\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 312, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/312\hfil Nonexistence of non-trivial global weak solutions] {Nonexistence of non-trivial global weak solutions for higher-order nonlinear Schr\"odinger equations} \author[A. Nabti \hfil EJDE-2015/312\hfilneg] {Abderrazak Nabti} \address{Abderrazak Nabti \newline Laboratoire de Math\'ematiques, Image et Applications, EA 3165, Universit\'e de La Rochelle, P\^ole sciences et Technologies, Avenue Michel Cr\'epeau, 17000, La Rochelle, France} \email{nabtia1@gmail.com} \thanks{Submitted October 20, 2015. Published December 21, 2015.} \subjclass[2010]{35Q55} \keywords{Nonlinear Schr\"odinger equation; global solution; blowup} \begin{abstract} We study the initial-value problem for the higher-order nonlinear Schr\"odinger equation $$ i\partial_{t}u-(-\Delta)^{m}u=\lambda| u|^{p}, $$ subject to the initial data $$ u(x,0)=f(x), $$ where $u=u(x,t)\in\mathbb{C}$ is a complex-valued function, $(x,t)\in\mathbb{R}^{N}\times[0,+\infty)$, $p>1$, $m\geq 1$, $\lambda\in\mathbb{C}\backslash\{0\},$ and $f(x)$ is a given complex-valued function. We prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the $L^2$-norm of the local in time $L^2$-solution blows up at a finite time. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} We consider the higher-order nonlinear Schr\"odinger equation \begin{equation} i\partial_{t}u-(-\Delta)^{m}u=\lambda| u|^{p},\quad x\in\mathbb{R}^N, \;t>0,\label{Eqrr1} \end{equation} supplemented with the initial data \begin{equation} u(x,0)=f(x),\quad x\in\mathbb{R}^N,\label{Eqrr2} \end{equation} where $u=u(x,t)$ is a complex-valued unknown function of $(x,t)$, $\lambda=\lambda_1+i\lambda_2\in\mathbb{C}\backslash\{0\}$, $\lambda_i\in\mathbb{R}\,(i=1,2)$, and $f=f(x)=f_1(x)+if_{2}(x)\in\mathbb{C}$, $f_i(x)\in L^1(\mathbb{R})\,(i=1,2)$ are real-valued given functions. Let us first recall some previous results on nonlinear Schr\"odinger equations (NLS). Since there is a large amount of papers for NLS, we mention the ones related to our result. Many authors have studied NLS with a gauge invariant power type nonlinearity \begin{equation} i\partial_t u+\Delta u=\lambda_0| u|^{p-1}u, \quad x\in\mathbb{R}^N,\,t\in\mathbb{R},\label{NLS} \end{equation} where $\lambda_0\in \mathbb{R}$, $p>1$. In the case of $10,\label{NLS1} \end{equation} subject to the initial data $u(x,0)=\varepsilon f(x)$, where $f\in L^{2},\,\varepsilon>0$, $10$. Using the semigroup theory (see, e.g. \cite{Yosida}), we can write problem \eqref{Eqrr1}--\eqref{Eqrr2} in the following equivalent integral equation \begin{equation} u(t)=S(t)f-i\int_{0}^{t}S(t-s)| u(s)|^{p}\,ds,\hspace*{4mm}t\geq 0.