\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 38, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/38\hfil Nonuniqueness for Parabolic $p$-Laplacian] {Nonuniqueness of solutions of initial-value problems for parabolic $p$-Laplacian} \author[J. Benedikt, V. E. Bobkov, P. Girg, L. Kotrla, P. Tak\'a\v{c} \hfil EJDE-2015/38\hfilneg] {Ji\v{r}\'i Benedikt, Vladimir E. Bobkov, Petr Girg,\\ Luk\'{a}\v{s} Kotrla, Peter Tak\'a\v{c}} \address{ Ji\v{r}\'i Benedikt \newline Department of Mathematics and NTIS, Faculty of Applied Scences, University of West Bohemia, Univerzitn\'{\i} 22, CZ-306\,14~Plze\v{n}, Czech Republic} \email{benedikt@kma.zcu.cz} \address{Vladimir E. Bobkov \newline Fachbereich Mathematik, Universit\"at Rostock, Germany} \email{vladimir.bobkov@uni-rostock.de} \address{Petr Girg \newline Department of Mathematics and NTIS, Faculty of Applied Scences, University of West Bohemia, Univerzitn\'{\i} 22, CZ-306\,14~Plze\v{n}, Czech Republic} \email{pgirg@kma.zcu.cz} \address{Luk\'a\v{s} Kotrla \newline Department of Mathematics and NTIS, Faculty of Applied Scences, University of West Bohemia, Univerzitn\'{\i} 22, CZ-306\,14~Plze\v{n}, Czech Republic} \email{kotrla@ntis.zcu.cz} \address{Peter Tak\'a\v{c} \newline Fachbereich Mathematik, Universit\"at Rostock, Germany} \email{peter.takac@uni-rostock.de} \thanks{Submitted January 29, 2015. Published February 10, 2015.} \subjclass[2000]{35B05, 35B30, 35K15, 35K55, 35K65} \keywords{Quasilinear parabolic equations with $p$-Laplacian; nonuniqueness for initial-boundary value problem; sub- and supersolutions; comparison principle} \begin{abstract} We construct a positive solution to a quasilinear parabolic problem in a bounded spatial domain with the $p$-Laplacian and a nonsmooth reaction function. We obtain nonuniqueness for zero initial data. Our method is based on sub- and supersolutions and the weak comparison principle. Using the method of sub- and supersolutions we construct a positive solution to a quasilinear parabolic problem with the $p$-Laplacian and a reaction function that is non-Lipschitz on a part of the spatial domain. Thereby we obtain nonuniqueness for zero initial data. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The problem of \emph{uniqueness} and \emph{nonuniqueness} of solutions to various types of initial (and boundary) value problems for quasilinear parabolic equations has been an interesting research topic for several decades (see, e.g., Fujita and Watanabe \cite{fujitawatanabe} and the references therein, Guedda \cite{Guedda}, Ladyzhenskaya and Ural'tseva \cite{ladyzural1962}, and Oleinik and Kruzhkov \cite{oleinikkruzhkov}). In this work we focus on the following problem with the $p$-Laplacian and a (partly) nonsmooth reaction function: \begin{equation} \label{Eq_P} \begin{gathered} \frac{\partial u}{\partial t} - \Delta_p u = q(x) |u|^{\alpha-1} u \quad\text{for }(x,t)\in\Omega\times(0,T)\,; \\ u(x,t)=0 \quad\text{for }(x,t)\in\partial\Omega\times(0,T)\,, \\ u(x,0)= 0 \quad\text{for }x\in\Omega\,. \end{gathered} \end{equation} Here, $\Delta_p u :=\operatorname{div} \big(|\nabla u|^{p-2}\nabla u\big)$ denotes the $p$-Laplacian for $1
0$ for some $x_0\in\Omega$. \end{itemize} We assume that $\Omega\subset\mathbb{R}^{N}$ is a bounded domain with a $C^{1+\mu}$-boundary $\partial\Omega$ where $\mu\in (0,1)$. In particular, we deal with degenerate (singular) diffusion if $2
0$ then the function
$u\mapsto f(x_0, u)$ satisfies
neither a local Lipschitz nor an Osgood (see \cite{Osgood}) condition near $u=0$ provided
$\alpha\in (0,1)$.
The case $p=2$ (the Laplace operator) was treated in
Fujita and Watanabe \cite{fujitawatanabe}
by entirely different methods based on
the Green's function for the heat equation.
An important special case,
$N = 1$, $1 < p < \infty$, and $q(x)\equiv \lambda > 0$ (a constant),
was treated in Guedda \cite{Guedda} also by different methods.
The main purpose of the present article is to fill in the gap
left open for $1 < p < \infty$, $p\neq 2$, and
$q\in C(\overline{\Omega})$, $q\geq 0$, where
$q$ is not necessarily positive everywhere in~$\Omega$.
Because of this possibly non\-uniform positivity of $q$ over~$\Omega$,
the method used in \cite{Guedda} cannot be applied here.
We use a different approach based on sub- and supersolutions and
the weak comparison principle.
