\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 45, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/45\hfil Three solutions for a boundary-value problem] {Three solutions for a fourth-order boundary-value problem} \author[G. A. Afrouzi, S. Shokooh \hfil EJDE-2015/45\hfilneg] {Ghasem A. Afrouzi, Saeid Shokooh} \address{Ghasem A. Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Saeid Shokooh \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{saeid.shokooh@stu.umz.ac.ir} \thanks{Submitted November 14, 2014. Published February 17, 2015.} \subjclass[2000]{34B15, 34B18, 58E05} \keywords{Dirichlet boundary condition; variational method; critical point} \begin{abstract} Using two three-critical points theorems, we prove the existence of at least three weak solutions for one-dimensional fourth-order equations. Some particular cases and two concrete examples are then presented. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this note, we consider the fourth-order boundary-value problem \begin{equation}\label{e1.1} \begin{gathered} u''''h(x,u')-u''=[\lambda f(x,u)+g(u)]h(x,u'),\quad \text{in }(0,1),\\ u(0)=u(1)=0=u''(0)=u''(1), \end{gathered} \end{equation} where $\lambda$ is a positive parameter, $f:[0,1]\times\mathbb{R}\to \mathbb{R}$ is an $L^1$-Carath\'{e}odory function, $g:\mathbb{R}\to \mathbb{R}$ is a Lipschitz continuous function with the Lipschitz constant $L>0$, i.e., $$ |g(t_1)-g(t_2)|\leq L|t_1-t_2| $$ for every $t_1,t_2\in \mathbb{R}$, with $g(0)=0$, and $h:[0,1]\times\mathbb{R}\to [0,+\infty)$ is a bounded and continuous function with $m:=\inf_{(x,t)\in [0,1]\times \mathbb{R}}h(x,t)>0$. Due to the importance of fourth-order two-point boundary value problems in describing a large class of elastic deflection, many researchers have studied the existence and multiplicity of solutions for such a problem, we refer the reader to \cite{AfHaRa,AfHeiRe,AfMirRa,chai,sara} and references therein. For example, authors in \cite{AfHeiRe}, using Ricceri's Variational Principle \cite[Theorem 1]{Ricceri3}, established the existence three weak solutions for the problem \begin{gather*} u''''+\alpha u''+\beta u=\lambda f(x,u)+\mu g(x,u),\quad \text{in }(0,1),\\ u(0)=u(1)=0=u''(0)=u''(1), \end{gather*} where $\alpha$, $\beta$ are real constants, $f, g : [0, 1] \times \mathbb{R}\to \mathbb{R}$ are Carath\'eodory functions and $\lambda, \mu > 0$. In this article, employing two three-critical points theorems which we recall in the next section (Theorems \ref{teo:bon} and \ref{teo:can}), we establish the existence three weak solutions for \eqref{e1.1}. A special case of Theorem \ref{thm1} is the following theorem. \begin{theorem} \label{the0} Let $f:\mathbb{R} \to \mathbb{R} $ be a non-negative continuous function such that \begin{gather*} 2^{12}\int_0^{2}f(x)\,dx<\int_0^{3\sqrt3}f(x)\,dx, \\ \limsup_{|\xi|\to +\infty} \frac{\int_0^{\xi}f(x)\,dx}{\xi^2}\le 0. \end{gather*} Then, for each $$ \lambda\in\Big]\frac{2^{13}(\pi^4+\pi^2+1)}{\pi^4\int_0^{3\sqrt3}f(x)\,dx}, \frac{2(\pi^4+\pi^2+1)}{\pi^4\int_0^{2}f(x)\,dx}\Big[, $$ the problem \begin{gather*} u''''-u''+u=f(u),\quad \text{in }(0,1),\\ u(0)=u(1)=0=u''(0)=u''(1) \end{gather*} admits at least three weak solutions. \end{theorem} The following result is a consequence of Theorem \ref{thm2}. \begin{theorem} \label{the01} Let $f:\mathbb{R} \to \mathbb{R} $ be a non-negative continuous function such that \begin{gather*} 2^{11}\int_0^{2}f(x)\,dx<\int_0^3f(x)\,dx, \\ \int_0^{2^{10}}f(x)\,dx<2^{7}\int_0^3f(x)\,dx, \end{gather*} Then, for each $$ \lambda\in\Big]\frac{2^{13}(\pi^4+\pi^2+1)}{\pi^4\int_0^3f(x)\,dx}, \frac{(\pi^4+\pi^2+1)}{\pi^4}\min\Big\{\frac{2}{\int_0^{2}f(x)\,dx}, \frac{2^{20}}{\int_0^{1024}f(x)\,dx}\Big\}\Big[, $$ the problem \begin{gather*} u''''-u''-u=f(u),\quad \text{in }(0,1),\\ u(0)=u(1)=0=u''(0)=u''(1) \end{gather*} admits at least three weak solutions. \end{theorem} \section{Preliminaries} We now state two critical point theorems established by Bonanno and coauthors \cite{BONCAND,BONMAR} which are the main tools for the proofs of our results. The first result has been obtained in \cite{BONMAR} and it is a more precise version of Theorem 3.2 of \cite{BONCAND}. The second one has been established in \cite{BONCAND}. In the first one the coercivity of the functional $\Phi-\lambda\Psi$ is required, in the second one a suitable sign hypothesis is assumed. \begin{theorem}[{\cite[Theorem 2.6]{BONMAR}}] \label{teo:bon} Let $X$ be a reflexive real Banach space; $\Phi:X \to \mathbb{R}$ be a sequentially weakly lower semicontinuous, coercive and continuously G\^ateaux differentiable functional whose G\^ateaux derivative admits a continuous inverse on $X^*$, $\Psi:X \to \mathbb{R}$ be a sequentially weakly upper semicontinuous, continuously G\^ateaux differentiable functional whose G\^ateaux derivative is compact, such that $$ \Phi(0)= \Psi(0)=0 \,. $$ Assume that there exist $r >0$ and $\bar{x}\in X$, with $r<\Phi(\bar{x})$ such that \begin{itemize} \item[(i)] $\sup_{\Phi(x)\leq r}\Psi(x)0$ and $\bar{x}\in X$, with $2r_1<\Phi(\bar{x})0$, i.e., $$ |g(t_1)-g(t_2)|\leq L|t_1-t_2| $$ for every $t_1,t_2\in \mathbb{R}$, and $g(0)=0$, $h:[0,1]\times\mathbb{R}\to [0,+\infty)$ is a bounded and continuous function with $m:=\inf_{(x,t)\in [0,1]\times \mathbb{R}}h(x,t)>0$, and $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ be an $L^1$-Carath\'eodory function. We recall that $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ is an $L^1$-Carath\'eodory function if \begin{itemize} \item[(a)] the mapping $x\mapsto f(x,\xi)$ is measurable for every $\xi\in\mathbb{R}$; \item[(b)] the mapping $\xi\mapsto f(x,\xi)$ is continuous for almost every $x\in [0,1]$; \item[(c)] for every $\rho>0$ there exists a function $l_\rho\in L^1([0,1])$ such that $$ \sup_{|\xi|\leq \rho}|f(x,\xi)|\leq l_{\rho}(x) $$ for almost every $x\in [0,1]$. \end{itemize} Corresponding to $f,g$ and $h$ we introduce the functions $F:[0,1]\times\mathbb{R}\to\mathbb{R}$, $G:\mathbb{R}\to \mathbb{R}$ and $H:[0,1]\times \mathbb{R}\to [0,+\infty)$, respectively, as follows \begin{gather*} F(x,t):=\int_0^t f(x,\xi)\,d\xi,\quad