\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 316, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/316\hfil Multiple positive solutions] {Multiple positive solutions for superlinear Kirchhoff type problems on $\mathbb{R}^{N}$} \author[Y. Duan, C.-L. Tang \hfil EJDE-2015/316\hfilneg] {Yu Duan, Chun-Lei Tang} \address{Yu Duan \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China. \newline College of Science, Guizhou University of Engineering Science, Bijie, Guizhou 551700, China} \email{duanyu3612@163.com} \address{Chun-Lei Tang (corresponding author) \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China\newline Phone: +86 23 68253135; fax: +86 23 68253135} \email{tangcl@swu.edu.cn} \thanks{Submitted August 28, 2015. Published December 28, 2015.} \subjclass[2010]{35R09, 35A15, 35B09} \keywords{Kirchhoff type problems; Pohozaev identity; variational method; \hfill\break\indent iterative technique} \begin{abstract} In this article, we study the multiplicity of positive solutions for a class of Kirchhoff type problems depending on two real functions and a nonnegative parameter on an unbounded domain. Using the variational method and iterative techniques, we show that if the nonlinearity is subcritical and superlinear at zero and infinity, then the Kirchhoff type problems admits at least two positive solutions when the parameter is sufficiently small. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} The purpose of this article is to sutdy the multiplicity of positive solutions to the nonlinear Kirchhoff type problem \begin{equation} \label{1.1} \Big(a+\lambda m\Big(\int_{\mathbb{R}^{N}}(|\nabla u|^{2}+bu^2)dx\Big)\Big) (-\Delta u+bu)=f(u)+h(x)|u|^{q-2}u, \quad\text{in }\mathbb{R}^{N}, \end{equation} where $N\geq 3$, $10$ is sufficiently large. If $V(x)=b$ and $f(x,u)=f(u)$ is superlinear at infinity, Li, Li and Shi \cite{LLS} showed that \eqref{004} has at least one positive radial solution for $\lambda>0$ sufficiently small. Wu, Huang and Liu \cite {WHL} gave a total description on the positive solutions to \eqref{004}, and they made an observation on the sign-changing solutions. When $f(x,u)$ is asymptotically linear with respect to $u$ at infinity, Ye and Yin \cite {YY} studied \eqref{004} and proved the existence of positive solution for $\lambda$ sufficiently small and the nonexistence result for $\lambda$ sufficiently large. Very recently, some authors extend the problem \eqref{004} to the p-Kirchhoff elliptic equations, see e.g. \cite{CY,CZ,CD,LC} and the references therein. In the spirit of \cite{LLS,ZSN}, for any continuous function $m$, we establish a multiplicity