\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 312, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/312\hfil Nonexistence of non-trivial global weak solutions] {Nonexistence of non-trivial global weak solutions for higher-order nonlinear Schr\"odinger equations} \author[A. Nabti \hfil EJDE-2015/312\hfilneg] {Abderrazak Nabti} \address{Abderrazak Nabti \newline Laboratoire de Math\'ematiques, Image et Applications, EA 3165, Universit\'e de La Rochelle, P\^ole sciences et Technologies, Avenue Michel Cr\'epeau, 17000, La Rochelle, France} \email{nabtia1@gmail.com} \thanks{Submitted October 20, 2015. Published December 21, 2015.} \subjclass[2010]{35Q55} \keywords{Nonlinear Schr\"odinger equation; global solution; blowup} \begin{abstract} We study the initial-value problem for the higher-order nonlinear Schr\"odinger equation $$ i\partial_{t}u-(-\Delta)^{m}u=\lambda| u|^{p}, $$ subject to the initial data $$ u(x,0)=f(x), $$ where $u=u(x,t)\in\mathbb{C}$ is a complex-valued function, $(x,t)\in\mathbb{R}^{N}\times[0,+\infty)$, $p>1$, $m\geq 1$, $\lambda\in\mathbb{C}\backslash\{0\},$ and $f(x)$ is a given complex-valued function. We prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the $L^2$-norm of the local in time $L^2$-solution blows up at a finite time. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} We consider the higher-order nonlinear Schr\"odinger equation \begin{equation} i\partial_{t}u-(-\Delta)^{m}u=\lambda| u|^{p},\quad x\in\mathbb{R}^N, \;t>0,\label{Eqrr1} \end{equation} supplemented with the initial data \begin{equation} u(x,0)=f(x),\quad x\in\mathbb{R}^N,\label{Eqrr2} \end{equation} where $u=u(x,t)$ is a complex-valued unknown function of $(x,t)$, $\lambda=\lambda_1+i\lambda_2\in\mathbb{C}\backslash\{0\}$, $\lambda_i\in\mathbb{R}\,(i=1,2)$, and $f=f(x)=f_1(x)+if_{2}(x)\in\mathbb{C}$, $f_i(x)\in L^1(\mathbb{R})\,(i=1,2)$ are real-valued given functions. Let us first recall some previous results on nonlinear Schr\"odinger equations (NLS). Since there is a large amount of papers for NLS, we mention the ones related to our result. Many authors have studied NLS with a gauge invariant power type nonlinearity \begin{equation} i\partial_t u+\Delta u=\lambda_0| u|^{p-1}u, \quad x\in\mathbb{R}^N,\,t\in\mathbb{R},\label{NLS} \end{equation} where $\lambda_0\in \mathbb{R}$, $p>1$. In the case of $1
0,\label{NLS1} \end{equation} subject to the initial data $u(x,0)=\varepsilon f(x)$, where $f\in L^{2},\,\varepsilon>0$, $1
0$.
Using the semigroup theory (see, e.g. \cite{Yosida}), we can write
problem \eqref{Eqrr1}--\eqref{Eqrr2} in the following equivalent integral equation
\begin{equation}
u(t)=S(t)f-i\int_{0}^{t}S(t-s)| u(s)|^{p}\,ds,\hspace*{4mm}t\geq 0.\label{Sg}
\end{equation}
For $S(t)=\exp(it(-\Delta)^{m})$, we have the following results.
\begin{lemma} \label{lem1}
Let $\rho$ and $r$ be positive numbers such that $\frac{1}{\rho}+\frac{1}{r}=1$
and $2\leq \rho\leq\infty$. For any $t>0$, $S(t)$ is a bounded operator
from $ L^{r}$ to $ L^{\rho}$. Moreover, it satisfies the important estimate
\begin{equation}
\| S(t)v\|_{ L^{\rho}(\mathbb{R}^N)}
\leq Ct^{-\frac{N}{2m}(\frac{1}{r}-\frac{1}{\rho})}\| v\|_{ L^{r}(\mathbb{R}^N)},
\quad v\in L^{r}(\mathbb{R}^N),\;t>0,\label{Lem1}
\end{equation}
and for any $t>0$, the map $t\mapsto S(t)$ is strongly continuous.
For $\rho=2$, $S(t)$ is unitary and strongly continuous for $t>0$.
