tau(x, t)}{\alpha(t)}w_{x}=0, \quad \text{in } Q_T, \\ w(0, t)=v(t), \quad w(1, t)=0, \quad t\in (0, T),\\ w(x, 0)=w^{0}(x), \quad w_{t}(x, 0)=w^{1}(x), \quad x\in (0, 1), \end{gathered} \label{12'} \end{equation} and Theorem \ref{thm2} can be restated as the following exact controllability result for equation\eqref{12'}. \begin{theorem}\label{t3} For any $T>T^*_1$ where $T^*_1$ is given by \eqref{T^*1}, any $(w^0, w^1)\in L^2(0, 1)\times H^{-1}(0, 1)$ and $(w^0_d, w^1_d)\in L^2(0, 1)\times H^{-1}(0, 1)$, we can always find a control $v\in L^2(0, T)$ such that the corresponding solution by transposition $w$ of \eqref{12'} satisfies $w(T)=w^0_d$, $w_t(T)=w^1_d$. \end{theorem} \section{Description of the Hilbert uniqueness method} In this section, we describe the Hilbert uniqueness method which is used in the proof of Theorems \ref{t2} and \ref{t3}. Next, we consider Theorem \ref{t2} in detail. Firstly, for any $(w^0_d, w^1_d)\in L^2(0, 1)\times H^{-1}(0, 1)$, the system \begin{equation} \begin{gathered} \alpha(t)\xi_{tt}-\big[\beta(x, t)\xi_{x}\big]_{x}+\gamma(x, t)\xi_{tx} +\tau(x, t)\xi_{x}=0, \quad \text{in } Q_T, \\ \xi(0, t)=0, \quad \xi(1, t)=0, \quad t\in (0, T), \\ \xi(x, T)=w^0_d(x), \quad \xi_{t}(x, T)=w^1_d(x), \quad x\in (0, 1) \end{gathered} \end{equation} has a unique solution $\xi \in C([0, T]; L^2(0, 1))\cap C^1([0, T]; H^{-1}(0, 1))$ in the sense of transportation. Secondly, for any $(z^0, z^1)\in H_0^1(0, 1)\times L^2(0, 1)$, we solve \begin{equation}\label{13} \begin{gathered} \alpha(t)z_{tt}-[\beta(x, t)z_{x}]_{x}+\gamma(x, t)z_{xt}+\tau(x, t)z_{x}=0, \quad \text{in } Q_T, \\ z(0, t)=z(1, t)=0, \quad t\in (0, T), \\ z(x, 0)=z^{0}(x), \quad z_{t}(x, 0)=z^{1}(x), \quad x\in (0, 1), \end{gathered} \end{equation} and \begin{equation}\label{115} \begin{gathered} \alpha(t)\eta_{tt}-\big[\beta(x, t)\eta_{x}\big]_{x}+\gamma(x, t)\eta_{tx} +\tau(x, t)\eta_{x}=0, \quad \text{in}\ Q_T, \\ \eta(0, t)=0, \quad \eta(1, t)=z_{x}(1, t), \quad t\in (0, T), \\ \eta(x, T)=0, \quad \eta_{t}(x, T)=0, \quad x\in(0, 1). \end{gathered} \end{equation} Then we define a linear operator $\Lambda: H^{1}_0(0, 1)\times L^{2}(0, 1)\to H^{-1}(0, 1)\times L^{2}(0, 1)$, by $$ (z^{0}, z^{1})\mapsto (\eta_{t}(\cdot, 0)+\gamma(\cdot, 0)\eta_{x}(\cdot, 0) -\alpha'(0)\eta(\cdot, 0), -\eta(\cdot, 0)), $$ Lastly, the problem is reduced to prove the existence of some $(z^0, z^1)\in H^1_0(0, 1)\times L^2(0, 1)$ such that \begin{equation}\label{116} \Lambda (z^0, z^1)=([w^1-\xi_t(0)]-\alpha'(0)[w^0-\xi(0)] +\gamma(0)[w^0_x-\xi_x(0)] -[w^0-\xi(0)]). \end{equation} To solve \eqref{116}, we observe that \begin{equation}\label{4.3} \int_0^1\beta(1, t)|z_x(1, t)|^2dt=\langle\Lambda(z^0, z^1), (z^0, z^1)\rangle_{H^{-1}(0, 1)\times L^2(0, 1), H_0^1(0, 1)\times L^2(0, 1)}. \end{equation} In section 3, we prove the following