criterion of positive radial solutions to \eqref{1.1} using a variational method and an iterative technique. The main result of this article reads as follows. \begin{theorem} \label{thm1.1} Assume that $N\geq3$, and $a,b$ are positive constants, $\lambda\geq0$ is a parameter and the following conditions hold: \begin{itemize} \item[(H1)] $f\in C(\mathbb{R}_{+},\mathbb{R}_{+})$ and there are positive constants $c$ and $p\in (2,2^*)$ such that $f(t)\leq c(1+t^{p-1})$ for $t\geq0$, where $2^*=\frac{2N}{N-2}$ for $N\geq 3$; \item[(H2)] $\lim_{t\to 0}\frac{f(t)}{t}=0$; \item[(H3)] $\lim_{t\to \infty}\frac{f(t)}{t}=\infty$; \item[(H4)] $0\leq h(x)=h(|x|)\in L^{q'}({\mathbb{R}}^N)$, $\langle \nabla h(x),x\rangle \in L^{q'}({\mathbb{R}}^N)$, where $q'=\frac{2^*}{2^*-q}$, $\langle\cdot, \cdot\rangle $ denotes the usual inner product in ${\mathbb{R}}^N$ and $10$ and $m_0>0$ such that for any $\lambda\in[0,\tilde{\lambda})$, problem \eqref{1.1} has at least two positive solutions if $\|h\|_{q'}0$ such that $\|u\|_{p}\leq \gamma_{p}\|u\|$, $p\in [2,2^{*}]$. On the other hand, the nonlinearity $f$ may not satisfy (AR) or 4-superlinearity, it is difficult to get the boundedness of any (PS) sequence even if a (PS) sequence has been obtained. To overcome this difficulty, we use a ``freezing" technique whose formulation appears initially in \cite{FGM}. This technique will help us to change problem \eqref {1.1} into semilinear equation. That is, for each fixed $\omega\in H$, we consider the ``freezing" problem given by \[ \Big(a+\lambda m\Big(\int_{\mathbb{R}^{N}}(|\nabla \omega|^{2} +b\omega^2)dx\Big)\Big)\big(-\Delta u+bu\big)=f(u) +h(x)|u|^{q-2}u, \quad \text{in }\mathbb{R}^{N}, \] and the associated function $J_{\omega}:H\to \mathbb{R}$ is defined by \begin{equation*} J_{\omega}(u)=\frac{1}{2}\big(a+\lambda m(\|\omega\|^2)\big)\|u\|^2 -\int_{\mathbb{R}^N}F(u)dx-\frac{1}{q}\int_{\mathbb{R}^N}h(x)|u|^{q}dx,\quad u\in H, \end{equation*} where $F(t)=\int_{0}^{t}f(s)ds$. Clearly, by the assumptions imposed on $f$, $h$ and $m$, we know that $J_{\omega}(u)$ is well defined on $H$, it is of class $C^1$ for all $\lambda \geq 0$, and \begin{align*} \langle J_{\omega}'(u), v\rangle &=\big(a+\lambda m(\|\omega\|^2)\big)\int_{\mathbb{R}^N}(\nabla u\cdot\nabla v+buv )dx -\int_{\mathbb{R}^N}f(u)v\,dx \\ &\quad -\int_{\mathbb{R}^N}h(x)|u|^{q-2}uv\,dx, \quad u,v\in H. \end{align*} Next we recall a monotonicity method by Jeanjean \cite{LJ} and Struwe \cite{MS}, which will be used in our proof. The version here is from \cite{LJ}. \begin{theorem} \label{thm2.1} Let $(X,\|\cdot\|)$ be a Banach space and $I\subset \mathbb{R}_+$ an interval. Consider the family of $C^1$ functionals on $X$ \begin{equation*} J_\mu(u)=A(u)-\mu B(u),\quad \mu \in I, \end{equation*} with $B$ nonnegative and either $A(u)\to \infty$ or $B(u)\to \infty$ as $\|u\|\to \infty$ and such that $J_\mu(0)=0$. For any $\mu \in I$, we set \begin{equation*} \Gamma_\mu=\big\{\gamma\in C([0,1],X):\gamma(0)=0,J_\mu(\gamma(1))<0\big\}. \end{equation*} If for every $\mu\in I$, the set $\Gamma_\mu$ is nonempty and \begin{equation*} c_{\mu}=\inf_{\gamma\in\Gamma_\mu}\max_{t\in[0,1]}J_{\mu}(\gamma(t))>0, \end{equation*} then for almost every $\mu \in I$, there exists a sequence $\{u_n\}\subset X$ such that \begin{itemize} \item[(i)] $\{u_n\}$ is bounded; \item[(ii)] $J_{\mu}(u_n)\to c_{\mu}$ as $n\to \infty$; \item[(iii)] $J_{\mu}'(u_n)\to 0$ as $n\to \infty$, in the dual space $X^{-1}$ of $X$. \end{itemize} \end{theorem} \section{First positive solution of \eqref{1.1}} In this section, we use Theorem \ref{thm2.1} to obtain the first positive solution for \eqref{1.1}. In the setting of Theorem \ref{thm2.1}, we have $X=H$, $I=[1/2,1]$, and for each fixed $\omega\in H$, \begin{equation*} A_{\omega}(u)=\frac{1}{2}\left(a+\lambda m(\|\omega\|^2)\right) \|u\|^2-\frac{1}{q}\int_{\mathbb{R}^N}h(x)(u^{+})^{q}dx, \quad B(u)=\int_{\mathbb{R}^N}F(u)dx, \end{equation*} where $u^{+}=\max\{u,0\}$. So the perturbed functional that we study is \begin{equation*} I_{\omega,\tau}(u)=\frac{1}{2}\left(a+\lambda m(\|\omega\|^2)\right)\|u\|^2 -\frac{1}{q}\int_{\mathbb{R}^N}h(x)(u^{+})^{q}dx -\tau\int_{\mathbb{R}^N}F(u)dx,\quad \tau\in I. \end{equation*} It follows from (H4) that \begin{align*} \frac{1}{2}\left(a+\lambda m(\|\omega\|^2)\right)\|u\|^2 -\frac{1}{q}\int_{\mathbb{R}^N}h(x)(u^{+})^{q}dx &\geq \frac{a}{2}\|u\|^2-\frac{1}{q}\|h\|_{q'}\|u\|_{2^*}^{q}\\ &\geq \frac{a}{2}\|u\|^2-\frac{\gamma_{2^*}^q}{q}\|h\|_{q'}\|u\|^{q}, \end{align*} which implies that $A_{\omega}(u)\to \infty$ as $\|u\|\to \infty$ and obviously, $B(u)\geq0$. Next, we give some lemmas that are important for proving our main result. \begin{lemma} \label{lem3.1} For each $\omega\in H$ and $\tau\in I$, each bounded (PS) sequence of the functional $I_{\omega,\tau}$ in $H$ admits a convergent subsequence. \end{lemma} \begin{proof} For each given $\omega\in H$ and $\tau\in I$, let $\{u_{n}\}$ be a bounded (PS) sequence of the functional $I_{\omega,\tau}$, namely $\{u_{n}\}$ and $\{I_{\omega,\tau}(u_{n})\}$ are bounded, and \[ I_{\omega,\tau}'(u_{n})\to 0 \quad \text{in } H^{-1}, \] where $H^{-1}$ is the dual space of $H$. Since $\{u_{n}\}$ is bounded, subject to a subsequence, we can assume that there exists $u\in H$ such that as $n\to \infty$, \begin{equation}\label{3.1} \begin{gathered} u_n\rightharpoonup u, \quad \text{in }H; \\ u_n\to u, \quad\text{in } L^s(\mathbb{R}^{N})\; (20$, there exists $C_{\epsilon}>0$ such that \begin{equation} |f(t)|\leq b\varepsilon|t|+C_{\varepsilon}|t|^{p-1},\quad t\in \mathbb{R}. \label{13} \end{equation} It follows from \eqref{13}, the H\"{o}lder inequality, the Sobolev inequality and the boundedness of $\{u_{n}\}$ that \begin{align*} \big|\int_{\mathbb{R}^{N}}f(u_{n})(u_{n}-u)dx\big| &\leq \int_{\mathbb{R}^{N}}\left|f(u_{n})(u_{n}-u)\right|dx \\ &\leq b\varepsilon\int_{\mathbb{R}^{N}}|u_{n}||u_{n}-u|dx +C_{\varepsilon}\int_{\mathbb{R}^{N}}|u_{n}|^{p-1}|u_{n}-u|dx\\ &\leq b\varepsilon \|u_{n}\|_{2}\|u_{n}-u\|_{2} +C_{\varepsilon}\|u_{n}\|_{p}^{p-1}\|u_{n}-u\|_{p}\\ &\leq \varepsilon C \|u_{n}\|\|u_{n}-u\| +C_{\varepsilon}C\|u_{n}\|^{p-1}\|u_{n}-u\|_{p}\\ &\leq \varepsilon C+C_{\varepsilon}C\|u_{n}-u\|_{p}. \end{align*} Then, by \eqref{3.1} we can obtain \begin{equation} \limsup_{n\to \infty} \big|\int_{\mathbb{R}^{N}}f(u_{n})(u_{n}-u)dx\big| \leq \varepsilon C.\label{3.3} \end{equation} Therefore, using the arbitrariness of $\varepsilon$ in \eqref{3.3}, we have \begin{equation} \int_{\mathbb{R}^{N}}f(u_{n})(u_{n}-u)dx\to 0,\quad \text{as } n\to \infty.\label{3.4} \end{equation} Using \eqref{3.1}, we have $$ (u^{+}_n)^{q-1}(u_{n}-u)\to 0,\quad \text{a.e. } x\in \mathbb{R}^{N}. $$ Since \begin{align*} \int_{\mathbb{R}^{N}}\big(u^{+}_n)^{q-1}(u_{n}-u)\big)^{2^*/q}dx &\leq \Big(\int_{\mathbb{R}^{N}}(u^{+}_n)^{2^*}dx\Big)^{\frac{q-1}{q}} \Big(\int_{\mathbb{R}^{N}}(u_n-u)^{2^*}dx\Big)^{1/q}\\ &\leq \|u_n\|_{2^*}^{\frac{(q-1)2^*}{q}}\|u_n-u\|_{2^*}^{2^*/q}\\ &\leq C\|u_n\|^{\frac{(q-1)2^*}{q}}\|u_n-u\|^{2^*/q}<+\infty. \end{align*} So, $(u^{+}_n)^{q-1}(u_{n}-u)$ is bounded in $L^{2^*/q}(\mathbb{R}^{N})$. Hence, going if necessary to a subsequence, we can assume that $(u^{+}_n)^{q-1}(u_{n}-u)\rightharpoonup 0$ in $L^{2^*/q}(\mathbb{R}^{N})$ and using (H4), \begin{equation} \int_{\mathbb{R}^{N}}h(x)(u^{+}_n)^{q-1}(u_{n}-u)dx\to 0,\quad \text{as } n\to \infty.\label{3.40} \end{equation} Thus, by using \eqref{3.4}, \eqref{3.40} and $I_{\omega,\tau}'(u_{n})\to 0$, we have \begin{align*} \left(a+\lambda m(\|\omega\|^2)\right)\langle u_{n},u_{n}-u\rangle &=\langle I_{\omega,\tau}'(u_{n}),u_{n}-u\rangle +\tau\int_{\mathbb{R}^{N}}f(u_{n})(u_{n}-u)dx\\ &\quad +\int_{\mathbb{R}^{N}}h(x)(u^{+}_n)^{q-1}(u_{n}-u)dx\to 0; \end{align*} that is, $\|u_{n}\|\to \|u\|$. This together with $u_n\rightharpoonup u$ shows that $u_n\to u$ in $H$. \end{proof} \begin{lemma} \label{lem3.2} For each $R>0$ and $\omega\in H$ with $\|\omega\|\leq R$, there exists $\tilde{\lambda}=\tilde{\lambda}(R)>0$, $m_0>0$ and ${\tau_{k}}\subset [1/2,1]$ satisfying that ${\tau_{k}}\to 1$ as $k\to \infty$, such that $I_{\omega,\tau_{k}}$ has a nontrivial critical point $u_{\omega,\tau_{k}}$ if $\lambda\in [0,\tilde{\lambda})$, $\|h\|_{q'}0$. For given constant $R>0$, there exists $\tilde{\lambda}=\tilde{\lambda}(R)>0$, such that if $\lambda\in [0,\tilde{\lambda})$, we have $\lambda \max_{\xi\in[0,R^2]}m(\xi)\leq 1$. By (H3), for $\frac{2(a+1)}{\int_{B(0,R_0)}\phi^2dx}>0$, there exists $C_{1}>0$ such that \begin{equation*} F(t)\geq \frac{2(a+1)}{\int_{B(0,R_0)}\phi^2dx}t^2-C_{1},\quad t\geq0 . \end{equation*} So, for $t\geq 0$ we get \begin{equation} \begin{aligned} I_{\omega,\tau}(t\phi) &= \frac{t^2}{2}\left(a+\lambda m(\|\omega\|^2)\right)\|\phi\|^2 -\tau\int_{\mathbb{R}^N}F(t\phi)dx-\frac{t^q}{q}\int_{\mathbb{R}^N}h(x)\phi^q dx\\ &\leq \frac{t^2}{2}\left(a+\lambda m(\|\omega\|^2)\right) -\frac{t^2}{2}\frac{2(a+1)}{\int_{B(0,R_0)}\phi^2dx}\int_{B(0,R_0)}\phi^{2}dx -\frac{t^q}{q}\int_{\mathbb{R}^N}h(x)\phi^q dx\\ &\quad +\frac{C_{1}|B(0,R_0)|}{2}\\ &\leq -\frac{t^2}{2}(a+1)+\frac{C_{1}|B(0,R_0)|}{2} -\frac{t^q}{q}\int_{\mathbb{R}^N}h(x)\phi^q dx. \end{aligned} \label{3.5} \end{equation} On one hand, by (H4), we can obtain \begin{equation*} I_{\omega,\tau}(t\phi)\leq -\frac{t^2}{2}(a+1) +\frac{C_{1}|B(0,R_0)|}{2}-\frac{t^q}{q}\int_{\mathbb{R}^N}h(x)\phi^q dx\to -\infty,\quad t\to +\infty; \end{equation*} on the other hand, by \eqref{3.5}, we known that there exists a constant $C=C(R_0)>0$ (depending on $\omega$ and $\tau$) such that \begin{equation} \max_{t\geq0}I_{\omega,\tau}(t\phi)\leq\frac{C_{1}|B(0,R_0)|}{2}:=C. \label{3.50} \end{equation} Hence, we can choose $t>0$ large enough such that $I_{\omega,\tau}(t\phi)<0$; that is, $\Gamma_{\omega,\tau}\neq \emptyset$, where, $\Gamma_{\omega,\tau}=\{\gamma\in C([0,1],H):\gamma(0)=0, I_{\omega,\tau}(\gamma(1))<0\}$. Using (H1) and (H2), for $\varepsilon\in (0, \frac{a}{2})$, there exists $C_{2}(\epsilon)>0$ such that \begin{equation*} F(t)\leq \frac{\varepsilon}{2}bt^2+C_{2}(\varepsilon)t^p,\quad t\geq0 . \end{equation*} By Sobolev's embedding theorem, there exists $C_3(\varepsilon)>0$ such that \begin{align*} I_{\omega,\tau}(u) &= \frac{1}{2}\left(a+\lambda m(\|\omega\|^2)\right)\|u\|^2 -\tau\int_{\mathbb{R}^N}F(u)dx-\frac{1}{q}\int_{\mathbb{R}^N}h(x)(u^{+})^{q}dx\\ &\geq \frac{a}{2}\|u\|^2-\frac{\varepsilon}{2} b\int_{\mathbb{R}^{N}} u^2 dx -C_{2}(\varepsilon)\int_{\mathbb{R}^{N}}|u|^pdx -\frac{1}{q}\|h\|_{q'}\|u\|_{2^*}^{q}\\ &\geq \frac{a}{4}\|u\|^2-C_{3}(\varepsilon)\|u\|^p -\frac{\gamma_{2^*}^q}{q}\|h\|_{q'}\|u\|^{q} \\ &\geq \|u\|^{q}\Big(\frac{a}{4}\|u\|^{2-q}-C_{3}(\varepsilon)\|u\|^{p-q} -\frac{\gamma_{2^*}^q}{q}\|h\|_{q'}\Big). \end{align*} Setting $$ g(t)=\frac{a}{4}t^{2-q}-C_{3}(\varepsilon)t^{p-q} $$ for $t\geq 0$. Since $10$ sufficiently small such that $g(\rho)>0$. Taking $m_0:=\frac{q}{2\gamma_{2^*}^q}g(\rho)$, it then follows that there exists a constant $c:=\frac{1}{2}g(\rho)\rho^q>0$ which is independent of $\tau$, $\lambda$ and $\omega$ such that \begin{equation*} I_{\omega,\tau}(u)\big|_{\|u\|= \rho}\geq c>0, \end{equation*} for any $\tau\in I$, $\omega\in H$ and all $h$ satisfying $\|h\|_{q'}\rho$. Since $\gamma(0)=0$, then from intermediate value theorem, we deduce that there exists $t_{\gamma}\in (0,1)$ such that $\|\gamma(t_{\gamma})\|=\rho $. Therefore, for any fixed $\tau\in I$, \begin{equation*} c_{\omega,\tau}=\inf_{\gamma \in\Gamma_{\omega,\tau} } \max_{t\in[0,1]}I_{\omega,\tau}(\gamma(t)) \geq \inf_{\gamma\in \Gamma_{\omega,\tau}}I_{\omega,\tau} (\gamma(t_{\gamma}))\geq c>0. \end{equation*} Following Theorem \ref{thm2.1}, there are $\{\tau_{k}\}\subset [1/2,1)$, with $\tau_{k}\to 1$ as $k\to \infty$, and for every $k$, there exists a sequence $\{u_{n,\omega,\tau_{k}}\}\subset H$, such that $\{u_{n,\omega,\tau_{k}}\}$ is bounded and $I_{\omega,\tau_{k}}(u_{n,\omega,\tau_{k}}) \to c_{\omega,\tau_{k}},I'_{\omega,\tau_{k}}(u_{n,\omega,\tau_{k}})\to 0$, where \begin{gather*} c_{\omega,\tau_{k}}=\inf_{\gamma\in\Gamma_{\omega,\tau_{k}}} \sup_{u\in\gamma([0,1])}I_{\omega,\tau_{k}}(u), \\ \Gamma_{\omega,\tau_{k}} =\big\{\gamma\in C([0,1], H)|\gamma(0)=0, \; I_{\omega,\tau_{k}}(\gamma(1))<0\big\}. \end{gather*} Furthermore, by Lemma \ref{lem3.1}, we can suppose that there exists $u_{\omega,\tau_{k}}\in H$ such that $u_{n,\omega,\tau_{k}}\to u_{\omega,\tau_{k}}$, and then $$ I_{\omega,\tau_{k}}(u_{\omega,\tau_{k}}) =c_{\omega,\tau_{k}}, \quad I'_{\omega,\tau_{k}}(u_{\omega,\tau_{k}})=0. $$ From the above discussion, we get that for given $R>0$ and $\omega\in H$ with $\|\omega\|\leq R$, there exists $\tilde{\lambda}=\tilde{\lambda}(R)>0$, $m_0>0$ and ${\tau_{k}}\subset [\frac{1}{2},1]$ satisfying that ${\tau_{k}}\to 1$ as $k\to \infty$, such that $I_{\omega,\tau_{k}}$ has a nontrivial critical point $u_{\omega,\tau_{k}}$ if $\lambda\in [0,\tilde{\lambda})$, $\|h\|_{q'}0$, independent of $\tau$, $\lambda$ and $\omega$, such that \begin{equation} \int_{\mathbb{R}^{N}}|\nabla u_{\omega,\tau_{k}}|^{2}dx\leq C_5.