\end{lemma}
\begin{definition} \label{def2.2} \rm
The triple $(r,\rho,q)$ is called $\sigma$-admissible triple if
$\frac{1}{r}=\sigma(\frac{1}{q}-\frac{1}{\rho})$,
where $1 0$ and a unique solution
$u\in C([0,T);L^2(\mathbb{R}^N))\cap L^{r}([0,T);L^{\rho}(\mathbb{R}^N))$
of the integral equation \eqref{Sg}, where $\rho$ and $r$ are defined by
$\rho=p+1$ and $\frac{2m}{r}=\frac{N}{2}-\frac{N}{\rho}$.
\end{theorem}
\begin{proof}
We define the Banach space
\begin{align*}
E_T&:=\Big\{v(t)\in L^{\infty}(I_{T};L^{2}(\mathbb{R}^N))
\cap L^{r}(I_T;L^{\rho}(\mathbb{R}^N));\\
& \quad\| v(t)\|_{L^{\infty}(I_T;L^2(\mathbb{R}^N))}
\leq \| f\|_{L^2(\mathbb{R}^N)},\quad
\| v\|_{L^{r}(I_T;L^{\rho}(\mathbb{R}^N))}
\leq 2\delta\| f\|_{L^2(\mathbb{R}^N)}\Big\},
\end{align*}
where $I_T:= (0,T)$ and $\delta$ is the constant appearing in
\eqref{Lem2}, with $\rho=p+1$, $r=\frac{4m(p+1)}{N(p-1)}$ and $T$ is a small
positive constant to be determined later. Now, for every $u\in E_{T}$, we define
$$
\Psi(u):=S(t)f(x)-\lambda i\int_{0}^{t}S(t-s)| u|^{p}\,ds.
$$
As usual, we prove the existence of local solutions using
the Banach fixed point theorem.
\smallskip
\noindent$\bullet$ $\Psi$ is defined from $E_T$ to $E_T$: Let $u\in E_{T}$.
Setting
$$
\tilde{u}(t):=\begin{cases}
u(t), & \text{if } t\in I_T, \\
0, & \text{otherwise}.
\end{cases}
$$
Now, we have
\begin{align*}
&\| \Psi(u)\|_{ L^{r}(I_T; L^{\rho}(\mathbb{R}^N))}\\
& \leq \delta\| f\|_{L^2(\mathbb{R}^N)}
+C\big\|\int_{0}^{t}(t-s)^{-\frac{N}{2m}(\frac{p}{\rho}-\frac{1}{\rho})}
\| u(s)\|_{ L^{\rho}(\mathbb{R}^N)}^{p}\,ds\big\|_{ L^{r}(I_T)}\\
& \leq \delta\| f\|_{L^2(\mathbb{R}^N)}
+C\big\|\int_{-\infty}^{+\infty}| t-s|^{-\frac{N}{2m}
(\frac{p}{\rho}-\frac{1}{\rho})}\| \tilde{u}(s)\|_{ L^{\rho}
(\mathbb{R}^N)}^{p}\,ds\big\|_{ L^{r}(\mathbb{R})}.
\end{align*}
By the generalized Young inequality \cite{Holder}, we have
\begin{equation}
\begin{aligned}
\| \Psi(u)\|_{ L^{r}(I_T; L^{\rho}(\mathbb{R}^N))}
&\leq \delta\| f\|_{L^2(\mathbb{R}^N)}
+C\| \tilde{u}\|_{L^{\rho_1}(\mathbb{R}; L^{\rho}(\mathbb{R}^N))}^p \\
&\leq \delta\| f\|_{L^2(\mathbb{R}^N)}
+C\| u\|_{L^{\rho_1}(I_T; L^{\rho}(\mathbb{R}^N))}^p,
\end{aligned} \label{EqYoung}
\end{equation}
where $\rho_{1}=\frac{4mp(p+1)}{N+4m-(N-4m)p}$, and note that
$1<\rho_1 0$. We use the test function
$$
\phi(x,t):=\phi_{1}(x)^{\ell}\phi_2(t)^{\sigma},\quad \ell,\,\sigma\gg1.
$$
The constant $B>0$ in the definition of $\phi_1$ is fixed and will be chosen later;
it plays some role in the case $p=1+\frac{2m}{N}$, while in the case
$p<1+\frac{2m}{N}$, we take $B=1$.
Let $Q:=[0, R^{2m})\times\mathbb{R}^N$. We consider only the case
$\lambda_1>0$ and $\lambda_1\int_{\mathbb{R}^N}f_2\,dx<0$, since the other
cases can be treated almost in the same way (see Remark \ref{rmk1}).
