\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 317, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/317\hfil Auasilinear problems with a $p(x)$-biharmonic operator] {Existence of infinitely many solutions for quasilinear problems with a $p(x)$-biharmonic operator} \author[G. A. Afrouzi, S. Shokooh \hfil EJDE-2015/317\hfilneg] {Ghasem A. Afrouzi, Saeid Shokooh} \address{Ghasem A. Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Saeid Shokooh \newline Department of Mathematics, Faculty of Sciences, Gonbad Kavous University, Gonbad Kavous, Iran} \email{shokooh@gonbad.ac.ir} \thanks{Submitted June 16, 2015. Published December 28, 2015.} \subjclass[2010]{35D05, 34B18, 35J60} \keywords{Ricceri's variational principle; infinitely many solutions; \hfill\break\indent Navier condition; $p(x)$-biharmonic operator} \begin{abstract} By using critical point theory, we establish the existence of infinitely many weak solutions for a class of Navier boundary-value problem depending on two parameters and involving the $p(x)$-biharmonic operator. Under an appropriate oscillatory behaviour of the nonlinearity and suitable assumptions on the variable exponent, we obtain a sequence of pairwise distinct solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this work we study the existence of infinitely many weak solutions for Navier boundary-value problem \begin{equation}\label{e1.1} \begin{gathered} \Delta_{p(x)}^2u=\lambda f(x,u)+\mu g(x,u),\quad x\in\Omega,\\ u=\Delta u=0,\quad x\in \partial \Omega, \end{gathered} \end{equation} where $\Omega \subset \mathbb{R}^N$ $(N\geq 2)$ is a bounded domain with boundary of class $C^1$, $\lambda$ is a positive parameter, $\mu$ is a non-negative parameter, $f,g\in C^0(\overline{\Omega}\times \mathbb{R})$, $p(\cdot)\in C^0(\overline{\Omega})$ with \[ \max \{2,\frac{N}{2}\}
1$ is a constant). The study of differential equations and variational problems with variable exponents has attracted intense research interests in recent years. Such problems arise from the study of electrorheological fluids, image processing, and the theory of nonlinear elasticity. So the investigation of existence and multiplicity of solutions for problems involving biharmonic, $p$-biharmonic and $p(x)$-biharmonic operators has drawn the attention of many authors see \cite{CanLiLiv,dema, LT,BiRe,repovs, SZ, Holi, Home,yucedag}. In particular, in \cite{Holi}, the authors studied the following $p(x)$-biharmonic elliptic problem with Navier boundary conditions: \begin{equation}\label{e1.2} \begin{gathered} \Delta_{p(x)}^2u=\lambda a(x) f(x,u)+\mu g(x,u),\quad x\in\Omega,\\ u=\Delta u=0,\quad x\in \partial \Omega, \end{gathered} \end{equation} where $\Omega \subset \mathbb{R}^N$ $(N\geq 2)$ is a bounded domain with boundary of class $C^1$, $\lambda,\mu$ are non-negative parameters, $p(\cdot)\in C^0(\overline{\Omega})$ with \[ \max \{2,\frac{N}{2}\}