\label{Sg} \end{equation} For $S(t)=\exp(it(-\Delta)^{m})$, we have the following results. \begin{lemma} \label{lem1} Let $\rho$ and $r$ be positive numbers such that $\frac{1}{\rho}+\frac{1}{r}=1$ and $2\leq \rho\leq\infty$. For any $t>0$, $S(t)$ is a bounded operator from $ L^{r}$ to $ L^{\rho}$. Moreover, it satisfies the important estimate \begin{equation} \| S(t)v\|_{ L^{\rho}(\mathbb{R}^N)} \leq Ct^{-\frac{N}{2m}(\frac{1}{r}-\frac{1}{\rho})}\| v\|_{ L^{r}(\mathbb{R}^N)}, \quad v\in L^{r}(\mathbb{R}^N),\;t>0,\label{Lem1} \end{equation} and for any $t>0$, the map $t\mapsto S(t)$ is strongly continuous. For $\rho=2$, $S(t)$ is unitary and strongly continuous for $t>0$. \end{lemma} \begin{definition} \label{def2.2} \rm The triple $(r,\rho,q)$ is called $\sigma$-admissible triple if $\frac{1}{r}=\sigma(\frac{1}{q}-\frac{1}{\rho})$, where $10$. \end{definition} Now, we give the following Strichartz estimate. \begin{lemma} \label{lem2} Let $(r,\rho,2)$ be $\frac{N}{2m}$-admissible. Then \begin{equation} \| S(\cdot)v\|_{ L^{r}((0,T); L^{\rho}(\mathbb{R}^N))} \leq C\| v\|_{L^2(\mathbb{R}^N)},\label{Lem2} \end{equation} where $C=C(N,p)$. \end{lemma} For the proof of Lemma \ref{lem1} see, e.g \cite{Giniber}. For Lemma \ref{lem2}, see Strichartz \cite{S5} and Ginibre and Velo \cite{Gvelo}. Let $1<\rho$, $r<\infty$ and $a,b>0$. We set \begin{align*} E&:=\Big\{v(t)\in L^{\infty}((0,T);L^{2}(\mathbb{R}^N)) \cap L^{r}((0,T); L^{\rho}(\mathbb{R}^N)); \\ & \quad \| v(t)\|_{L^2(\mathbb{R}^N)}\leq a,\; \| v\|_{ L^{r}((0,T); L^{\rho}(\mathbb{R}^N))}\leq b\Big\}; \end{align*} $E$ is a closed subset in $ L^{r}((0,T), L^{\rho}(\mathbb{R}^N))$. \begin{theorem} \label{thm1} Let $10$ and a unique solution $u\in C([0,T);L^2(\mathbb{R}^N))\cap L^{r}([0,T);L^{\rho}(\mathbb{R}^N))$ of the integral equation \eqref{Sg}, where $\rho$ and $r$ are defined by $\rho=p+1$ and $\frac{2m}{r}=\frac{N}{2}-\frac{N}{\rho}$. \end{theorem} \begin{proof} We define the Banach space \begin{align*} E_T&:=\Big\{v(t)\in L^{\infty}(I_{T};L^{2}(\mathbb{R}^N)) \cap L^{r}(I_T;L^{\rho}(\mathbb{R}^N));\\ & \quad\| v(t)\|_{L^{\infty}(I_T;L^2(\mathbb{R}^N))} \leq \| f\|_{L^2(\mathbb{R}^N)},\quad \| v\|_{L^{r}(I_T;L^{\rho}(\mathbb{R}^N))} \leq 2\delta\| f\|_{L^2(\mathbb{R}^N)}\Big\}, \end{align*} where $I_T:= (0,T)$ and $\delta$ is the constant appearing in \eqref{Lem2}, with $\rho=p+1$, $r=\frac{4m(p+1)}{N(p-1)}$ and $T$ is a small positive constant to be determined later. Now, for every $u\in E_{T}$, we define $$ \Psi(u):=S(t)f(x)-\lambda i\int_{0}^{t}S(t-s)| u|^{p}\,ds. $$ As usual, we prove the existence of local