Set
$$
I_R:=\int_{Q}| u|^p \phi\,dx\,dt.
$$
Now, using the identity \eqref{Deef}, and by taking the real part, we obtain
\begin{equation}
\lambda_1I_R-\int_{\mathbb{R}^N}f_{2}(x)\phi(x,0)\,dx
=\int_{Q}(\text{Im}\,u)\partial_t\phi\,dx\,dt
-\int_{Q}(\text{Re}\,u)(-\Delta)^{m}\phi\,dx\,dt.
\end{equation}
Furthermore, using the assumption (H1) on the initial condition $f$,
and Lemma \ref{Poz}, we obtain
\begin{equation}
\lambda_1I_R
\leq \int_{Q}| u|\,\phi_1^\ell|\partial_t\phi_2^{\sigma}|\,dx\,dt+\int_{Q}| u|| \Delta^m\phi_1^\ell|\,\phi_2^{\sigma}\,dx\,dt\equiv K_1+K_2.\label{EqV13}
\end{equation}
By applying $\varepsilon$-Young's inequality,
$XY\leq \varepsilon X^p+C(\varepsilon)Y^{ q}$,
for $X\geq 0$, $Y\geq 0$, $p+ q=p q$, with $0 < \varepsilon \ll 1$,
$C(\varepsilon)=(1/ q)(p\varepsilon)^{- q/p})$,
in $K_1$ and $K_2$, we obtain
\begin{align*}
(\lambda_1-2\varepsilon) I_R
\leq C(\varepsilon)\int_{Q}\phi_1^\ell \phi_{2}^{-\frac{\sigma}{p-1}}
|\partial_t\phi_2^\sigma|^{ q}\,dx\,dt
+C(\varepsilon)\int_{Q}\phi_{1}^{-\frac{\ell}{p-1}}
|\Delta^m\phi_1^\ell|^{ q}\phi_2^\sigma\,dx\,dt.
\end{align*}
At this stage, we pass to the new variables $s=t/R^{2m}$ and $y=x/R$,
to obtain the estimate
\begin{equation}
(\lambda_1-2\varepsilon)I_R \leq CR^{N+2m(1- q)}
(\mathcal{A}+\mathcal{B}),\label{Est}
\end{equation}
where
\begin{gather*}
\mathcal{A}:=\int_{\Omega_1}\int_{\Omega_2}\Phi(y)^{^\ell}\Phi(s)^{\sigma- q}
|\Phi(s)^{\prime}|^{ q}\,dy\,ds<+\infty,\\
\mathcal{B}:=\int_{\Omega_1}\int_{\Omega_2}\Phi(y)^{-\frac{\ell}{p-1}}
|\Delta^m(\Phi(y)^\ell)|^{ q}\Phi(s)^{\sigma}\,dy\,ds<+\infty, \\
\Omega_1:=\{s\geq 0: s\leq 2\},\quad
\Omega_2:=\{y\in\mathbb{R}^N:| y|\leq 2\}.
\end{gather*}
Note that inequality $p\leq p^{*}$ is equivalent to
$\beta=N-\frac{2m}{p-1}\leq 0$. So, we have to distinguish two cases:
\noindent\textbf{Case (i):}
$p 0,\; \lambda_{2}\int_{\mathbb{R}^2N}f_{1}(x)\,dx>0,\\[4pt]
-\int_{Q}\lambda_{2}| u|^p\phi(x,t)\,dx\,dt&\text{if }
\lambda_{2}<0,\; \lambda_{2}\int_{\mathbb{R}^N}f_{1}(x)\,dx>0,
\end{cases}
$$
we can prove the same conclusion in the same manner as above.
\end{remark}
Next, we will mention that an $L^2$-solution $u\in C([0,T];L^2(\mathbb{R}^N))$
is a weak solution in the sense of Definition \ref{DefV}.
\begin{proposition} \label{prop1}
Let $T>0$. If $u$ is an $L^2$-solution for problem \eqref{Eqrr1}--\eqref{Eqrr2}
on $[0,T)$, then $u$ is also a weak solution on $[0,T)$ in the sense of
Definition \ref{DefV}.