\inf_X\Phi$, let \begin{gather*} \varphi(r):=\inf_{u\in\Phi^{-1}(-\infty,r)} \frac{\big(\sup_{v\in\Phi^{-1}(-\infty,r)}\Psi(v)\big)-\Psi(u)}{r-\Phi(u)}, \\ \gamma:=\liminf_{r\to +\infty}\varphi(r),\quad\text{and}\quad \delta:=\liminf_{r\to(\inf_X\Phi)^+}\varphi(r). \end{gather*} Then the following properties hold: \begin{itemize} \item[(a)] For every $r>\inf_X\Phi$ and every $\lambda\in (0,1/\varphi(r))$, the restriction of the functional $$ I_\lambda:=\Phi-\lambda\Psi $$ to $\Phi^{-1}(-\infty,r)$ admits a global minimum, which is a critical point (local minimum) of $I_\lambda$ in $X$. \item[$\rm(b)$] If $\gamma<+\infty$, then for each $\lambda\in (0,1/\gamma)$, the following alternative holds: either \begin{enumerate} \item $I_\lambda$ possesses a global minimum, or \item there is a sequence $\{u_n\}$ of critical points (local minima) of $I_\lambda$ such that $$ \lim_{n\to+\infty}\Phi(u_n)=+\infty. $$ \end{enumerate} \item[(c)] If $\delta<+\infty$, then for each $\lambda\in (0,1/\delta)$, the following alternative holds: either \begin{enumerate} \item there is a global minimum of $\Phi$ which is a local minimum of $I_\lambda$, or \item there is a sequence $\{u_n\}$ of pairwise distinct critical points (local minima) of $I_\lambda$ that converges weakly to a global minimum of $\Phi$. \end{enumerate} \end{itemize} \end{lemma} For the reader's convenience, we recall some background facts concerning the Lebesgue-Sobolev spaces variable exponent and introduce some notation. For more details, we refer the reader to \cite{Fazh,Kora,ouso,Radu1,Radu2,Ruz,San}. Set \[ C_{+}( \Omega ) :=\big\{ h\in C( \overline{ \Omega }) :h(x)>1,\,\forall x\in \overline{\Omega }\big\}. \] For $p(\cdot)\in C_{+}( \Omega )$, define \[ L^{p(\cdot)}( \Omega ) :=\big\{ u:\Omega \to \mathbb{R} \text{ measurable and } \int_{\Omega }| u( x) | ^{p(x)}dx<\infty \big\}. \] We introduce a norm on $L^{p(\cdot)}( \Omega ) $ by \[ | u| _{p(\cdot)}=\inf \big\{ \beta >0 : \int_{\Omega }| \frac{u( x) }{\beta } | ^{p(x)}dx\leq 1\big\}. \] The space $( L^{p(\cdot)}( \Omega ) ,|u |_{p(\cdot)}) $ is a Banach space called a variable exponent Lebesgue space. Define the Sobolev space with variable exponent \[ W^{m,p(\cdot)}( \Omega ) =\big\{ u\in L^{p(\cdot)}( \Omega ) :D^{\alpha }u\in L^{p(\cdot)}( \Omega ) ,| \alpha | \leq m\big\} , \] where \[ D^{\alpha }u=\frac{\partial ^{| \alpha | }}{ \partial x_{1}^{\alpha _{1}}\partial x_{2}^{\alpha _{2}}\dots \partial x_{N}^{\alpha _{N}}}u \] with $\alpha =(\alpha _{1},\dots ,\alpha_{N})$ is a multi-index and $| \alpha| =\sum_{i=1}^{N}\alpha _{i}$. The space $W^{m,p(\cdot)}(\Omega ) $, equipped with the norm \[ \| u\| _{m,p(\cdot)}:=\sum_{| \alpha | \leq m}| D^{\alpha }u| _{p(\cdot)}, \] becomes a separable, reflexive and uniformly convex Banach space. We denote by $W_{0}^{m,p(\cdot)}( \Omega ) $ the closure of $C_{0}^{\infty }(\Omega )$ in $W^{m,p(\cdot)}(\Omega ) $. Now we denote \[ X:=W^{2,p(\cdot)}( \Omega ) \cap W_{0}^{1,p(\cdot)}( \Omega ). \] For $u\in X$, we define \[ \| u\| =\inf \Big\{ \beta >0:\int_{\Omega } |\frac{\Delta u( x) }{\beta } | ^{p(x)} dx\leq 1\Big\}. \] It is easy to see that $X$ endowed with the above norm is a separable and reflexive Banach space. We denote by $X^*$ its dual. \begin{remark}\label{rq1.1}\rm{ According to \cite{Zang2008}, the norm $\| u \| _{2,p(\cdot)}$ is equivalent to the norm $| \Delta u | _{p(\cdot)}$ in the space $X$. Consequently, the norms $\|u \|_{2,p(\cdot)},\| u \|$ and $| \Delta u | _{p(\cdot)}$ are equivalent.