solutions using the Banach fixed point theorem. \smallskip \noindent$\bullet$ $\Psi$ is defined from $E_T$ to $E_T$: Let $u\in E_{T}$. Setting $$ \tilde{u}(t):=\begin{cases} u(t), & \text{if } t\in I_T, \\ 0, & \text{otherwise}. \end{cases} $$ Now, we have \begin{align*} &\| \Psi(u)\|_{ L^{r}(I_T; L^{\rho}(\mathbb{R}^N))}\\ & \leq \delta\| f\|_{L^2(\mathbb{R}^N)} +C\big\|\int_{0}^{t}(t-s)^{-\frac{N}{2m}(\frac{p}{\rho}-\frac{1}{\rho})} \| u(s)\|_{ L^{\rho}(\mathbb{R}^N)}^{p}\,ds\big\|_{ L^{r}(I_T)}\\ & \leq \delta\| f\|_{L^2(\mathbb{R}^N)} +C\big\|\int_{-\infty}^{+\infty}| t-s|^{-\frac{N}{2m} (\frac{p}{\rho}-\frac{1}{\rho})}\| \tilde{u}(s)\|_{ L^{\rho} (\mathbb{R}^N)}^{p}\,ds\big\|_{ L^{r}(\mathbb{R})}. \end{align*} By the generalized Young inequality \cite{Holder}, we have \begin{equation} \begin{aligned} \| \Psi(u)\|_{ L^{r}(I_T; L^{\rho}(\mathbb{R}^N))} &\leq \delta\| f\|_{L^2(\mathbb{R}^N)} +C\| \tilde{u}\|_{L^{\rho_1}(\mathbb{R}; L^{\rho}(\mathbb{R}^N))}^p \\ &\leq \delta\| f\|_{L^2(\mathbb{R}^N)} +C\| u\|_{L^{\rho_1}(I_T; L^{\rho}(\mathbb{R}^N))}^p, \end{aligned} \label{EqYoung} \end{equation} where $\rho_{1}=\frac{4mp(p+1)}{N+4m-(N-4m)p}$, and note that $1<\rho_10$. \smallskip \noindent$\bullet$ Uniqueness of solution: We show that the solution of \eqref{Eqrr1}--\eqref{Eqrr2} is unique. Let $u$ and $v$ be two solutions in $E_T$ for some $T>0$, we set \[ t_1=\sup\{t\in[0,T_{\rm max}: u(t)=v(t)\}\,. \] If $t_1 = T_{\rm max}$, then $u(t) = v(t)$ on $[0, T_{\rm max}]$, which is the desired result. If $t_1 < T_{\rm max}$, repeating the same calculations as before, and by the assumption on $t_1$, we have \begin{align*} &\| u-v\|_{ L^{r}((0,t_2); L^{\rho}(\mathbb{R}^N))}\\ &=\| u-v\|_{ L^{r}((t_1,t_2); L^{\rho}(\mathbb{R}^N))}\\ &\leq C\Big\| \int_{t_1}^{t_2}(t_2-t_1)^{-\frac{N}{2m}(\frac{p}{\rho} -\frac{1}{\rho})}\| | u|^{p}-| v|^{p}\|_{L^{\rho/p}(\mathbb{R}^N)}\,ds \Big\|_{ L^{r}(I_T)}\\ &\leq C_2 (t_2-t_1)^{p/\rho_2} \Big(\| u\|_{ L^{r}((t_1,t_2), L^{\rho}(\mathbb{R}^N))}^{p-1} +\| v\|_{ L^{r}((t_1,t_2), L^{\rho}(\mathbb{R}^N))}^{p-1}\Big)\\ &\quad\times \| u-v\|_{ L^{r}((t_1,t_2), L^{\rho}(\mathbb{R}^N))}\\ &\leq C_2 (t_2-t_1)^{p/\rho_2} 2 \big(2\delta\| f\|_{L^2(\mathbb{R}^N)}\big)^{p-1} \| u-v\|_{ L^{r}((t_1,t_2), L^{\rho}(\mathbb{R}^N))}. \end{align*} We can choose $t_2$ such that $t_2>t_1$ and \[ C_2 (t_2-t_1)^{p/\rho_2} 2 \big(2\delta\| f\|_{L^2(\mathbb{R}^N)}\big)^{p-1}\leq \frac{1}{2}\,. \] Then we have \[ \| u-v\|_{ L^{r}(I; L^{\rho}(\mathbb{R}^N))}\leq 0, \] which implies $u(t)=v(t)$ on $[t_1,t_2]$. This contradicts the assumption of $t_1$. Therefore, $u(t)=v(t)$ for $t\in[0,T_{\rm max}]$. \end{proof} \section{Blow