As a trivial consequence of the fact that problem \eqref{Eq_P}
possesses a nontrivial non\-negative solution
(see our main result, Theorem~1),
we conlude that the weak comparison principle does not hold for
problem \eqref{Eq_P} considered with nontrivial initial conditions, say,
in $W_0^{1,p}(\Omega)$.
Observe that our assumption (Q) implies that
there exists $R>0$ such that
$q(x)\geq q_0\equiv \mathrm{const} > 0$ for all $x\in B_R(x_0)$ where
$$
B_R(x_0) :=\{ x \in \mathbb{R}^N: |x - x_0| < R \} \subset \Omega.
$$
Let $(\lambda_1, \varphi_{1,R})$
denote the first eigenpair for the operator
$-\Delta_p\colon W_0^{1,p}(B_R(x_0)) \to W^{-1, p'}(B_R(x_0))$; that is,
\begin{equation}\label{Eq:eigenvalue:problem}
\begin{gathered}
- \Delta_p\varphi_{1,R}
= \lambda_{1,R} \, \varphi_{1,R}^{p-1} \quad\text{in }B_R(x_0) \,;
\\
\varphi_{1,R} = 0 \quad\text{on }\partial{B_R(x_0)} \,,
\end{gathered}
\end{equation}
and $\varphi_{1,R}\in W_0^{1,p}(B_R(x_0))$ is normalized by
$\varphi_{1,R}(x_0)=1$.
Note that this normalization yields
$0<\varphi_{1,R}(x)\leq 1$ for all
$x\in B_R(x_0)$.
Moreover, we denote by
\begin{equation} \label{def:tilde:phi:1}
\widetilde{\varphi}_{1,R}(x)
:=\begin{cases}
\varphi_{1,R}(x) & \text{for }x\in B_R(x_0)\,; \\
0 & \text{for }x\in \overline{\Omega}\setminus B_R(x_0)\,,
\end{cases}
\end{equation}
the natural zero extension of $\varphi_{1,R}$ from $B_R(x_0)$ to
the whole of $\overline{\Omega}$.
Our main theorem is the following nonuniqueness result.
\begin{theorem} \label{thm:1}
Assume that $0<\alpha<\min\{1, p-1\}$ and
{\rm (Q)} are satisfied. Then there exists $T>0$
small enough, such that problem \eqref{Eq_P} possesses
(besides the trivial solution $u\equiv 0$)
a nontrivial, nonnegative weak solution
\[
u\in
C\big([0, T]\to L^2(\Omega)\big)
\cap L^p\big((0,T)\to W^{1,p}(\Omega)\big)
\]
\hfil\break
which is bounded below by a subsolution
$\underline{u}:\Omega\times(0,T)\to\mathbb{R}_{+}$ of type
$$
\underline{u}(x,t)
=\theta(t) \widetilde{\varphi}_{1,R}(x)^{\beta}\geq 0
\quad\text{in }\Omega\times (0,T)\,,
$$
where $\theta\colon [0,T]\to\mathbb{R}_{+}$
is a strictly increasing, continuously differentiable function
with $\theta(0)=0$, and $\beta\in (1, \infty)$ is a suitable number.
\end{theorem}
In contrast with this nonuniqueness result,
several uniqueness results have been established in \cite{BobkovTakac}.
\begin{remark} \label{rmk2} \rm
Assume that
$q\in L^{\infty}(\Omega)$
satisfies
$0\leq q(x)\leq \lambda_1$
a.e. in $\Omega$, where
$\lambda_1$ stands for the principal eigenvalue of $-\Delta_p$ with zero
Dirichlet boundary conditions on $\Omega$.
Then the condition
$\alpha 0$ such that
$\varphi_{1,R}'(r) < \varphi_{1,R}'(R)/2 < 0$ for all
$r\in (R-\varepsilon, R)$.
Hence, \eqref{Eq:estimation:calc} implies \eqref{Eq:estimation:1}
for $R-\varepsilon\leq r < R$
provided $\varepsilon>0$ is small enough, such that
$$
\lambda_{1,R}
- (p-1)(\beta-1)\varphi_{1,R}^{-p} |\varphi_{1,R}'|^{p}
\leq 0
\quad \text{for } R-\varepsilon\leq r < R\,.
$$
At the same time, the ratio
$-\Delta_p\big(\varphi_{1,R}^{\beta}\big) /{\varphi_{1,R}^{\beta}}$
is bounded for $0 < r\leq R-\varepsilon$.
Thus, estimate \eqref{Eq:estimation:1} holds a.e. in $B_R(x_0)$.
\end{proof}
\begin{proposition} \label{prop4}
Assume that $0 < \alpha < \min\{1, p-1 \}$ and {\rm (Q)}
are satisfied.
Given any fixed number $S\in (0,\infty)$, we define
\begin{equation*}
\underline{u}(x,t) :=
\theta(t) \widetilde{\varphi}_{1,R}(x)^\beta
\quad\text{ for }\, (x,t)\in \Omega\times [0,S] \,,
\end{equation*}
where $\beta > 1$, $\widetilde{\varphi}_{1,R}$
is given by \eqref{def:tilde:phi:1}, and $\theta: [0,S] \to \mathbb{R}_+$
is the positive solution of the Cauchy problem
\begin{equation} \label{def:theta}
\frac{\mathrm{d} \theta}{\mathrm{d} t}(t)
= \frac{q_0}{2} \theta^{\alpha}(t)
\quad\text{for } t\in (0,S) \,; \quad \theta(0) = 0 \,,
\end{equation}
such that $0 < \theta(t) < \infty$ for every $t\in (0,S)$.