} \end{remark} For the rest of this article, we use $\| u \|$ instead of $\|u \|_{2,p(\cdot)}$ on $X$. \begin{proposition}[\cite{Fazh,Ruz}] \label{prop1.1} The conjugate space of $L^{p(\cdot)}( \Omega )$ is $L^{q(\cdot)}( \Omega ) $ where $q(\cdot)$ is the conjugate function of $p(\cdot)$; i.e., \[ \frac{1}{p(\cdot)}+\frac{1}{q(\cdot)}=1. \] For $u\in L^{p(\cdot)}( \Omega ) $ and $v\in L^{q(\cdot)}(\Omega ) $, we have \[ \Big| \int_{\Omega }u( x) v(x)dx\Big| \leq \Big(\frac{1}{p^{-}}+\frac{1}{q^{-}}\Big)| u| _{p(\cdot)}|v| _{q(\cdot)}\leq 2| u| _{p(\cdot)}| v| _{q(\cdot)}. \] \end{proposition} \begin{proposition}[\cite{Fazh,Ruz}]\label{prop1.3} Set $\rho(u) =\int_{\Omega }| u| ^{p(x)} dx$. For $u,u_n\in L^{p(\cdot)}(\Omega)$, we have \begin{itemize} \item[(1)] $| u|_{p(\cdot)} <( =;>) 1 \Leftrightarrow \rho( u) <( =;>)1 $, \item[(2)] $| u|_{p(\cdot)} > 1\Rightarrow | u|_{p(\cdot)}^{p^-} \leq \rho( u) \leq | u|_{p(\cdot)} ^{p^{+}}$, \item[(3)] $| u|_{p(\cdot)} < 1\Rightarrow | u|_{p(\cdot)} ^{p^{+}}\leq \rho( u) \leq | u|_{p(\cdot)} ^{p^{-}}$, \item[(4)] $| u_n|_{p(\cdot)} \to 0\Leftrightarrow \rho(u_n) \to 0$, \item[(5)] $| u_n|_{p(\cdot)} \to \infty \Leftrightarrow \rho( u_n) \to \infty $. \end{itemize} \end{proposition} From Proposition \ref{prop1.3}, for $u\in L^{p(\cdot)}(\Omega)$ the following inequalities hold: \begin{gather}\label{mol2} \|u\|^{p^-}\leq \int_\Omega |\Delta u(x)|^{p(x)}\;dx\leq \|u\|^{p^+} \quad \text{if }\|u\|>1; \\ \label{mol3} \|u\|^{p^+}\leq\int_\Omega |\Delta u(x)|^{p(x)}\;dx\leq\|u\|^{p^-} \quad \text{if }\|u\|<1. \end{gather} \begin{proposition}[\cite{Home}]\label{prop11.3} If $\Omega \subset \mathbb{R}^N$ is a bounded domain, then the embedding $X\hookrightarrow C^0(\overline{\Omega})$ is compact whenever $N/2
0.
$$
Now fix $\overline{\mu}\in (0,\mu_{g,\overline{\lambda}})$ and set
$$
J(x,\xi):=F(x,\xi)+\frac{\overline{\mu}}{\overline{\lambda}}G(x,\xi)
$$
for all $(x,\xi)\in \Omega\times\mathbb{R}$.
For each $u\in X$, we let the functionals
$\Phi,\Psi:X\to\mathbb{R}$ be defined by
\[
\Phi(u):=\int_\Omega\frac{1}{p(x)}|\Delta u(x)|^{p(x)}dx, \quad
\Psi(u):=\int_\Omega J(x,u(x))\,dx,
\]
and put
$$
I_{\overline{\lambda}}(u):=\Phi(u)-\overline{\lambda}\Psi(u),\quad u\in X.
$$
Note that the weak solutions of \eqref{e1.1} are exactly the critical points of
$I_{\overline{\lambda}}$. The functionals $\Phi,\Psi$ satisfy the
regularity assumptions of
Lemma \ref{lem2.1}. Indeed, by standard arguments, we have that $\Phi$
is G\^{a}teaux differentiable
and sequentially weakly lower semicontinuous and its G\^{a}teaux
derivative is the functional
$\Phi'(u)\in X^*$, given by
\begin{align*}
\Phi'(u)(v)=\int_{\Omega }| \Delta u| ^{p(x)-2}\Delta u\Delta v dx
\end{align*}
for any $v\in X$. Furthermore, the differential $\Phi':X\to X^*$
admits a continuous inverse (see \cite[Lemma 3.1]{Holi}).
On the other hand, the fact that $X$ is compactly embedded into $C^0([0,1])$ implies
that the functional $\Psi$ is well defined, continuously G\^{a}teaux differentiable
and with compact derivative, whose G\^{a}teaux derivative is given by
$$
\Psi'(u)(v)=\int_\Omega f(x,u(x))v(x)\,dx+
\frac{\overline{\mu}}{\overline{\lambda}}\int_\Omega g(x,u(x))v(x)\,dx.
$$
Furthermore, we have from \eqref{mol2} that
\begin{equation}
\Phi(u)\geq \frac{1}{p^+}\|u\|^{p^-}
\end{equation}
for all $u\in X$ such that $\|u\|>1$, and so $\Phi$ is coercive.