up of $L^2$-solutions} We impose the following assumptions on the data \begin{itemize} %\label{Ass} \item[(H1)] $f_{1}\in L^{1}(\mathbb{R}^{N})$, $\lambda_{2}\int_{\mathbb{R}^{N}}f_{1}(x)\, dx>0$, for $f_{2}\in L^{1}(\mathbb{R}^{N})$, $\lambda_{1}\int_{\mathbb{R}^{N}}f_{2}(x)\, dx<0$. \end{itemize} Now, we want to derive a blow-up result for \eqref{Eqrr1}--\eqref{Eqrr2}. \begin{definition} \label{DefV} \rm Let $T>0$. We say that $u$ is a weak solution of \eqref{Eqrr1}--\eqref{Eqrr2} on $[0,T)$ if $u\in C([0,T];L^{p}_{loc}(\mathbb{R}^N)$ and satisfies \begin{equation} \label{Deef} \begin{aligned} &\int_{0}^{T}\int_{\mathbb{R}^N}u(-i\partial_t\phi(x,t)-(-\Delta)^m\phi(x,t))\,dx\,dt \\ & =i\int_{\mathbb{R}^N}f(x)\phi(x,0)\,dx+\lambda\int_{0}^{T} \int_{\mathbb{R}^N}| u|^{p} \phi(x,t)\,dx\,dt \end{aligned} \end{equation} for any $\phi\in C^{1,\infty}_{0}((0,T)\times\mathbb{R}^N)$, $\phi\geq 0$ and satisfying $\phi(\cdot,T)=0$. Moreover, if $T=+\infty$, $u$ is called a global weak solution for \eqref{Eqrr1}--\eqref{Eqrr2}. \end{definition} We note that an $L^2$-solution as in Theorem \ref{thm1} is always a weak solution in the sense of Definition \ref{DefV}. \begin{theorem} \label{thm3} Let $1

0$. We use the test function $$ \phi(x,t):=\phi_{1}(x)^{\ell}\phi_2(t)^{\sigma},\quad \ell,\,\sigma\gg1. $$ The constant $B>0$ in the definition of $\phi_1$ is fixed and will be chosen later; it plays some role in the case $p=1+\frac{2m}{N}$, while in the case $p<1+\frac{2m}{N}$, we take $B=1$. Let $Q:=[0, R^{2m})\times\mathbb{R}^N$. We consider only the case $\lambda_1>0$ and $\lambda_1\int_{\mathbb{R}^N}f_2\,dx<0$, since the other cases can be treated almost in the same way (see Remark \ref{rmk1}). Set $$ I_R:=\int_{Q}| u|^p \phi\,dx\,dt. $$ Now, using the identity \eqref{Deef}, and by taking the real part, we obtain \begin{equation} \lambda_1I_R-\int_{\mathbb{R}^N}f_{2}(x)\phi(x,0)\,dx =\int_{Q}(\text{Im}\,u)\partial_t\phi\,dx\,dt -\int_{Q}(\text{Re}\,u)(-\Delta)^{m}\phi\,dx\,dt. \end{equation} Furthermore, using the assumption (H1) on the initial condition $f$, and Lemma \ref{Poz}, we obtain \begin{equation} \lambda_1I_R \leq \int_{Q}| u|\,\phi_1^\ell|\partial_t\phi_2^{\sigma}|\,dx\,dt+\int_{Q}| u|| \Delta^m\phi_1^\ell|\,\phi_2^{\sigma}\,dx\,dt\equiv K_1+K_2.