Then $\underline{u}: \Omega \times (0,S) \to \mathbb{R}_+$
is a subsolution of problem \eqref{Eq_P} in a smaller domain
$\Omega\times (0,\underline{\sigma})$, i.e.,
for $t\in (0,\underline{\sigma})$ only, where
$\underline{\sigma}\in (0,S)$ is small enough.
\end{proposition}
\begin{proof}
We will show that the following inequality holds
$$
\frac{\partial \underline{u}}{\partial t}
- \Delta_p \underline{u} \leq q(x) |\underline{u}|^{\alpha-1} \underline{u}.
$$
Using $0 < \alpha < \min\{1, p-1\}$,
equation \eqref{def:theta}, and the continuity of
$\theta\colon [0,S)\to \mathbb{R}_{+}$, we get
\begin{equation} \label{ineq:theta}
\frac{\mathrm{d} \theta}{\mathrm{d} t} \leq {}-C \theta(t)^{p-1}
+ q_0 \theta(t)^{\alpha} \quad\text{for all } t\in [0, \underline{\sigma}]\,,
\end{equation}
where $\underline{\sigma}\in (0,S)$
is small enough, such that
$\theta(t)^{p-1-\alpha}\leq {q_0}/{(2 C)}$ holds for all
$t\in [0, \underline{\sigma}]$.
Inserting the inequality
\[
\varphi_{1,R}^{-\beta}\Delta_p(\varphi_{1,R}^{\beta})
\geq -C\equiv\mathrm{const}
\]
in $\Omega$ from Lemma \ref{lem:varphi_1}, inequality \eqref{Eq:estimation:1},
into \eqref{ineq:theta}, we obtain
\begin{align*}
\frac{\mathrm{d} \theta}{\mathrm{d} t}
& \leq \varphi_{1,R}^{-\beta} \Delta_p(\varphi_{1,R}^{\beta})
\theta(t)^{p-1} + q_0 \theta(t)^{\alpha}\\
&\leq \varphi_{1,R}^{-\beta} \Delta_p(\varphi_{1,R}^{\beta})
\theta(t)^{p-1} + q_0 \varphi_{1,R}^{(\alpha-1) \beta} \theta(t)^{\alpha},
\end{align*}
thanks to the normalization $0<\varphi_{1,R}\leq 1$ in $B_R(x_0)$
combined with $(\alpha-1)\beta < 0$.
Finally, multiplying by $\varphi_{1,R}^{\beta}$, we arrive at
\begin{align*}
\frac{\mathrm{d} \theta}{\mathrm{d} t} \varphi_{1,R}^{\beta}
& \leq \Delta_p(\varphi_{1,R}^{\beta}) \theta(t)^{p-1}
+ q_0 \theta(t)^{\alpha} \varphi_{1,R}^\alpha \\
& \leq \Delta_p(\varphi_{1,R}^{\beta}) \theta(t)^{p-1}
+ q(x) \theta(t)^{\alpha} \varphi_{1,R}^\alpha\,.
\end{align*}
This inequality, combined with our definition of the function
$\widetilde{\varphi}_{1,R}$, guarantees that
$\underline{u}(x,t)= \theta(t)
\widetilde{\varphi}_{1,R}(x)$ is a subsolution to problem
\eqref{Eq_P}.
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm:1}]
First, let us observe that
$\overline{u}(x,t) = \|q\|_{\infty}^{\frac{1}{1-\alpha}} t$
is a supersolution of \eqref{Eq_P} for $0 < t\leq 1$.
Indeed, a straightforward calculation shows that
$$
\frac{\partial \overline{u}}{\partial t} - \Delta_p \overline{u}
= \|q\|_{\infty}^{\frac{1}{1-\alpha}}
\geq q(x)
\Big(\|q\|_{\infty}^{\frac{1}{1-\alpha}} t\Big)^\alpha
= q(x) |\overline{u}|^{\alpha - 1} \overline{u}
$$
holds for $0 < t \leq 1$, since
$q\in C(\overline\Omega)$, $q\geq 0$, and
$\|q\|_{\infty}=\sup_{x\in\Omega} q(x)$.
Second, we show now that
$\underline{u} \leq \overline{u}$
for all $x\in \Omega$ and all $t > 0$ sufficiently small, say,
$0 < t\leq \overline{\sigma}$.
Evidently,
$$
\underline{u}(x,t)
= \theta(t) \widetilde{\varphi}_1(x)^\beta
= c_1 t^{\frac{1}{1-\alpha}} \widetilde{\varphi}_1(x)^\beta
\leq c_1 t^{\frac{1}{1-\alpha}}
\leq \overline{u}(x,t)
= \|q\|_{\infty}^{\frac{1}{1-\alpha}} t
$$
for $0