First of all, we will show that $\overline{\lambda}<1/\gamma$.
Hence, let $\{\xi_n\}$ be a sequence of positive numbers such that
$\lim_{n\to +\infty}\xi_n=+\infty$ and
$$
\lim_{n\to+\infty}\frac{
\int_\Omega\sup_{|t|\leq\xi_n}F(x,t)\,dx}{\xi_n^{p^-}}=\eta.
$$
Put
$$
r_n:=\frac{1}{p^+}\Big(\frac{\xi_n}{c}\Big)^{p^-}
$$
for all $n\in\mathbb{N}$. Then, for
all $v\in X$ with $\Phi(v) 0$ such that $\lim_{n\to +\infty}\tau_n=0^+$ and
\[
\frac{1}{\overline{\lambda}}<\zeta<\frac{p^-c^{p^+}}{\sigma^0}
\frac{\int_{B(x^0,r_1)} F(x,\tau_n)\,dx}{\tau_n^{p^-}}
\]
for each $n\in\mathbb{N}$ large enough.
Let $\{w_n\}$ be the sequence in $X$ defined in \eqref{sasiras}. From
${\rm(k_1)}$ and ${\rm(A_1)}$ one has \eqref{e3.6} holds.
Note that $\overline{\lambda}\zeta>1$. Then, as in showing
\eqref{sds}, we can obtain
\begin{align*}
I_{\overline{\lambda}}(w_n)
< \frac{\tau_n^{p^-}\sigma^0}{p^-c^{p^+}}
(1-\overline{\lambda}\zeta)<0=\Phi(0)-\overline{\lambda}\Psi(0)
\end{align*}
for every $n\in\mathbb{N}$ large enough. Then,
we see that zero is not a local minimum of
$I_{\overline{\lambda}}$. This, together with the
fact that zero is the only global minimum of $\Phi$, we deduce that the energy
functional $I_{\overline{\lambda}}$ has not a
local minimum at the unique global minimum of $\Phi$. Therefore, by
Lemma \ref{lem2.1}(c), there exists a sequence $\{u_n\}$ of critical
points of $I_{\overline{\lambda}}$ which converges
weakly to zero. In view of the fact that the embedding
$X\hookrightarrow C^0(\overline{\Omega})$ is compact, we know that the
critical points converge strongly to zero, and the proof is
complete.
\end{proof}
\begin{remark}\label{rem3.2.1} \rm{
Under the conditions $\eta^0=0$ and $\theta^0=+\infty$, Theorem \ref{the3.6}
ensures that for every $\lambda>0$ and for each
$\mu\in\big{[}0,\frac{1}{p^+c^{p^+}g_0}\big{)}$, problem \eqref{e1.1}
admits a sequence of weak solutions which strongly converges to 0 in $X$.
Moreover, if $g_0=0$, the result holds for every $\lambda>0$
and $\mu\geq 0$.}
\end{remark}
\begin{remark}\label{rem3.7}\rm{
Applying Theorem \ref{the3.6}, results similar to Theorem \ref{the3.3}
Corollaries \ref{core3.3.1} and \ref{cor3.6}, can be obtained. We omit
the discussions here.}
\end{remark}
We conclude this article with the following example that illustrates our results.
\begin{example} \rm
Let $\Omega=\{(x,y)\in \mathbb{R}^2; x^2+y^2<3\}$. Then consider the problem
\begin{equation} \label{arasjan}
\begin{gathered}
\Delta_{p(x,y)}^2u=\lambda f(x,y,u)+\mu g(x,y,u),\quad x\in \Omega,\\
u=\Delta u=0,\quad x\in \partial \Omega,
\end{gathered}
\end{equation}
where $p(x,y)=x^2+y^2+3$ for all $(x,y)\in \Omega$,
\[
f(x,y,t)= \begin{cases}
f^{*}(x,y)t^6\big(7+\sin(\ln(|t|))-7\cos(\ln(|t|))\big),
& (x,y,t)\in \Omega\times (\mathbb{R}-\{0\}),\\
0,& (x,y,t)\in \Omega \times \{0\},
\end{cases}
\]
where $f^{*}:\Omega \to \mathbb{R}$ is a non-negative continuous function, and
$$
g(x,y,t)=e^{x+y-t^{+}}(t^{+})^{\varsigma-1}(\varsigma-t^{+})
$$
for all $(x,y)\in \Omega$ and $t\in \mathbb{R}$, where
$t^+=\max\{t,0\}$ and $\varsigma$ is a positive real number.
