\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 36, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/36\hfil Solvability of multipoint differential operators] {Solvability of multipoint differential operators of first order} \author[Z. I. Ismailov, P. Ipek \hfil EJDE-2015/36\hfilneg] {Zameddin I. Ismailov, Pembe Ipek} \dedicatory{In memory of acad. M. G. Gasymov (1939-2008)} \address{Zameddin I. Ismailov \newline Karadeniz Technical University, Department of Mathematics, 61080, Trabzon, Turkey} \email{zameddin.ismailov@gmail.com} \address{Pembe Ipek \newline Karadeniz Technical University, Institute of Natural Sciences, 61080 Trabzon, Turkey} \email{pembeipek@hotmail.com} \thanks{Submitted January 2, 2015. Published February 10, 2015.} \subjclass[2000]{47A10} \keywords{Differential operators; solvable extension; spectrum} \begin{abstract} Based on methods of operator theory, we describe all boundedly solvable extensions of the minimal operator generated by a linear multipoint functional differential-operator expression of first order, in a direct sum of Hilbert space of vector-functions. We also study the structure of spectrum of these extensions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} The general theory of extension of densely defined linear operator in Hilbert spaces was started by von Neumann with his important work \cite{n2} in 1929. Later in 1949 and 1952 Vishik in \cite{v1,v2} studied the boundedly (compact, regular and normal) invertible extensions of any unbounded linear densely defined operator in Hilbert spaces Generalization of these results to the nonlinear and complete additive Hausdorff topological spaces in abstract terms have been done by Kokebaev, Otelbaev and Synybekov in \cite{k1,o2}. By Dezin \cite{d1} another approach to the description of regular extensions for some classes of linear differential operators in Hilbert spaces of vector-functions at finite interval has been offered. On other hand the role of the two point and multipoint theory of functional differential equations in our lives is indisputable. The general theory of delay differential equations is presented in many books (for example \cite{e2,s1}). Applications of this theory can be found in economy, biology, control theory, electrodinamics, chemistry, ecology, epidemiology, tumor growth, neural networks and etc. (see \cite{e1,o1}). In addition note that oscillation and boundness properties of solutions of different classes of dynamic equations have been investigated in the book by Agarwal, Bohner and Li \cite{a1}. Let us remember that an operator $S:D(S)\subset H \to H$ on Hilbert spaces is called boundedly invertible, if $ S $ is one-to-one, $ SD(S)=H $ and $ S^{-1}\in L(H)$. The main goal of this work