\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 311, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/311\hfil Quenching behavior of semilinear heat equations] {Quenching behavior of semilinear heat equations with singular boundary conditions} \author[B. Selcuk, N. Ozalp \hfil EJDE-2015/311\hfilneg] {Burhan Selcuk, Nuri Ozalp} \address{Burhan Selcuk \newline Department of Computer Engineering, Karabuk University, Bali klarkayasi Mevkii 78050, Turkey} \email{bselcuk@karabuk.edu.tr, burhanselcuk44@gmail.com} \address{Nuri Ozalp \newline Department of Mathematics, Ankara University, Besevler 06100, Turkey} \email{nozalp@science.ankara.edu.tr} \thanks{Submitted October 16, 2015. Published December 21, 2015.} \subjclass[2010]{35K05, 35K15, 35B50} \keywords{Heat equation; singular boundary condition; quenching; \hfill\break\indent maximum principle; monotone iteration} \begin{abstract} In this article, we study the quenching behavior of solution to the semilinear heat equation $$ v_t=v_{xx}+f(v), $$ with $f(v)=-v^{-r}$ or $(1-v)^{-r}$ and $$ v_x(0,t)=v^{-p}(0,t), \quad v_x(a,t) =(1-v(a,t))^{-q}. $$ For this, we utilize the quenching problem $u_t=u_{xx}$ with $u_x(0,t)=u^{-p}(0,t)$, $u_x(a,t)=(1-u(a,t))^{-q}$. In the second problem, if $u_0$ is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is $x=0$ ($x=a$) and $u_t$ blows up at quenching time. Further, we obtain a local solution by using positive steady state. In the first problem, we first obtain a local solution by using monotone iterations. Finally, for $f(v)=-v^{-r}$ ($(1-v)^{-r}$), if $v_0$ is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is $x=0$ ($x=a$) and $v_t$ blows up at quenching time. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In this article, we study the quenching behavior of solutions to the semilinear heat equation with singular boundary conditions: \begin{equation} \label{e1} \begin{gathered} v_t=v_{xx}+f(v),\quad 00,T\leq \infty$, $f(u)=-v^{-r}$ or $f(u)=(1-v)^{-r}$. The initial function $v_0:[0,a]\to (0,1)$ satisfies the compatibility conditions \begin{equation*} v_0'(0)=v_0^{-p}(0),\quad v_0'(a)=(1-v_0(a))^{-q}. \end{equation*} Our main purpose is to examine the quenching behavior of the solutions of the problem \eqref{e1} having two singular heat sources. A solution $v(x,t)$ of the problem \eqref{e1} is said to quench if there exists a finite time $T$ such that \begin{equation*} \lim_{t\to T^{-}} \max \{v(x,t):0\leq x\leq a\} \to 1\quad \text{or}\quad \lim_{t\to T^{-}} \min \{v(x,t):0\leq x\leq a\} \to 0. \end{equation*} For the rest of this article, we denote the quenching time of \eqref{e1} with $T$. To study Problem \eqref{e1}, we utilize the following problem \begin{equation} \label{e2} \begin{gathered} u_t=u_{xx},\quad 00$, $T\leq \infty$, $D=(0,a)$, $\Omega =D\times (0,T)$. They showed that $x=a$ is the unique quenching point in finite time if $u_0$ is a lower