It is obvious that $p^-=3$ and $p^+=6$. A
direct calculation shows that
\[
F(x,y,t)=\begin{cases}
f^{*}(x,y)t^7\big(1-\cos(\ln(|t|))\big), &(x,y,t)\in \Omega\times (\mathbb{R}-\{0\}),
\\
0, &(x,y,t)\in \Omega \times \{0\}.
\end{cases}
\]
So,
\begin{gather*}
\liminf_{\xi\to+\infty}\frac{\int_{\Omega}
\max_{|t|\leq\xi}F(x,y,t)\,d\sigma}{\xi^{3}}=0,
\\
\limsup_{\xi\to+\infty}\frac{\int_{B((0,0),1)}F(x,y,\xi)\,dx}{\xi^{6}}=+\infty.
\end{gather*}
Hence, using Theorem \ref{the3.1}, since $g_\infty=0$, the
problem \eqref{arasjan} for every $(\lambda,\mu)\in
]0,+\infty[\times [0,+\infty[$ admits infinitely many weak
solutions in $X$.
\end{example}
\begin{thebibliography}{99}
\bibitem{AfrHeiSho} G. A. Afrouzi, S. Heidarkhani, S. Shokooh;
Infinitely many solutions for Steklov problems associated to
non-homogeneous differential operators through Orlicz-Sobolev
spaces, \emph{Complex Var. Elliptic Equ.}, \textbf{60}(11) (2015), 1505-1521.
\bibitem{BonaMolica} G. Bonanno, G. Molica Bisci;
Infinitely many solutions for a boundary value problem with
discontinuous nonlinearities, \emph{Bound. Value Probl.,}
\textbf{2009} (2009), 1-20.
\bibitem{BonaMolica1} G. Bonanno, G. Molica Bisci;
Infinitely many solutions for a Dirichlet problem involving the
$p$-Laplacian, \emph{Proc. Roy. Soc. Edinburgh Sect. A,} \textbf{140} (2010), 737-752.
\bibitem{BonaMolicaOr} G. Bonanno, G. Molica Bisci, D. O'Regan;
Infinitely many weak solutions for a class of quasilinear elliptic systems,
\emph{Math. Comput. Modelling,} \textbf{52} (2010), 152-160.
\bibitem{BonaMolicaRad0} G. Bonanno, G. Molica Bisci, V. R\u{a}dulescu;
Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlics-Sobolev spaces,
\emph{C. R. Acad. Sci. Paris. Ser. I,} \textbf{349} (2011), 263-268.
\bibitem{BonaMolicaRad00} G. Bonanno, G. Molica Bisci, V. R\u{a}dulescu;
Infinitely many solutions for a class of nonlinear elliptic problems on fractals,
\emph{C. R. Acad. Sci. Paris. Ser. I,} \textbf{350} (2012), 387-391.
\bibitem{BonaMolicaRad} G. Bonanno, G. Molica Bisci, V. R\u{a}dulescu;
Arbitrarily small weak solutions for a nonlinear eigenvalue problem
in Orlicz-Sobolev spaces, \emph{Monatsh. Math.,} \textbf{165} (2012), 305-318.
\bibitem{BonaMolicaRad1} G. Bonanno, G. Molica Bisci, V. R\u{a}dulescu;
Variational analysis for a nonlinear elliptic problem
on the Sierpinski gasket, \emph{ESAIM Control Optim. Calc. Var.,}
\textbf{18} (2012), 941-953.
\bibitem{CanLiLiv} P. Candito, L. Li, R. Livrea;
Infinitely many solutions for a perturbed nonlinear Navier boundary
value problem involving the $p$-biharmonic,
\emph{Nonlinear Anal.,} \textbf{75} (2012), 6360-6369.