observability inequality for system \eqref{13}: there exists a constant $C>0$ such that \begin{equation}\label{21} \int_0^T\beta(1, t)|z_x(1, t)|^2dt \ge C\big(\|z^0\|^2_{H_0^1(0, 1)}+\|z^1\|^2_{L^2(0, 1)}\big). \end{equation} Also, we prove that $\Lambda$ is a bounded linear operator; i.e., there exists a constant $C>0$ such that \begin{equation}\label{117} \int^{T}_0\beta(1, t)|z_{x}(1, t)|^{2}dt \leq C (||z^{0}||^{2}_{H^{1}_0(0, 1)}+||z^{1}||^{2}_{L^{2}(0, 1)}). \end{equation} Combining \eqref{21}, \eqref{117} and the Lax-Milgram Theorem, we can show that $\Lambda$ is an isomorphism. Then, the equation\eqref{116} has a unique solution $(z^0, z^1)\in H^1_0(0, 1)\times L^2(0, 1)$, and the function $z_x(1,t)$ is the desired control such that the solution $w$ of \eqref{12} satisfies $w(T)=w^0_d$, $w_t(T)=w^1_d$. For the proof of Theorem \ref{t3}, the steps are similar to those of Theorem \ref{t2}. In this case, instead of \eqref{115}, we consider the following homogeneous wave equation \begin{equation} \begin{gathered} \alpha(t)\eta_{tt}-\big[\beta(x, t)\eta_{x}\big]_{x}+\gamma(x, t)\eta_{tx} +\tau(x, t)\eta_{x}=0, \quad \text{in}\ Q_T, \\ \eta(0, t)=z_x(0, t), \quad \eta(1, t)=0, \quad t\in (0, T), \\ \eta(x, T)=0, \quad \eta_{t}(x, T)=0, \quad x\in (0, 1), \end{gathered} \end{equation} and define a linear operator $\Lambda$ just same as \eqref{116}, then we observe that \begin{equation} \int_0^1\beta(0, t)|z_x(0, t)|^2dt =-\langle\Lambda(z^0, z^1), (z^0, z^1)\rangle_{H^{-1}(0, 1)\times L^2(0, 1), H_0^1(0, 1)\times L^2(0, 1)}. \end{equation} We omit the details of the proof here. \section{Observability estimates} The main purpose of this section is to prove the observability inequalities for system \eqref{13}. To prove those estimates, we need some technical lemmas. From \cite{MM2}, we know that: for any $(z^0, z^1)\in H_0^1(0, 1)\times L^2(0, 1)$, the equation \eqref{13} has a unique weak solution $z\in C([0, T]; H_0^1(0, 1))\cap C^1([0, T]; L^2(0, 1))$ in the sense of transportation. The energy for \eqref{13} is defined as \begin{equation} E(t)=\frac{1}{2}\int^{1}_0[\alpha(t)|z_{t}(x, t)|^{2} +\beta(x, t)|z_{x}(x, t)|^{2}]dx, \quad \text{for } t\geq0, \end{equation} where $z$ is the solution of \eqref{13}. Since $\alpha(0)=1$, we have \begin{equation} E_0:=E(0)=\frac12\int_0^1\big[|z^1(x)|^2+\beta(x, 0)|z^0_x(x)|^2\big]dx. \end{equation} First, we prove a lemma which is related to the decay rate of the energy $E(t)$. \begin{lemma} \label{lm3.1} If $\alpha(0)=1$, $00$, for any $(z^{0}, z^{1})\in H^{1}_0(0, 1)\times L^{2}(0, 1)$, there exists a constant $C>0$ such that the solution of \eqref{13} satisfies the following two estimates: \begin{gather}\label{119} \int^{T}_0\beta(1, t)|z_{x}(1, t)|^{2}dt \leq C (||z^{0}||^{2}_{H^{1}_0(0, 1)}+||z^{1}||^{2}_{L^{2}(0, 1)}), \\ \label{118} \int_0^T\beta(0, t)|z_x(0, t)|^2dt \leq C (||z^{0}||^{2}_{H^{1}_0(0, 1)}+||z^{1}||^{2}_{L^{2}(0, 1)}); \end{gather} so $z_x(0, \cdot)\in L^2(0, T)$ and $z_x(1, \cdot)\in L^2(0, T)$. \end{theorem} \begin{proof} First, we prove inequality \eqref{119}. Let $q(x)=x$ for $x\in [0, 1]$ in \eqref{17} and noticing that $\beta_x(x, t)=-\frac{2\alpha'^2(t)x}{\alpha(t)}$, $\gamma(x, t)=-2\alpha'(t)x$, it follows that \begin{equation} \label{112} \begin{aligned} & \frac12\int_0^T\beta(1, t)|z_x(1, t)|^2dt \\ &=\int_0^TE(t)dt-\int_0^T\int_0^1\alpha'(t)xz_t(x, t)z_x(x, t)\,dx\,dt \\ &\quad +\int_0^T\int_0^1\frac{\alpha'^2(t)}{\alpha(t)}x^2|z_x(x, t)|^2\,dx\,dt \\ &\quad +\int_0^1[\alpha(t)xz_t(x, t)z_x(x, t)-\alpha'(t)x^2|z_x(x, t)|^2]dx\Big|_0^T. \end{aligned} %\label{beta1t} \end{equation} We estimate every terms on the right side of \eqref{112}. By the assumption for $\alpha$, we have $1\le\alpha(t)\le 1+c_2T$ and $0<\frac{1-c_2^2}{1+c_2T}\le\beta(x, t)\le1$ for any $(x, t)\in Q_T$, these inequalities together with \eqref{14} and the boundedness of $\alpha'(t)$ imply \begin{equation} \begin{aligned} &\int_0^TE(t)dt-\int_0^T\int_0^1\alpha'(t)xz_t(x, t)z_x(x, t)\,dx\,dt \\ &+\int_0^T\int_0^1\frac{\alpha'^2(t)}{\alpha(t)}x^2|z_x(x, t)|^2\,dx\,dt \\ &\le \int_0^TE(t)dt+C\int_0^T\int_0^1[|z_t(x, t)|^2+|z_x(x, t)|^2]\,dx\,dt \\ &\le \int_0^TE(t)dt+C\int_0^T\int_0^1[\alpha(t)|z_t(x, t)|^2+\beta(x, t)|z_x(x, t)|^2]\,dx\,dt \\ &\le CE_0. \end{aligned} \label{CE0} \end{equation} For each $t\in[0, T]$ and $\epsilon(t)>0$, it holds that \begin{align*} &\Big|\int_0^1[\alpha(t)xz_t(x, t)z_x(x, t)-\alpha'(t)x^2|z_x(x, t)|^2]dx\Big|\\ &\leq \int_0^1[\alpha(t)|z_t(x, t)||z_x(x, t)|+\alpha'(t)|z_x(x, t)|^2]dx\\ &\leq \frac{1}{2\epsilon(t)}\int^1_0\alpha^2(t)|z_t(x, t)|^2dx +\frac{\epsilon(t)}{2}\int^1_0|z_x(x, t)|^2dx +\int^1_0\alpha'(t)|z_x(x, t)|^2dx\\ &\leq \frac{\alpha(t)}{2\epsilon(t)}\int^1_0\alpha(t)|z_t(x, t)|^2dx + [\frac{\epsilon(t)}{2}+\alpha'(t)] \frac{\alpha(t)}{1-\alpha'^2(t)}\int^1_0\beta(x, t)|z_x(x, t)|^2dx. \end{align*} Choosing $\epsilon(t)=1-\alpha'(t)$, then it is easy to see $$ \epsilon(t)>0\ \text{and}\ \frac{\alpha(t)}{\epsilon} =[\frac{\epsilon}{2}+\alpha'(t)]\frac{2\alpha(t)}{1-\alpha'^2(t)} =\frac{\alpha(t)}{1-\alpha'(t)}. $$ This implies that $$ \Big|\int_0^1[\alpha(t)xz_t(x, t)z_x(x, t)-\alpha'(t)x^2|z_x(x, t)|^2]dx\Big| \le \frac{\alpha(t)}{1-\alpha'(t)}E(t)\le\frac{\alpha(t)}{1-c_2}E(t). $$ Then, using \eqref{14}, it follows that \begin{equation}\label{c5} \Big|\int_0^1[\alpha(t)xz_t(x, t)z_x(x, t)-\alpha'(t)x^2|z_x(x, t)|^2]dx\Big|_0^T \Big| \le c_5E_0, \end{equation} where $c_5=\frac{2c_4}{1-c_2}$. Therefore, combining \eqref{112}, \eqref{CE0} and \eqref{c5}, it follows that $$ \int_0^T\beta(1, t)|z_x(1, t)|^2dt\le CE_0 \le C\big(\|z^0\|^2_{H_0^1(0, 1)}+\|z^1\|^2_{L^2(0, 1)}\big). $$ Next, we prove the inequality \eqref{118}. Let $q(x)=x-1$ for $x\in [0, 1]$ in \eqref{17} and noticing that $\beta_x(x, t)=-\frac{2\alpha'^2(t)x}{\alpha(t)}$, $\gamma(x, t)=-2\alpha'(t)x$, it follows that \begin{equation} \label{112*} \begin{aligned} &\frac12\int_0^T\beta(0, t)|z_x(0, t)|^2dt \\ &=\int_0^TE(t)dt-\int_0^T\int_0^1\alpha'(t)(x-1)z_t(x, t)z_x(x, t)\,dx\,dt \\ &\quad +\int_0^T\int_0^1\frac{\alpha'^2(t)}{\alpha(t)}x(x-1)|z_x(x, t)|^2\,dx\,dt \\ &\quad +\int_0^1[\alpha(t)(x-1)z_t(x, t)z_x(x, t)-\alpha'(t)x(x-1)|z_x(x, t)|^2]dx \Big|_0^T. \end{aligned}%\label{beta2t} \end{equation} Through estimating every terms on the right side of \eqref{112*}, similar to the derive of \eqref{CE0}, it follows that \begin{equation} \label{327} \begin{aligned} &\int_0^TE(t)dt-\int_0^T\int_0^1\alpha'(t)(x-1)z_t(x, t)z_x(x, t)\,dx\,dt \\ &+\int_0^T\int_0^1\frac{\alpha'^2(t)}{\alpha(t)}x(x-1)|z_x(x, t)|^2\,dx\,dt \leq CE_0. \end{aligned} \end{equation} Since \begin{align*} & \Big|\int_0^1[\alpha(t)(x-1)z_t(x, t)z_x(x, t)-\alpha'(t)x(x-1)|z_x(x, t)|^2]dx \Big|\\ & \leq \int_0^1[\alpha(t)|z_t(x, t)||z_x(x, t)|+\alpha'(t)|z_x(x, t)|^2]dx, \end{align*} similar to the derive of \eqref{c5}, it follows that \begin{equation} \label{325} \Big|\int_0^1[\alpha(t)(x-1)z_t(x, t)z_x(x, t) -\alpha'(t)x(x-1)|z_x(x, t)|^2]dx\big|^T_0\Big|\leq c_5E(0), \end{equation} where $c_5=\frac{2c_4}{1-c_2}$. From \eqref{112*}, \eqref{327} and \eqref{325}, it follows that \[ \int^T_0\beta(0, t)|z_x(0, t)|^2dt\leq CE_0 \leq(||z^0||^2_{H^1_0(0, 1)}+||z^1||^2_{L^2(0, 1)}). \] \end{proof} Now, we give the proof of the observability inequalities. \begin{theorem}\label{t4} For $T>T^*$ where $T^*$ satisfies \eqref{T*} and any $(z^0, z^1)\in H_0^1(0, 1)\times L^2(0, 1)$, there exists a constant $C>0$ such that the corresponding solution of \eqref{13} satisfies \begin{equation} \int_0^T\beta(1, t)|z_x(1, t)|^2dt\ge C\big(\|z^0\|^2_{H_0^1(0, 1)} +\|z^1\|^2_{L^2(0, 1)}\big). \end{equation} \end{theorem} \begin{proof} If we choose $\epsilon(t)=\frac{\alpha'(t)}{1+\alpha'(t)}$, then it is obvious that $$ 0<\epsilon(t)<\frac12, \quad \text{and}\quad 1-\epsilon(t)=1+\Big(2-\frac{1}{\epsilon(t)}\Big) \frac{\alpha'^2(t)}{1-\alpha'^2(t)} =\frac{1}{1+\alpha'(t)}. $$ Thus, using $$ x^2=\frac{\alpha(t)x^2}{1-\alpha'^2(t)x^2}\beta(x, t) \le\frac{\alpha(t)}{1-\alpha'^2(t)}\beta(x, t) $$ and \eqref{14}, it follows that \begin{equation} \begin{aligned} &\int_0^TE(t)dt-\int_0^T\int_0^1\alpha'(t)xz_t(x, t)z_x(x, t)\,dx\,dt \\ &+\int_0^T\int_0^1\frac{\alpha'^2(t)}{\alpha(t)}x^2|z_x(x, t)|^2\,dx\,dt \\ &\ge \int_0^T\int_0^1\frac{1-\epsilon(t)}{2}\alpha(t)|z_t(x, t)|^2\,dx\,dt \\ &\quad +\int_0^T\int_0^1\big\{\frac12\beta(x, t) +(1-\frac{1}{2\epsilon(t)})\frac{\alpha'^2(t)}{\alpha(t)}x^2\big\} |z_x(x, t)|^2\,dx\,dt \\ &\ge \int_0^T\int_0^1\frac{1-\epsilon(t)}{2}\alpha(t)|z_t(x, t)|^2\,dx\,dt \\ &\quad +\int_0^T\int_0^1\big[1+\frac{(2-\frac{1}{\epsilon(t)}) \alpha'^2(t)}{1-\alpha'^2(t)}\big]\frac12\beta(x, t) |z_x(x, t)|^2\,dx\,dt \\ &=\int_0^T\frac{1}{1+\alpha'(t)}E(t)dt\\ &\ge c_6E_0\int_0^T\frac{1}{\alpha(t)}dt, \end{aligned} \label{c6} \end{equation} where $c_6=c_3/(1+c_2)$. By \eqref{112}, \eqref{c5} and \eqref{c6}, we obtain \begin{align*} \frac12\int_0^T\beta(1, t)|z_x(1, t)|^2dt &\ge c_6E_0\int_0^T\frac{1}{1+c_2t}dt-c_5E_0\\ &= \big(\frac{c_6}{c_2}\log(1+c_2T)-c_5\big)E_0. \end{align*} If we choose $T^*$ as in \eqref{T*}, then it is easy to see that \begin{equation} T^*=\frac{1}{c_2}\big\{\exp\big(\frac{c_2c_5}{c_6}\big)-1\big\}, \end{equation} so for $T>T^*$, $$ \int_0^T\beta(1, t)|z_x(1, t)|^2dt \ge C\big(\|z^0\|^2_{H_0^1(0, 1)} +\|z^1\|^2_{L^2(0, 1)}\big), $$ holds for $C=\frac{2c_6}{c_2}\log(1+c_2T)-2c_5>0$. \end{proof} \begin{theorem}\label{t6} For $T>T^*_1$ where $T^*_1$ satisfies \eqref{T^*1} and any $(z^0, z^1)\in H_0^1(0, 1)\times L^2(0, 1)$, there exists a constant $C>0$ such that the corresponding solution of \eqref{13} satisfies \begin{equation}\label{58} \int_0^T\beta(0, t)|z_x(0, t)|^2dt \geq C (||z^{0}||^{2}_{H^{1}_0(0, 1)}+||z^{1}||^{2}_{L^{2}(0, 1)}). \end{equation} \end{theorem} \begin{proof} Choosing $\epsilon(x, t)=\frac{\alpha'(t)(1-\alpha'(t)x)}{\alpha(t)}$, it is easy to see that \begin{align*} & |\alpha'(t)z_x(x, t)z_t(x, t)|\\ & \leq \frac{\alpha'^2(t)}{2\epsilon(x, t)}|z_t(x, t)|^2 +\frac{\epsilon(x, t)}{2}|z_x(x, t)|^2\\ &= \frac{\alpha'(t)}{1-\alpha'(t)x}\frac{\alpha(t)}{2}|z_t(x, t)|^2+ \frac{\alpha'(t)}{1+\alpha'(t)x}\frac{\beta(x, t)}{2}|z_x(x, t)|^2. \end{align*} Since $x-1\leq 0$ for $x\in[0, 1]$, we have \begin{equation} \label{330} \begin{aligned} &\int_0^TE(t)dt-\int_0^T\int_0^1\alpha'(t)(x-1)z_t(x, t)z_x(x, t)\,dx\,dt\\ &\quad +\int_0^T\int_0^1\frac{\alpha'^2(t)}{\alpha(t)}x(x-1)|z_x(x, t)|^2\,dx\,dt \\ &\geq \int_0^TE(t)dt+\int_0^T\int_0^1\frac{\alpha'(t)(x-1)}{1-\alpha'(t)x} \frac{\alpha(t)}{2}|z_t(x, t)|^2\,dx\,dt\\ &\quad +\frac{\alpha'(t)(x-1)}{1+\alpha'(t)x}\frac{\beta(x, t)}{2} |z_x(x, t)|^2\,dx\,dt \\ &\quad +\int_0^T\int_0^1\frac{2\alpha'^2(t)x(x-1)}{1-\alpha'^2(t)x^2} \frac{\beta(x, t)}{2}|z_x(x, t)|^2\,dx\,dt \\ &= \frac12\int^T_0\int^1_0\frac{1-\alpha'(t)}{1-\alpha'(t)x} [\alpha(t)|z_t(x, t)|^2+\beta(x, t)|z_x(x, t)|^2]\,dx\,dt \\ & \geq \int^T_0(1-\alpha'(t))E(t)dt \\ &\geq c_6^*E_0\int^T_0\frac{1}{\alpha(t)}dt, \end{aligned} \end{equation} where $c_6^*=(1-c_2)c_3$. From \eqref{112*}, \eqref{325} and \eqref{330}, we arrive at \begin{align*} & \frac12\int^T_0\beta(0, t)|z_x(0, t)|^2dt \geq c_6^*E_0\int^T_0\frac{1}{\alpha(t)}dt-c_5E_0\\ & \geq c_6^*E_0\int^T_0\frac{1}{1+c_2t}dt-c_5E_0=(\frac{c_6^*}{c_2}\log(1+c_2T)-c_5)E_0. \end{align*} If we choose $T^*_1$ as in \eqref{T^*1}, then it is easy to see that $$ T^*_1=\frac{1}{c_2}\big\{\exp(\frac{c_2c_5}{c^*_6})-1\big\}; $$ thus, when $T>T^*_1$, \[ \int^T_0\beta(0, t)|z_x(0, t)|^2dt \ge C\big(\|z^0\|^2_{H_0^1(0, 1)}+\|z^1\|^2_{L^2(0, 1)}\big). \] holds for $C=\frac{2c_6^*}{c_2}\log(1+c_2T)-2c_5>0$. \end{proof} \subsection*{Acknowledgments} The first author was partially supported by the grant No. 61403239 of the NSFC. The second author was partially supported by the grant No. 11401351 of the NSFC and by the grant No. 2014011005-2 of the Science Foundation of Shanxi Province, China. The third author was partially supported by the grant No. 61174082 of the NSFC, and by the grant No. 2011-006 of Shanxi Scholarship Council of China. \begin{thebibliography}{99} \bibitem{AAM} F. D. Araruna, G. O. Antunes, L. A. Medeiros; \emph{Exact controllability for the semilinear string equation in the non cylindrical domains}, Control cybernet, \textbf{33}(2004), 237-257. \bibitem{BCh} C. Bardos, G. Chen; \emph{Control and stabilization for the wave equation, part III: domain with moving boundary}, SIAM J. Control Optim., \textbf{19}(1981), 123-138. \bibitem{BCo} C. Bardos, J. Cooper; \emph{A nonlinear wave equation in a time dependent domain}, J. Math. Anal. Appl., \textbf{42}(1973), 29-60. \bibitem{CLG}L. Cui, X. Liu, H. Gao; \emph{Exact controllability for a one-dimensional wave equation in non-cylindrical domains}, J. Math. Anal. Appl., \textbf{402} (2013), 612-625. \bibitem{CS1} L. Cui, L. Song; \emph{Controllability for a wave equation with moving boundary}, J. Appl. Math., vol. 2014, Article ID 827698, 6 pages, 2014. doi:10. 1155/2014/827698 \bibitem{CS2} L. Cui, L. Song; \emph{Exact controllability for a wave equation with fixed boundary control}, Boundary Value Problems 2014, 2014:47. \bibitem{FYZ} X. Fu, J. Yong, X. Zhang; \emph{Exact controllability for multidimensional semilinear hyperbolic equations}, SIAM J. Control Optim., \textbf{46}(2007), 1578-1614. \bibitem{M} L. A. Medeiros; \emph{Nonlinear wave equations in domains with variable boundary}, Arch. Rat. mech. Anal., \textbf{47}(1972), 47-58. \bibitem{MM1} M. Milla Miranda; \emph{Exact controllability for the wave equation in domains with variable boundary}, Rev. Mat. Univ., \textbf{9} (1996), 435-457. \bibitem{MM2} M. Milla Miranda; \emph{HUM and the wave equation with variable coefficients}, Asymptot. Anal., \textbf{11} (1995), 317-341. \bibitem{Yao} P. Yao; \emph{On the observability inequalities for exact controllability of wave equations with variable coefficients}, SIAM J. Control Optim., \textbf{37}(1999), 1568-1599. \bibitem{Zhang} X. Zhang; \emph{A unified controllability/observability theory for some stochastic and deterministic partial differential equations}, in: Proceedings of the International Congress of Mathematicians, Vol. IV, Hindustan Book Agency, New Delhi, 2010, pp. 3008-3034. \end{thebibliography} \end{document}