solution, and $u_t$ blows up at quenching time. Further, they obtained criteria for nonquenching and quenching by using the positive steady states. Selcuk and Ozalp \cite{s1} considered the problem \begin{gather*} u_t=u_{xx}+(1-u)^{-p},\quad 00$. Thus, the theorem is proved. \end{proof} \begin{lemma} \label{lem1} \begin{itemize} \item[(i)] If $u_{xx}(x,0)\geq 0$ in $(0,a)$, then we obtain $u_t>0$ in $(0,a)\times (0,T)$. \item[(ii)] If $u_{xx}(x,0)\leq 0$ in $(0,a)$, then we obtain $u_t<0$ in$ (0,a)\times (0,T)$. \end{itemize} \end{lemma} \begin{proof} (i) Since $u_{xx}(x,0)\geq 0$ in $(0,a)$, $u_0'(0)=u_0^{-p}(0)$, $u_0'(a)=(1-u_0(a))^{-q}$, it follows that $u_0(x)$ is a lower solution of the problem \eqref{e1} from Definition \ref{def1}. The strong maximum principle implies that \begin{equation*} u(x,t)\geq u_0(x)\quad \text{in }(0,a)\times (0,T). \end{equation*} Let $h$ be a positive number less than $T$, and \begin{equation*} z(x,t)=u(x,t+h)-u(x,t). \end{equation*} Then \begin{gather*} z_t = z_{xx}\quad \text{in }(0,a)\times (0,T-h), \\ z(x,0) \geq 0\quad \text{on }[0,a], \\ z_x(0,t) = -p\xi ^{-p-1}(t)z(0,t),z_x(a,t) =q(1-\eta (t))^{-q-1}z(a,t),\quad 00$ in $(0,a)\times (0,T)$. \smallskip (ii) If $u_{xx}(x,0)\leq 0$ in $(0,a)$, then from the above proof we have $u_t\leq 0$ on $[0,a]\times (0,T)$ and $u_t<0$ in $(0,a)\times (0,T)$. The proof is complete. \end{proof} Now we show that, if $u_{xx}(x,0)\leq 0$ in $(0,a)$, namely, if $u_0$ is an upper solution, then we have quenching point at $x=0$. \begin{theorem} \label{thm2} If $u_0$ is an upper solution, then there exist a finite time $T$, such that the solution $u$ of the problem \eqref{e2} quenches at time $T$. \end{theorem} \begin{proof} Assume that $u_0$ is an upper solution. Then \begin{equation*} \omega =-(1-u(a,0))^{-q}+u^{-p}(0,0)>0. \end{equation*} Introduce a mass function; $m(t)=\int_0^{a}u(x,t)dx$, $01$ and $u_{xx}=u_t<0$ in $(0,a)\times (0,T)$, then $u_x$ is a decreasing function and so, $u_x(x,t)>1$ in $(0,a)\times (0,T)$. Let $\eta \in (0,a)$. Integrating this with respect to $x$ from $0$ to $\eta $, we have \begin{equation*} u(\eta ,t)>u(0,t)+\eta >0. \end{equation*} So $u$ does not quench in $(0,a]$. The proof is complete. \end{proof} \begin{theorem} \label{thm4} If $u_0$ is an upper solution, then $u_t$ blows up at quenching time. \end{theorem} \begin{proof} Suppose that $u_t$ is bounded on $[0,a]\times[ 0,T)$. Then, there exists a positive constant $M$ such that $ u_t>-M$. We have $u_{xx}>-M$. Integrating this twice with respect to $x$ from $0$ to $x$, and then from $0$ to $a$, we have \begin{equation*} \frac{-a}{u^{p}(0,t)}>-\frac{Ma^{2}}{2}-u(a,t)+u(0,t). \end{equation*} As $t\to T^{-}$, the left-hand side tends to negative\ infinity, while the right-hand side is finite. This contradiction shows that $u_t$ blows up somewhere. \end{proof} Now, we show that, if $u_{xx}(x,0)\geq 0$ in $(0,a)$, namely $u_0$ is a lower solution then we have quenching point at $x=a$. \begin{theorem} \label{thm5} If $u_0$ is a lower solution, then there exist a finite time $T$, such that the solution $u$ of the problem \eqref{e2} quenches at time $T$. \end{theorem} \begin{proof} Assume that $u_0$ is a lower solution. Then, we obtain \begin{equation*} \omega =(1-u(a,0))^{-q}-u^{-p}(0,0)>0. \end{equation*} Introduce a mass function $m(t)=\int_0^{a}(1-u(x,t))dx$, $01$ and $u_{xx}=u_t>0$ in $(0,a)\times (0,T)$. Then, $u_x$ is an increasing function and so, $u_x(x,t)>1$ in $(0,a)\times (0,T)$. Let $\varepsilon \in (0,a)$. Integrating this with respect to $x$ from $a-\varepsilon $ to $a$, we have \begin{equation*} u(a-\varepsilon ,t)0$ for $00$, it follows from \eqref{e6} that $\max_{00$ for $01$. Let $\mu ^{(k)}=\overline{u}^{(k)}-\overline{u}^{(k+1)}$. From \eqref{e7} and \eqref{e8}, we obtain \begin{gather*} \mu _t^{(k)}-\mu _{xx}^{(k)}=f(x,t,\overline{u}^{(k-1)})-f(x,t,\overline{u} ^{(k)})\geq 0,\quad 00$ in$ (0,a)\times [ 0,T)$ by strong maximum principle. (ii) $(f(v)=-v^{-r})$ If $v_{xx}(x,0)-v^{-r}(x,0)\leq 0$ in $(0,a)$ (i.e., if $v_0$ is an upper solution), then $v_t(x,t)\leq 0$ in $ [0,a]\times [ 0,T)$. Also, we obtain $v_t(x,t)<0$ in$ (0,a)\times [ 0,T)$ by the strong maximum principle. \end{lemma} \begin{proof} (i) Let us prove it by using \cite[Lemma 3.1]{f1}. We let $f(v)=(1-v)^{-r}$ and we define $s(x,t)=v_t(x,t)$ in $[0,a]\times [ 0,T)$. Then $s(x,t)$ satisfies \begin{gather*} s_t=s_{xx}+r(1-v)^{-r-1}s,\quad 00$ in $ (0,a)\times [ 0,T)$ by the strong maximum principle. \smallskip (ii) Now, if we let $f(v)=-v^{-r}$, and $v_{xx}(x,0)-v^{-r}(x,0)\leq 0$ in $(0,a)$, then using the same process above, we obtain $v_t(x,t)\leq 0$ in $ [0,a]\times [ 0,T)$. Also, we obtain $v_t(x,t)<0$ in $ (0,a)\times [ 0,T)$ by the strong maximum principle. \end{proof} \begin{lemma} \label{lem7} If $v_x(x,0)\geq 0$, then $v_x\geq 0$ in $[ 0,a] \times (0,T)$. \end{lemma} \begin{proof} Let $H=v_x(x,t)$. Then \begin{gather*} H_t=H_{xx}+f'(v)H,\quad 00,\quad H(a,t)=(1-v(a,t))^{-q}>0,\; 0-M$. That is \begin{equation*} v_{xx}-v^{-r}>-M. \end{equation*} Multiplying this inequality by $v_x$, and integrating with respect to $x $ from $0$ to $x$, we have \begin{equation*} -\frac{1}{2}v^{-2p}(0,t)-\ln \big[ \frac{1}{v(0,t)}\big] >\frac{1}{2} v_x^{2}-\ln \big[ \frac{1}{v(x,t)}\big] -M[ v(a,t)-v(x,t)] \end{equation*} for $r=1$, and \begin{equation*} -\frac{1}{2}v^{-2p}(0,t)+\frac{v^{-r+1}(0,t)}{-r+1}>-\frac{1}{2}v_x^{2}+ \frac{v^{-r+1}(x,t)}{-r+1}-M[ v(x,t)-v(0,t)] \end{equation*} for $r\neq 1$. We have, as $t\to T^{-}$, the left-hand side tends to negative infinity, while the right-hand side is finite. This contradiction shows that $v_t$ blows up at the quenching point $x=0$. (ii) $(f(v)=(1-v)^{-r})$ Suppose\ that $v_t$ is bounded on $[0,a]\times [ 0,T)$. Then, there exists a positive constant $M$ such that $v_t