\label{34} \end{equation} Furthermore, by (H1) and (H2), there exists a constant $C_{6}>0$ such that \begin{equation} |f(t)|\leq \frac{ab}{2}|t|+C_{6}|t|^{2^{*}-1},\quad t\in \mathbb{R}. \label{113} \end{equation} Hence, by \eqref{31} and \eqref{113}, we have \begin{align*} & \left(a+\lambda m(\|\omega\|^2)\right)\|u_{\omega,\tau_{k}}\|^{2}\\ &= \tau_{k}\int_{\mathbb{R}^{N}}f(u_{\omega,\tau_{k}})u_{\omega,\tau_{k}}dx +\int_{\mathbb{R}^{N}}h(x)(u^{+}_{\omega,\tau_{k}})^{q}dx\\ &\leq \frac{ab}{2}\int_{\mathbb{R}^{N}}|u_{\omega,\tau_{k}}|^{2}dx +C_{6}\int_{\mathbb{R}^{N}}|u_{\omega,\tau_{k}}|^{2^{*}}dx\ +\|h\|_{q'}\big(\int_{R^{N}}|u_{\omega,\tau_{k}}|^{2^{*}}dx\big)^{q/2^*}\\ &\leq \frac{a}{2}\|u_{\omega,\tau_{k}}\|^{2} +C_{6}\int_{R^{N}}|u_{\omega,\tau_{k}}|^{2^{*}}dx + \|h\|_{q'}\big(\int_{R^{N}}|u_{\omega,\tau_{k}}|^{2^{*}}dx\big)^{q/2^*}. \end{align*} Using \eqref{34}, we conclude that \begin{align*} \frac{a}{2}\|u_{\omega,\tau_{k}}\|^{2} &\leq C_{6}\int_{\mathbb{R}^{N}}|u_{\omega,\tau_{k}}|^{2^{*}}dx +\|h\|_{q'}\Big(\int_{R^{N}}|u_{\omega,\tau_{k}}|^{2^{*}}dx\Big)^{q/2^*}\\ &\leq C_{7}\Big(\int_{\mathbb{R}^{N}}|\nabla u_{\omega,\tau_{k}}|^{2}dx \Big)^{2^*/2}+C_{8}\Big(\int_{\mathbb{R}^{N}}|\nabla u_{\omega,\tau_{k}}|^{2}dx \Big)^{q/2}\\ &\leq C_{7}C_5^{2^*/2}+C_{8}C_5^{q/2}. \end{align*} Then $\|u_{\omega,\tau_{k}}\|^{2}\leq C_{9}$, where $ C_{9}=\frac{2}{a}C_{7}C_5^{2^*/2}+\frac{2}{a}C_{8}C_5^{q/2}$ which is independent of $\tau$, $\lambda$ and $\omega$. If we set $R=\sqrt{C_{9}}$, then for any $\omega\in H$ with $\|\omega\|\leq R$, there exist $\tilde{\lambda}>0$ $m_0>0$ which are independent of $\tau$, $\lambda$ and $\omega$, such that $I_{\omega,\tau_{k}}$ has a nontrivial critical point $u_{\omega,\tau_{k}}$ with $\|u_{\omega,\tau_{k}}\|\leq R$ when $\lambda\in [0,\tilde{\lambda})$, $\|h\|_{2}0; \end{gather*} that is, for any $v\in H$, $$ I'_{u_{k},\tau_{k}}(u_{k})\cdot v=0,\quad I_{u_{k},\tau_{k}}(u_{k})\geq c>0. $$ \smallskip \noindent\textbf{Step 2.} The sequence $\{u_{k}\}$ obtained in step 1 is convergent to a nontrivial positive solution of \eqref{1.1}. Since $\|u_{k}\|\leq R$ for all $k\in \mathbb{N}$, without loss of generality, we can assume that there exists a function $u\in H$ such that \begin{equation} \begin{gathered} u_{k}\rightharpoonup u, \quad \text{in }H; \\ u_{k}\to u, \quad \text{in } L^p(\mathbb{R}^{N})(20. \end{align*} Therefore, $u$ is a nontrivial solution of \eqref{1.1}. Setting $u^{-}=\max\{-u,0\}$, Since \[ (a+\lambda m(\|u\|^2))\langle u,u^-\rangle -\int_{\mathbb{R}^{N}}f(u)u^-dx -\int_{\mathbb{R}^{N}}h(x)(u^{+})^{q-1}u^-dx=0, \] by (H1) and (H4) we have $\|u^-\|=0$; this implies $u\geq0$ a.e. in $\mathbb{R}^{N}$. So, by the strong maximum principle, we get that $u$ is positive