\end{proposition}
\begin{proof}
Let $T>0$, $f\in L^{2}(\mathbb{R}^N)$ and let
$u\in C([0,T);L^{2}(\mathbb{R}^N))\cap L^{r}((0,T); L^{\rho}(\mathbb{R}^N))$
be a solution of \eqref{Sg}. Given $\phi \in C^{1,\infty}((0,T)\times\mathbb{R}^N)$
such that $\operatorname{supp}\phi:=\Omega$ is compact with
$\phi(\cdot,T)=0$. Then after multiplying \eqref{Sg} by $\phi\equiv\phi(x,t)$
and integrating over $\mathbb{R}^N$, we obtain
\begin{equation*}
\int_{\Omega}u\,\phi\,dx\,dt
=\int_{\Omega}S(t)f(x)\phi\,dx
-\lambda i \int_{\Omega}\int_{0}^{t}S(t-s)| u(s)|^{p}\,ds\phi\,dx.
\end{equation*}
So after differentiating in time, we obtain
\begin{equation}
\frac{d}{dt}\int_{\Omega}u\,\phi\,dx\,dt
= \int_{\Omega}\frac{d}{dt}(S(t)f(x)\phi)\,dx
- \lambda i \int_{\Omega}\frac{d}{dt}\int_{0}^{t}S(t-s)
| u(s)|^{p}\,ds\phi\,dx.
\label{after}
\end{equation}
Now, using the properties of the semigroup $S(t)$ (see \cite{Banach}), we have
\begin{equation}
\begin{aligned}
\int_{\Omega}\frac{d}{dt}(S(t)f(x)\phi)\,dx
&= i\int_{\Omega}A(S(t)f(x))\phi\,dx+ \int_{\Omega} S(t)f(x)\partial_{t}\phi\,dx \\
&= i\int_{\Omega}S(t)f(x)A\phi\,dx+ \int_{\Omega} S(t)f(x)\partial_{t}\phi\,dx,
\end{aligned}\label{Semi}
\end{equation}
and
\begin{equation} \label{Semi1}
\begin{aligned}
&\int_{\Omega}\frac{d}{dt}\int_{0}^{t}S(t-s)F(u)\,ds\phi\,dx\\
&=i\int_{\Omega}\int_{0}^{t}A(S(t-s)F(u))\,ds\,\phi\,dx
+\int_{\Omega}F(u)\phi\,dx
+\int_{\Omega}\int_{0}^{t} S(t-s)F(u)\,ds\,\partial_{t}\phi\,dx \\
&= i \int_{\Omega}\int_{0}^{t}S(t-s)F(u)\,ds\,A\phi\,dx
+\int_{\Omega}F(u)\phi\,dx
+\int_{\Omega}\int_{0}^{t} S(t-s)F(u)\,ds\,\partial_{t}\phi\,dx,
\end{aligned}
\end{equation}
where $F(u):=| u(t)|^{p}$.
Thus, using \eqref{Sg}, \eqref{Semi} and \eqref{Semi1}, we conclude that
\eqref{after} implies
\begin{equation*}
\frac{d}{dt}\int_{\Omega}u\,\phi\,dx\,dt
=\int_{\Omega}u\,\partial_t\phi\,dx\,dt
-i\int_{\Omega}u\,A\phi\,dx\,dt-i\lambda\int_{\Omega}F(u)\phi\,dx\,dt.
\end{equation*}
Finally, by integrating in time over $[0,T]$ and using
that $\phi(\cdot,T)=0$, we complete the proof.
\end{proof}
Let
\begin{align*}
T_m\equiv \sup\Big\{&T\in[0,+\infty)\,;\,\text{there exists a unique solution $u$
to \eqref{Sg}}\\
& \text{such that } u\in C([0,T);L^2(\mathbb{R}^N))
\cap L^{r}([0,T);L^{\rho}(\mathbb{R}^N)) \Big\}
\end{align*}
be the maximal existence time of $L^2$-solution, where
$1 0$ such that
\begin{gather}
\lim_{n\to+\infty}t_n=T_m,\label{Estn}\\
\sup_{n\in\mathbb{N}}\| u(t_n)\|_{L^2}\leq M.\label{Essup}
\end{gather}
Thus for any $t_n\in\{t_{n}\}_{n\geq 1}$, by the estimate
\eqref{Essup} and the local existence theorem, there exists a positive
constant $T(M)$ independent on $t_n$ such that we can construct a solution
$$
u\in X:=C([t_n,t_n+T(M));L^2(\mathbb{R}^N))
\cap L^{r}([t_n,t_n+T(M));L^{\rho}(\mathbb{R}^N));
$$
to the integral equation \eqref{Sg}. Moreover, since the
limit of $\{t_{n}\}_{n\geq 1}$ exists, we can take $t_n\in [0,T_m)$
such that $T_m-\frac{T(M)}{3}