is to describe all boundedly solvable extensions of the minimal operator generated by linear multipoint functional differential-operator expression for first order in the direct sum of Hilbert spaces of vector-functions at finite intervals and investigate the structure of spectrum of these extensions. In the second section all boundedly solvable extensions of the above mentioned minimal operator are described. Structure of spectrum of these extensions is studied in third section Finally, the obtained results are illustrated by applications. \section{Description of Boundedly Solvable Extensions} Throughout this work $H_n$ is a separable Hilbert space, $ \mathcal{H}_n=L^2(H_n,\Delta_n) $, $ \Delta_n=(a_n,b_n)\subset \mathbb{R} $ for each $n \geq 1 $ with property $ -\infty < \inf_{n\geq 1} a_n <\sup_{n\geq 1}b_n<\infty $, $\inf_{n\geq 1}| \Delta_n|>0 $ and $ \mathcal{H}=\oplus_{n=1}^\infty \mathcal{H}_n $. We consider the linear multipoint functional differential-operator expression of first order in $ \mathcal{H} $ of the form \begin{equation*} l(u)=(l_n(u_n)),~ u=(u_n), \end{equation*} where: \begin{itemize} \item[(1)] $ l_n(u_n)=u_n'(t)+A_n(t)u(\alpha_n(t))$, $n \geq 1$; \item[(2)] operator-function $A_n(\cdot):[a_n,b_n]\to L(H_n)$, $n\geq 1$ is continuous on the uniformly operator topology and $\sup_{n\geq 1}\sup_{t\in \Delta_n} \| A_n(t) \| <\infty $; \item[(3)] For any $ n \geq 1$, $\alpha_n:[a_n,b_n] \to [a_n,b_n]$ is invertible and $\alpha_n, (\alpha_n^{-1})'\in C[a_n,b_n]$, also $\sup_{n\geq 1}(\| (\alpha_n^{-1}(t))' \|_{\infty} )^{1/2}<\infty$ \end{itemize} By standard way the minimal $ L_{n0} $ and maximal $ L_n $ operators corresponding to the differential expression $ l_n(\cdot ) $ in $ \mathcal{H}_n $ can be defined for any $ n \geq 1 $. It is clear that for every $ n\geq 1 $ domains of minimal $ L_{n0} $ and maximal $ L_n $ operators in $ \mathcal{H}_n $ are in the forms $$ D(L_{n0})=\stackrel{_o}{W}_{2}^{1}(H_n,\Delta_n), \quad\text{and}\quad D(L_n)={W}_{2}^{1}(H_n,\Delta_n), $$ respectively. For any scalar function $\varphi:[a_n,b_n]\to[a_n,b_n]$ and $ n\geq 1$ now define an operator $P_\varphi$ in $\mathcal{H}_n$ in the form \[ P_\varphi u_n(t)=u_n(\varphi(t)), \quad u_n\in \mathcal{H}_n\,. \] If a function $ \varphi\in C^{1}[a_n,b_n] $ and $\varphi'(t)>0 \ (<0)$ for $t\in[a_n,b_n]$, then for any $u_n\in \mathcal{H}_n$, \begin{align*} \|P_\varphi u_n\|^2_{\mathcal{H}_n} &= \int_{a_n}^{b_n}\|u_n(\varphi(t))\|^2_{H_n} \,dt \\ &= \int_{\varphi(a_n)}^{\varphi(b_n)}\|u_n(\varphi(x))\|^2_{H_n} (\varphi^{-1})'(x)dx \\ &\leq \big| \int_{\varphi(a_n)}^{\varphi(b_n)}\|u_n(x)\|^2_{H_n} |(\varphi^{-1})'(x)|dx\big| \\ &\leq \|(\varphi^{-1})'\|_\infty\int_{a_n}^{b_n}\|u_n(x)\|^2_{H_n} dx \\ &= \|(\varphi^{-1})'\|_\infty\|u_n\|^2_{\mathcal{H}_n} \end{align*} Consequently, for any strictly monotone function $ \varphi \in C^{1}[a_n,b_n] $, the operator $P_\varphi$ belongs to $L(\mathcal{H}_n)$ and $\|P_\varphi\|\leq\sqrt{\|(\varphi^{-1})'\|_\infty}$. In actually, the expression $ l(\cdot ) $ in $ \mathcal{H} $ can be written in the form \begin{equation} \label{e1} l(u)=u'(t)+A_{\alpha}(t)u(t), \end{equation} where $ u=(u_n) $, \[ A(t)= \begin{pmatrix} A_1(t)\\ & A_2(t) & & 0\\ & & \ddots\\ & 0 & & A_n(t)\\ & & & & \ddots \end{pmatrix}, \quad P_{\alpha}= \begin{pmatrix} P_{\alpha_{1}}\\ & P_{\alpha_{2}} & & 0\\ & & \ddots\\ & 0 & & P_{\alpha_n}\\ & & & & \ddots \end{pmatrix} \] and $ A_{\alpha} (t)=A(t)P_{\alpha}, \ A_{\alpha} \in L(\mathcal{H})$. The operators $ L_0(M_0) $ and $ L(M) $ be a minimal and maximal operators corresponding to \eqref{e1} (with $ m(\cdot )=\frac{d}{\,dt} $) in $ \mathcal{H} $, respectively. Let us define \begin{gather*} L_0=M_0+A_{\alpha}(t), \quad L=M+A_{\alpha}(t), \\ L_0: D(L_0)\subset \mathcal{H}\to\mathcal{H}, \quad L:D(L)\subset\mathcal{H}\to \mathcal{H}, \\ D(L_0)=\{ (u_n)\in \mathcal{H}: u_n\in \stackrel{_o}{W}_{2}^{1}(H_n,\Delta_n), \; n\geq1, \; \sum_{n=1}^\infty \| L_{n0}u_n \|^2_{\mathcal{H}_n} < \infty \}, \\ D(L)=\{ (u_n)\in \mathcal{H}: u_n\in {W}_{2}^{1}(H_n,\Delta_n), \; n\geq1, \; \sum_{n=1}^\infty \| L_nu_n \|^2_{\mathcal{H}_n}<\infty \}, \end{gather*} The main goal in this section is to describe all boundedly solvable extensions of the minimal operator $ L_0 $ in $ \mathcal{H} $ in terms in the boundary values. Before that, we prove the validity the following assertion. \begin{lemma} \label{lem2.1} The kernel and image sets of $ L_0 $ in $ \mathcal{H} $ satisfy $ \ker L_0=\{0\} $ and $ \overline{\operatorname{Im}(L_0)}\neq \mathcal{H}$. \end{lemma} \begin{proof} Firstly, we prove that for any $ n\geq 1 $ $ \ker L_{n0}=\{0\}$. Consider the boundary values problems \begin{gather*} u_n'(t)+A_n(t)P_{\alpha_n}u_n(t)=0,\\ u_n(a_n)=u_n(b_n)=0, \quad n\geq 1 \end{gather*} The general solution of these differential equations are \[ u_n(t)=\exp \Big( -\int_{a_n}^{t}A_n(s)P_{\alpha_n}\,ds \Big) f_n, \quad n\geq 1 \] Then from boundary value conditions we have $f_n=0$ for $n\geq 1$. Hence $ \ker L_{n0}=\{0\}$ for $n\geq 1$. Then $ \ker L_0=\{0\}$. To show that $ \overline{\operatorname{Im}(L_0)}\neq \mathcal{H} $ it is sufficient to show that $ \overline{\operatorname{Im}(L_{n0})}\neq \mathcal{H}_n $ for some $n\geq 1$. So we consider the boundary value problem \[ L_{n0}^{*}u_n=-u_n'(t)+(A_n(t)P_{\alpha_n})^{*}u_n(t)=0, \quad u_n\in \mathcal{H}_n \] The solutions of this equation are \[ u_n(t)=\exp \Big( \int_{a_n}^{t}(A_n(s)P_{\alpha_n})^{*}\,ds \Big)g_n, \quad g_n\in H_n \] Consequently, $H_n\subset \ker L_{n0}^{*}$, $n\geq 1$ This means that for any $n\geq 1$ $\overline{\operatorname{Im}(L_{n0})}\neq \mathcal{H}_n$. Then $\overline{\operatorname{Im}(L_0)}\neq \mathcal{H}$. \end{proof} \begin{theorem} \label{thm2.2} If $ \widetilde{L} $ is any extension of $ L_0 $ in $ \mathcal{H}$, then \[ \widetilde{L}=\oplus_{n=1}^\infty \widetilde{L}_n, \] where $ \widetilde{L}_n $ is a extension of $ L_{n0}$, $n\geq 1 $, in $ \mathcal{H}_n$. \end{theorem} \begin{proof} Indeed, in this case for any $ n\geq 1 $ the linear manifold \[ \widetilde{M}_n:=\{ u_n\in D(L_n): (u_n)\in D(\widetilde{L}) \} \] contains $ D(L_{n0})$. That is, \[ D(L_{n0})\subset \widetilde{M}_n \subset D(L_n), \quad n\geq 1 \] Then the operator \[ \widetilde{L}_nu_n=l_n(u_n), \quad u_n\in \widetilde{M}_n, \; n\geq 1 \] is an extensions of $ L_{n0}$. Consequently, for any $ n\geq 1 $, \[ \widetilde{L}_n: D(\widetilde{L}_n)=\widetilde{M}_n\subset \mathcal{H}_n \to \mathcal{H}_n \] From this, we obtain \[ \widetilde{L}=\oplus_{n=1}^\infty \widetilde{L}_n\,. \] For the boundedly solvable extensions of $ L_0 $ and $ L_{n0}$, $ n\geq 1$, the following statement holds. \end{proof} \begin{theorem} \label{thm2.3} For the boundedly solvability of any extension $ \widetilde{L}=\oplus_{n=1}^\infty \widetilde{L}_n $ of the minimal operator $ L_0 $, the necessary and sufficient conditions are the boundedly solvability of the coordinate operators $ \widetilde{L}_n $ of the minimal operator $ L_{n0}$, $n\geq 1 $ and $ \sup_{n\geq 1} \| \widetilde{L}_n^{-1} \| <\infty$. \end{theorem} \begin{proof} It is clear that the extension $ \widetilde{L} $ is one-to-one operator in $ \mathcal{H} $ if and only if the all coordinate extensions $ \widetilde{L}_n$, $n\geq 1 $ of $ \widetilde{L} $ are one-to-one operators in $ \mathcal{H}_n, \ n\geq 1$. On the other hand for the boundedness of $ \widetilde{L}^{-1}=\oplus_{n=1}^\infty \widetilde{L}^{-1}_n $ of $ \mathcal{H} $ the necessary and sufficient condition is $ \sup_{n\geq 1} \| \widetilde{L}_n^{-1} \| <\infty $ (see \cite{i1,n1}). Now let $U_n(t,s)$, $t,s\in \Delta_n$, $n\geq 1 $, be the family of evolution operators corresponding to the homogeneous differential equation \[ \frac{\partial U_n}{\partial t}(t,s)f+A_n(t)P_{\alpha_n}U_n(t,s)f=0, \quad t,s\in \Delta_n \] with the boundary condition \[ U_n(s,s)f=f, \ f\in H_n\,. \] The operator $ U_n(t,s)$, $t,s \in \Delta_n$, $n\geq 1 $ is linear continuous boundedly invertible in $ H_n $ with the property (see \cite{k2}) \[ U_n^{-1}(t,s)=U_n(s,t),~s,t\in \Delta_n \, . \] Lets us introduce the operator $U_n:\mathcal{H}_n\to \mathcal{H}_n$ as \[ U_nz_n(t)=: U_n(t,0)z_n(t), \quad t\in \Delta_n\,. \] It is clear that if $ \widetilde{L}_n$ is any extension of