on $H$. Thus $u$ is a positive solution of \eqref{1.1} if $\lambda\in[0,\tilde{\lambda})$, $\|h\|_{q'}0$ such that $I_{\lambda}(u)\big|_{\|u\|= \rho}\geq \alpha>0$ with $\|h\|_{2}0$ such that \begin{equation*} F(t)\leq \frac{\varepsilon}{2}bt^2+C_{12}(\varepsilon)t^p,\quad t\geq0 . \end{equation*} By Sobolev's embedding theorem, there exists $C_{13}(\varepsilon)>0$ such that \begin{align*} I_{\lambda}(u) &= \frac{a}{2}\|u\|^2+\frac{\lambda}{2}M(\|u\|^2) -\int_{\mathbb{R}^N}F(u)dx-\frac{1}{q}\int_{\mathbb{R}^N}h(x)(u^+)^{q}dx\\ &\geq \frac{a}{2}\|u\|^2-\frac{\varepsilon}{12} b\int_{\mathbb{R}^{N}} u^2 dx -C_{12}(\varepsilon)\int_{\mathbb{R}^{N}}|u|^pdx-\frac{1}{q}\|h\|_{q'}\|u\|_{2^*}^{q}\\ &\geq \frac{a}{4}\|u\|^2-C_{13}(\varepsilon)\|u\|^p -\frac{\gamma_{2^*}}{q}\|h\|_{q'}\|u\|^{q} \\ &\geq \|u\|^{q}\Big(\frac{a}{4}\|u\|^{2-q}-C_{13}(\varepsilon)\|u\|^{p-q} -\frac{\gamma_{2^*}}{q}\|h\|_{q'}\Big) \end{align*} So, setting $$ g(t)=\frac{a}{4}t^{2-q}-C_{13}(\varepsilon)t^{p-q} $$ for $t\geq 0$. Since $10$ sufficiently small such that $g(\rho)>0$. Taking $m_0:=\frac{q}{2\gamma_{2^*}}g(\rho)$, it then follows that there exists a constant $\alpha:=\frac{1}{2}g(\rho)\rho^q>0$ which is independent of $\tau$, $\lambda$ and $\omega$ such that \begin{equation*} I_{\lambda}(u)\big|_{\|u\|= \rho}\geq \alpha>0, \end{equation*} for any $\tau\in I$, $\omega\in H$ and all $h$ satisfying $\|h\|_{q'}0$. By (H1), for $t\geq 0$ we obtain \begin{equation} \begin{aligned} I_{0}(t\phi) &= \frac{at^2}{2}\|\phi\|^2-\int_{\mathbb{R}^N}F(t\phi)dx -\frac{t^q}{q}\int_{\mathbb{R}^N}h(x)\phi^q dx\\ &\leq \frac{at^2}{2}\|\phi\|^2-\frac{t^q}{q}\int_{B(0,R_0)}h(x)\phi^q dx. \end{aligned} \label{4.1} \end{equation} Since $10$ sufficiently small, which implies that there exist $e\in H$ with $\|e\|<\rho$ such that $I_0(e)<0$, where $\rho$ is given by Lemma \ref{lem4.1}. Since $I_{\lambda}(e)\to I_0(e)$ as $\lambda\to 0^+$, we see that there exists $\widetilde{\lambda}>\lambda^*>0$ such that $I_{\lambda}(e)<0$ for all $\lambda \in [0,\lambda^*)$, where $\widetilde{\lambda}$ is given by Lemma \ref{lem3.2}. \end{proof} \section*{Second positive solution for \eqref{1.1}} Setting $$ c_1:=\inf\{I_{\lambda}(u):u\in \overline{B}_{\rho}\}, $$ where $\rho$ is given by Lemma \ref{lem4.1}, $B_{\rho}=\{u\in H: \|u\|<\rho\}$. Using Lemma \ref{lem4.1} and Lemma \ref{lem4.2}, we obtain $$ \inf_{\overline{B}_{\rho}}I_{\lambda}>-\infty, \quad \inf_{\partial B_{\rho}}I_{\lambda}>\alpha>0, \quad c_1<0. $$ By Ekeland's variational principle, there exists a sequence $\{u_n\}\subset \overline{B}_{\rho}$ such that \begin{gather*} c_1\leq I_{\lambda}(u_n)