\bibitem{dema} R. Demarque, O. Miyagaki;
Radial solutions of inhomogeneous fourth order elliptic equations
and weighted Sobolev embeddings, \emph{Advances in Nonlinear Analysis},
\textbf{4}(2), 135-151.
\bibitem{Fazh} X. L. Fan, D. Zhao;
On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,
\emph{J. Math. Anal. Appl.,} \textbf{263} (2001), 424-446.
\bibitem{GrKon} J. R. Graef, S. Heidarkhani, L. Kong;
Infinitely many solutions for systems of multi-point boundary
value problems using variational methods,
\emph{Topol. Methods Nonlinear Anal.,} \textbf{42} (2013), 105-118.
\bibitem{Kora} O. Kov\'{a}cik, J. R\'{a}kos\'{i}k;
On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,
\emph{Czechoslovak Math. J.,} \textbf{41} (1991), 592-618.
\bibitem{LT} C. Li, C. L. Tang;
Three solutions for a Navier boundary
value problem involving the $p$-biharmonic operator,
\emph{Nonlinear Anal.}, {\bf72} (2010), 1339-1347.
\bibitem{BiRe} G. Molica Bisci, D. Repov\v{s};
Multiple solutions of $p$-biharmonic
equations with Navier boundary conditions,
\emph{Complex Var. Elliptic Equ.}, \textbf{59}(2) (2014), 271-284.
\bibitem{ouso} S. Ouaro, A. Ouedraogo, S. Soma;
Multivalued problem with Robin boundary
condition involving diffuse measure data and variable exponent,
\emph{Adv. Nonlinear Anal.}, \textbf{3}(4) (2014), 209-235.
\bibitem{Radu1} V. R\u{a}dulescu;
Nonlinear elliptic equations with variable exponent: old
and new, \emph{Nonlinear Anal.}, \textbf{121} (2015), 336-369.
\bibitem{Radu2} V. R\u{a}dulescu, D. Repov\v{s};
Partial Differential Equations with
Variable Exponents. Variational Methods and Qualitative Analysis,
Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL,
2015.
\bibitem{repovs} D. Repov\v{s};
Stationary waves of Schr\"{o}dinger-type equations with variable exponent,
\emph{Anal. Appl. (Singap.)}, \textbf{13}(6) (2015), 645-661.
\bibitem{Ricceri1} B. Ricceri;
A general variational principle and some of its applications,
\emph{J. Comput. Appl. Math.,} \textbf{113} (2000), 401-410.
\bibitem{Ricceri2} B. Ricceri;
A three critical points theorem revisited,
\emph{Nonlinear Anal.,} \textbf{9} (2009), 3084-3089.
\bibitem{Ruz} M. Ru\v{z}i\v{c}ka;
Electro-rheological Fluids: Modeling and Mathematical Theory, Lecture
Notes in Math., 1784, Springer, Berlin, 2000.
\bibitem{San} S. G. Samko;
Denseness of $C^{\infty}_0(\mathbb{R}^N)$ in the generalized Sobolev spaces
$W^{m,p(x)}(\mathbb{R}^N)$,
\emph{Dokl. Ross. Akad. Nauk.,} \textbf{369} (1999), 451-454.
\bibitem{SZ} Y. Shen, J. Zhang;
Existence of two solutions for a Navier boundary
value Problem involving the p-biharmonic, \emph{Differential
Equations and Applications}, {\bf3} (2011), 399-414.
\bibitem{Holi} H. Yin, Y. Liu;
Existence of three solutions for a Navier boundary value
problem involving the $p(x)$-biharmonic,
\emph{Bull. Korean. Math. Soc.,} \textbf{6} (2013), 1817-1826.
\bibitem{Home} H. Yin, M. Xu;
Existence of three solutions for a Navier boundary value
problem involving the $p(x)$-biharmonic operator,
\emph{Ann. Polon. Math.,} \textbf{109} (2013), 47-54.
\bibitem{yucedag} Z. Y\"{u}ceda\u{g};
Solutions of nonlinear problems involving $p(x)$-Laplacian operator,
\emph{Advances in Nonlinear Analysis}, \textbf{4}(4), 285-293.
\bibitem{Zang2008} A. Zang, Y. Fu;
Interpolation inequalities for derivatives in variable exponent
Lebesgue-Sobolev spaces,
\emph{Nonlinear Anal.,} \textbf{69} (2008), 3629-3636.
\end{thebibliography}
\end{document}