\label{EqV13} \end{equation} By applying $\varepsilon$-Young's inequality, $XY\leq \varepsilon X^p+C(\varepsilon)Y^{ q}$, for $X\geq 0$, $Y\geq 0$, $p+ q=p q$, with $0 < \varepsilon \ll 1$, $C(\varepsilon)=(1/ q)(p\varepsilon)^{- q/p})$, in $K_1$ and $K_2$, we obtain \begin{align*} (\lambda_1-2\varepsilon) I_R \leq C(\varepsilon)\int_{Q}\phi_1^\ell \phi_{2}^{-\frac{\sigma}{p-1}} |\partial_t\phi_2^\sigma|^{ q}\,dx\,dt +C(\varepsilon)\int_{Q}\phi_{1}^{-\frac{\ell}{p-1}} |\Delta^m\phi_1^\ell|^{ q}\phi_2^\sigma\,dx\,dt. \end{align*} At this stage, we pass to the new variables $s=t/R^{2m}$ and $y=x/R$, to obtain the estimate \begin{equation} (\lambda_1-2\varepsilon)I_R \leq CR^{N+2m(1- q)} (\mathcal{A}+\mathcal{B}),\label{Est} \end{equation} where \begin{gather*} \mathcal{A}:=\int_{\Omega_1}\int_{\Omega_2}\Phi(y)^{^\ell}\Phi(s)^{\sigma- q} |\Phi(s)^{\prime}|^{ q}\,dy\,ds<+\infty,\\ \mathcal{B}:=\int_{\Omega_1}\int_{\Omega_2}\Phi(y)^{-\frac{\ell}{p-1}} |\Delta^m(\Phi(y)^\ell)|^{ q}\Phi(s)^{\sigma}\,dy\,ds<+\infty, \\ \Omega_1:=\{s\geq 0: s\leq 2\},\quad \Omega_2:=\{y\in\mathbb{R}^N:| y|\leq 2\}. \end{gather*} Note that inequality $p\leq p^{*}$ is equivalent to $\beta=N-\frac{2m}{p-1}\leq 0$. So, we have to distinguish two cases: \noindent\textbf{Case (i):} $p0,\; \lambda_{2}\int_{\mathbb{R}^2N}f_{1}(x)\,dx>0,\\[4pt] -\int_{Q}\lambda_{2}| u|^p\phi(x,t)\,dx\,dt&\text{if } \lambda_{2}<0,\; \lambda_{2}\int_{\mathbb{R}^N}f_{1}(x)\,dx>0, \end{cases} $$ we can prove the same conclusion in the same manner as above. \end{remark} Next, we will mention that an $L^2$-solution $u\in C([0,T];L^2(\mathbb{R}^N))$ is a weak solution in the sense of Definition \ref{DefV}. \begin{proposition} \label{prop1} Let $T>0$. If $u$ is an $L^2$-solution for problem \eqref{Eqrr1}--\eqref{Eqrr2} on $[0,T)$, then $u$ is also a weak solution on $[0,T)$ in the sense of Definition \ref{DefV}. \end{proposition} \begin{proof} Let $T>0$, $f\in L^{2}(\mathbb{R}^N)$ and let $u\in C([0,T);L^{2}(\mathbb{R}^N))\cap L^{r}((0,T); L^{\rho}(\mathbb{R}^N))$ be a solution of \eqref{Sg}. Given $\phi \in C^{1,\infty}((0,T)\times\mathbb{R}^N)$ such that $\operatorname{supp}\phi:=\Omega$ is compact with $\phi(\cdot,T)=0$. Then after multiplying \eqref{Sg} by $\phi\equiv\phi(x,t)$ and integrating over $\mathbb{R}^N$, we obtain \begin{equation*} \int_{\Omega}u\,\phi\,dx\,dt =\int_{\Omega}S(t)f(x)\phi\,dx -\lambda i \int_{\Omega}\int_{0}^{t}S(t-s)| u(s)|^{p}\,ds\phi\,dx. \end{equation*} So after differentiating in time, we obtain \begin{equation} \frac{d}{dt}\int_{\Omega}u\,\phi\,dx\,dt = \int_{\Omega}\frac{d}{dt}(S(t)f(x)\phi)\,dx - \lambda i \int_{\Omega}\frac{d}{dt}\int_{0}^{t}S(t-s) | u(s)|^{p}\,ds\phi\,dx. \label{after} \end{equation} Now, using the properties of the semigroup $S(t)$ (see \cite{Banach}), we have \begin{equation} \begin{aligned} \int_{\Omega}\frac{d}{dt}(S(t)f(x)\phi)\,dx &= i\int_{\Omega}A(S(t)f(x))\phi\,dx+ \int_{\Omega} S(t)f(x)\partial_{t}\phi\,dx \\ &= i\int_{\Omega}S(t)f(x)A\phi\,dx+ \int_{\Omega} S(t)f(x)\partial_{t}\phi\,dx, \end{aligned}\label{Semi} \end{equation} and \begin{equation} \label{Semi1} \begin{aligned} &\int_{\Omega}\frac{d}{dt}\int_{0}^{t}S(t-s)F(u)\,ds\phi\,dx\\ &=i\int_{\Omega}\int_{0}^{t}A(S(t-s)F(u))\,ds\,\phi\,dx +\int_{\Omega}F(u)\phi\,dx +\int_{\Omega}\int_{0}^{t} S(t-s)F(u)\,ds\,\partial_{t}\phi\,dx \\ &= i \int_{\Omega}\int_{0}^{t}S(t-s)F(u)\,ds\,A\phi\,dx +\int_{\Omega}F(u)\phi\,dx +\int_{\Omega}\int_{0}^{t} S(t-s)F(u)\,ds\,\partial_{t}\phi\,dx, \end{aligned} \end{equation} where $F(u):=| u(t)|^{p}$. Thus, using \eqref{Sg}, \eqref{Semi} and \eqref{Semi1}, we conclude that \eqref{after} implies \begin{equation*} \frac{d}{dt}\int_{\Omega}u\,\phi\,dx\,dt =\int_{\Omega}u\,\partial_t\phi\,dx\,dt -i\int_{\Omega}u\,A\phi\,dx\,dt-i\lambda\int_{\Omega}F(u)\phi\,dx\,dt. \end{equation*} Finally, by integrating in time over $[0,T]$ and using that $\phi(\cdot,T)=0$, we complete the proof. \end{proof} Let \begin{align*} T_m\equiv \sup\Big\{&T\in[0,+\infty)\,;\,\text{there exists a unique solution $u$ to \eqref{Sg}}\\ & \text{such that } u\in C([0,T);L^2(\mathbb{R}^N)) \cap L^{r}([0,T);L^{\rho}(\mathbb{R}^N)) \Big\} \end{align*} be the maximal existence time of $L^2$-solution, where $10$ such that \begin{gather} \lim_{n\to+\infty}t_n=T_m,\label{Estn}\\ \sup_{n\in\mathbb{N}}\| u(t_n)\|_{L^2}\leq M.\label{Essup} \end{gather} Thus for any $t_n\in\{t_{n}\}_{n\geq 1}$, by the estimate \eqref{Essup} and the local existence theorem, there exists a positive constant $T(M)$ independent on $t_n$ such that we can construct a solution $$ u\in X:=C([t_n,t_n+T(M));L^2(\mathbb{R}^N)) \cap L^{r}([t_n,t_n+T(M));L^{\rho}(\mathbb{R}^N)); $$ to the integral equation \eqref{Sg}. Moreover, since the limit of $\{t_{n}\}_{n\geq 1}$ exists, we can take $t_n\in [0,T_m)$ such that $T_m-\frac{T(M)}{3}T_m$ is a contradiction to the definition of $T_m$. Therefore we obtain $$ \liminf_{_{t\to T_m}}\| u(t)\|_{L^2}=+\infty, $$ which completes the proof. \end{proof} \begin{thebibliography}{00} \bibitem{Banach} T. Cazenave, A. Haraux; \emph{An introduction to semilinear evolution equations}, {E}llipses, {P}aris, 1990. \bibitem{S1} Y. Dong, X. C. Sun; \emph{Strichartz estimates for parabolic equations with higher order differential operators}, {S}ci {C}hina {M}ath. \textbf{58} (2015), no. 5, 1047--1062. \bibitem{Ft1} A. Fino, G. Karch; \emph{Decay of mass for nonlinear equation with fractional {L}aplacian}, {M}onatsh. {M}ath. \textbf{160} (2010), no. 4, 375--384. \bibitem{Ft2} A. Fino, M. Kirane; \emph{Qualitative properties of solutions to a time-space fractional evolution equation}, {J}. {Q}uarterly of {A}pplied {M}athematics \textbf{70} (2012), 