the minimal operator $L_{n0}$, that is, $L_{n0}\subset \widetilde {L}_n \subset L_n$, then \[ U^{-1}_nL_{n0}U_n=M_{n0},\quad M_{n0}\subset U^{-1}_n\widetilde{L}_nU_n =\widetilde{M}_n\subset M_n, \quad U^{-1}_nL_nU_n=M_n \] In addition, for any $ n\geq 1 $, \begin{align*} \| U_n \| &= \big\| \exp\Big( - \int_{a_n}^{t} A_n(s) P_{\alpha_n}\,ds\Big) \big\| \\ &\leq \exp \Big( \int_{a_n}^{b_n} \| A_n(s) \| \| P_{\alpha_n} \| \,ds \Big) \\ &\leq \exp \Big( | \Delta_n|\| P_{\alpha_n} \|\sup_{t\in \Delta_n}\| A_n(t)\| \Big)< \infty \end{align*} and \begin{align*} \| U^{-1}_n \| &= \| \exp\Big( \int_{a_n}^{t} A_n(s) P_{\alpha_n}\,ds\Big) \| \\ &\leq \exp \Big( | \Delta_n|\| P_{\alpha_n} \|\sup_{t\in \Delta_n}\| A_n(t)\| \Big)< \infty\,. \end{align*} \end{proof} \begin{theorem} \label{thm2.4} Let $ n\geq 1$. Each boundedly solvable extension $ \widetilde{L}_n$ of the minimal operator $ L_{n0} $ in $ \mathcal{H}_n $ is generated by the differential-operator expression $ l_n(\cdot ) $ and the boundary condition \begin{equation} \label{e2} (K_n+E_n)u_n(a_n)=K_nU_n(a_n,b_n)u_n(b_n), \end{equation} where $K_n\in L(H_n)$ and $E_n:H_n\to H_n$ is identity operator. The operator $K_n$ is determined by the extension $\widetilde{L}_n$ uniquely, i.e. $\widetilde{L}_n=L_{K_n}$. On the contrary, the restriction of the maximal operator $L_n$ in $ \mathcal{H}_n $ to the linear manifold of vector-functions satisfy the condition \eqref{e2} for some bounded operator $K_n\in L(H_n), $ is a boundedly solvable extension of the minimal operator $L_{n0}$. On other hand, for $ n\geq 1 $ \[ \| \widetilde{L}^{-1}_n \| \leq | \Delta_n|^{1/2} \exp\Big( 2| \Delta_n|\| P_{\alpha_n}\| \sup_{t\in \Delta_n}\| A_n(t) \| \Big) \] \end{theorem} \begin{proof} For any $ n\geq 1 $, the description the all boundedly solvable extensions of $ \widetilde{L}_n $ of the minimal operator $L_{n0}$ in $ \mathcal{H}_n$, $n\geq 1 $ have been given in work \cite{i2}. From the relation $ U^{-1}_n L_{K_n}U_n=M_{K_n} $ we obtain \[ L_{K_n}^{-1}=U_nM_{K_n}^{-1} U^{-1}_n, \] where $M_{K_n}u_n(t)=u'_n(t) $ with the boundary condition \[ (K_n+E_n)u_n(a_n)=K_nu_n(b_n), \quad n\geq 1\,. \] Hence for $ f_n\in L^2(H_n,\Delta_n) $, \begin{align*} \| M_{K_n}^{-1}f_n \|^2_{\mathcal{H}_n} &= \int_{a_n}^{b_n}\| K_n\int_{a_n}^{b_n}f_n(s)\,ds +\int_{a_n}^{t}f_n(s)\,ds\|^2\,dt \\ &\leq 2 \int_{a_n}^{b_n}\| K_n\int_{a_n}^{b_n}f_n(s)\,ds\|^2\,dt +2\int_{a_n}^{b_n}\| \int_{a_n}^{t}f_n(s)\,ds\|^2\,dt \\ &\leq 2 \| K_n\| ^2 \int_{a_n}^{b_n} \int_{a_n}^{b_n}\| f_n(s)\| ^2\,ds| \Delta_n| \,dt\\ &\quad +2\int_{a_n}^{b_n} \Big(\int_{a_n}^{b_n} \| f_n(s)\| ^2\,ds \Big) \,dt | \Delta_n| \\ \\ &= \big(2 \| K_n\|^2| \Delta_n| ^2+2 | \Delta_n| ^2\big) \| f_n \| ^2_{\mathcal{H}_n} \\ &= 2 | \Delta_n| ^2 ( 1+ \| K_n \| ^2) \| f_n \| ^2_{\mathcal{H}_n}\,. \end{align*} Hence, \[ \| M_{K_n}^{-1}\|\leq \sqrt{2}| \Delta_n| \big( 1+ \| K_n \| ^2 \big) ^{1/2}, \quad n\geq 1 \] From this and the properties of evolution operators, the validity of inequality is clear. This completes proof of theorem. \end{proof} \begin{theorem} \label{thm2.5} Let $ L_{K_n} $ be a boundedly solvable extension of $ L_{n0} $ in $ \mathcal{H}_n $ and \[ M_{K_n}=U_n^{-1}L_{K_n}U_n, \quad\text{for } n\geq1 \,. \] To have \[ \sup_{n\geq1}\| L^{-1}_{K_n}\|<\infty, \] the necessary and sufficient condition is \[ \sup_{n\geq1}\| M^{-1}_{K_n}\|<\infty\,. \] \end{theorem} \begin{theorem} \label{thm2.6} Assumed that \begin{gather*} M_{K_n}:W^{1}_{2}(H_n,\Delta_n)\subset L^2(H_n,\Delta_n)\to L^2(H_n,\Delta_n), \\ M_{K_n}u_n(t)=u'_n(t), \\ (K_n+E_n)u_n(0)=K_nu_n(1) \end{gather*} To have \[ \sup_{n\geq1}\| M^{-1}_{K_n}\|<\infty, \] the necessary and sufficient condition is $\sup_{n\geq1}\| K_n\|<\infty$. \end{theorem} \begin{proof} Indeed, from the proof of Theorem \ref{thm2.4}, \[ \| M_{K_n}^{-1}\|\leq \sqrt{2}| \Delta_n| \big( 1+ \| K_n \| ^2 \big) ^{1/2}, \quad n\geq 1 \] From this, if $ \sup_{n\geq1}\| K_n\|<\infty$, then $ \sup_{n\geq1}\| M^{-1}_{K_n}\|<\infty$. On the contrary, assumed that $ \sup_{n\geq1}\| M^{-1}_{K_n}\|<\infty$. Then in the relation \[ K_n \int_{a_n}^{b_n}f_n(t)\,dt=M^{-1}_{K_n}f_n(t) -\int_{a_n}^{t}f_n(t)\,dt, \ f_n\in \mathcal{H}_n, \quad n\geq 1 \] choosing the functions $ f_n(t)=f_n^{*}$, $t\in \Delta_n$, $f_n^{*}\in H_n$, $n\geq 1$, we have \[ \| K_nf_n^{*}\|_{H_n}| \Delta_n|\leq \| M^{-1}_{K_n}f_n^{*}\|_{H_n} +| \Delta_n| \| f_n^{*}\|_{H_n}, \quad n\geq 1\,. \] Then \[ \| K_n \| \leq \frac{1}{| \Delta_n|} \| M^{-1}_{K_n}\|+1\,. \] Consequently, from the above relation and the condition on $ \Delta_n$, $n\geq 1 $, we obtain \[ \sup_{n\geq1}\| K_n\|\leq \Big( \inf_{n\geq1}| \Delta_n|\Big) ^{-1} \sup_{n\geq1}\| M^{-1}_{K_n}\| +1<\infty\,. \] \end{proof} Now using Theorems \ref{thm2.4}--\ref{thm2.6}, we formulate an assertion on the description of all boundedly solvable extensions of to in $ \mathcal{H}$. \begin{theorem} \label{thm2.7} Each boundedly solvable extension $ \widetilde{L} $ of the minimal operator $ L_0$ in $ \mathcal{H} $ is generated by differential-operator expression \eqref{e1} and boundary conditions \[ (K_n+E_n)u_n(a_n)=K_nU_n(a_n,b_n)u_n(b_n), \quad n\geq 1, \] where $K_n\in L(H_n)$, $ K=\oplus_{n=1}^{\infty}K_n\in L\big( \oplus_{n=1}^{\infty}H_n\big) $ and $E_n:H_n\to H_n$ is identity operator. The operator $K$ is determined by the extension $\widetilde{L}$ uniquely, i.e. $\widetilde{L}=L_K$ and vice versa. \end{theorem} \begin{remark} \label{rmk2.8} \rm If in the \eqref{e1}, $ \alpha_n(t)=t$ ($\alpha_n(t)