133--157. \bibitem{Gvelo} J. Ginibre, G. Velo; \emph{Th\'eorie de la diffusion dans l'espace d'\'energie pour une classe d'\'equations de {S}chr\"odinger non lin\'eaires}, {C}. {R}. {A}cad. {S}ci., {P}aris, \textbf{298} (1984), 137--140. \bibitem{Giniber} J. Ginibre, G. Velo; \emph{On a class of nonlinear {S}chr\"odinger equations. {I}: {T}he {C}auchy problem}, {J}. {F}unct. {A}nal. \textbf{32}(1979), 1--32. \bibitem{Ikeda-A1} M. Ikea, Y. Wakasugi; \emph{Nonexistence of a non-trivial global weak solution for the nonlinear {S}chr\"odinger equation with a nonage invariant power nonlinearity}, ar{X}iv: 1111.0178v2 [{M}ath.{AP}] 2011. \bibitem{Ft3} M. Kirane, Y. Laskri, N.-E. Tatar; \emph{Critical exponent of {F}ujita type for certain evolution equations and systems with spatio-temporal fractional derivatives}, {J}. {M}ath. {A}nal. {A}ppl. \textbf{312}(2005), 488--501. \bibitem{Ft4} E. Mitidieri, S. I. Pohozaev; \emph{A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities}, {P}roc. {S}teklov. {I}nst. {M}ath. \textbf{234} (2001), 1--383. \bibitem{Ft5} E. Mitidieri, S. I. Pohozaev; \emph{Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R}^{N}$}, {J}. {E}vo. {E}qu. \textbf{1} (2001), 189--220. \bibitem{Blow} T. Ogawa, Y. Tsutsumi; \emph{Blow-up of {$\text{H}^1$} Solution for the Nonlinear {S}chr\"odinger Equation}, {J}ournal of {D}ifferential {E}quations, {B} \textbf{92} (1991), 317--330. \bibitem{Poh1} S. I. Pohozaev; \emph{Nonexistence of Global Solutions of Nonlinear Evolution Equations}, {D}iffer. {E}qu. \textbf{49} (2013), no. 5, 599--606. \bibitem{Holder} M. Reed, B. Simon; \emph{Methode of modern mathematical physics, {V}ol. {II}: {F}ourier analysis and self-adjointness}, {A}cademic {P}ress, {N}ew-{Y}ork, 1975. \bibitem{S4} W. A. Strauss; \emph{The nonlinear {S}chr\"odinger equation, in {C}ontemporary developments in continuum mechanics and partial differential equations}, {N}orth-{H}olland, {A}msterdam-{N}ew {Y}ork-{O}xford, 1978. \bibitem{S5} R. S. Strichartz; \emph{Restrictions of {F}ourier transform to quadratic surfaces and decay of solutions of wave equations}, {D}uke {M}ath. {J}. \textbf{44} (1977), 705--714. \bibitem{Tsu-A1} Y. Tsutsumi; \emph{${L}^2$-solutions for nonlinear {S}chr\"odinger equations and nonlinear groups}, {F}unkcialaj {E}kvacio \textbf{30} (1987), 115--125. \bibitem{Yosida} K. Yosida; \emph{{A}nalysis, sixth {E}dition, {S}pringer-{V}erlage}, {B}erlin {H}eidelberg, {N}ew {Y}ork 1980. \bibitem{Ft6} Qi S. Zhang; \emph{A blow up for a nonlinear wave equation with damping: the critical case}, {C}. {R}. {A}cad. {S}ci. {P}aris \textbf{333} (2001), no. 2, 109--114. \end{thebibliography} \end{document}