G(t):=-\int_0^t g(\xi)\,d\xi, \\ H(x,t):=\int_0^t\Big(\int_0^\tau\frac{1}{h(x,\delta)}d\delta\Big)d\tau \end{gather*} for all $x\in [0,1]$ and $t\in\mathbb{R}$. In the following, we let $M:=\sup_{(x,t)\in [0,1]\times \mathbb{R}}h(x,t)$ and suppose that the Lipschitz constant $L$ of the function $g$ satisfies $0\frac{1}{\lambda}. \end{equation} Therefore, from \eqref{eq:1} and \eqref{eq:2}, condition (i) of Theorem \ref{teo:bon} is fulfilled. Now, to prove the coercivity of the functional $I_{\lambda}$. By (A3), we have \[ \limsup_{|\xi|\to +\infty} \frac{\sup_{x \in [0,1]}F(x,\xi)}{\xi^2} <\frac{\pi^4A}{\lambda}. \] So, we can fix $\varepsilon >0$ satisfying \[ \limsup_{|\xi|\to +\infty} \frac{\sup_{x \in [0,1]}F(x,\xi)}{\xi^2} <\varepsilon<\frac{\pi^4A}{\lambda}. \] Then, there exists a positive constant $\theta$ such that $$ F(x,t)\leq \varepsilon |t|^{2}+\theta \quad \forall x \in [0,1], \; \forall t \in \mathbb{R}\,. $$ Taking into account \eqref{5} and \eqref{arsi}, we have \[ I_{\lambda}(u)=\Phi(u)-\lambda \Psi(u) \geq A\|u\|^2 -\lambda \varepsilon\|u\|^2_{L^2[0,1]}-\lambda \theta\geq \big(A-\frac{\lambda \varepsilon}{\pi^4}\big)\|u\|^2-\lambda \theta \] for all $u \in X$. So, the functional $I_{\lambda}$ is coercive. Now, the conclusion of Theorem \ref{teo:bon} can be used. It follows that for every \[ \lambda \in \Lambda\subseteq \Bigl] \frac{\Phi({w})}{\Psi({w})}, \frac{r}{\sup_{\Phi(u)\leq r}\Psi(u)}\Bigr[\,, \] the functional $I_{\lambda}$ has at least three distinct critical points in $X$, which are the weak solutions of the problem \eqref{e1.1}. This completes the proof. \end{proof} Now, we present a consequence of Theorem \ref{thm1}. \begin{corollary} \label{cor1} Let $\alpha \in L^1([0,1])$ be a non-negative and non-zero function and let $\gamma:\mathbb{R} \to \mathbb{R}$ be a continuous function. Put $\alpha_0:=\int_{3/8}^{5/8}\alpha(x)dx$, $\|\alpha\|_1:=\int_0^1 \alpha(x)\,dx$ and $\Gamma(t)=\int_{0}^{t}\gamma(\xi)d\xi$ for all $t \in \mathbb{R}$, and assume that there exist two positive constants $c,d$, with $c<\frac{32}{3\sqrt{3}\pi}d$, such that \begin{itemize} \item[(A1')] $\Gamma(t)\geq 0$ for all $t \in [0,d]$; \item[(A2')] \[ \frac{\max_{|t|\leq c}\Gamma(t)}{c^2}<\frac{27}{4096}\frac{\alpha_0}{\|\alpha\|_1} \frac{ \Gamma(d)}{d^2}; \] \item[(A3')] $ \limsup_{|\xi|\to +\infty} \Gamma(\xi)/\xi^2\le 0$. \end{itemize} Then, for every $$ \lambda \in \Big]\frac{4096}{27}\frac{B d^2}{\alpha_0\Gamma(d)} , \frac{Bc^2}{\|\alpha\|_1\max_{|t|\leq c} \Gamma(t)}\Big[\,, $$ the problem \begin{equation}\label{earasi} \begin{gathered} u''''h(x,u')-u''=[\lambda \alpha(x)\gamma(u)+g(u)]h(x,u'),\quad \text{in }(0,1),\\ u(0)=u(1)=0=u''(0)=u''(1) \end{gathered} \end{equation} has at least three weak solutions. \end{corollary} The proof of the above corollary follows from Theorem \ref{thm1} by choosing $f(x,t):=\alpha(x)\gamma(t)$ for all $(x,t) \in [0,1]\times \mathbb{R}$. \begin{remark} \label{rmk3.2} \rm Clearly, if $\gamma$ is non-negative then assumption (A1') is satisfied and (A2') becomes $$ \frac{ \Gamma(c)}{c^2}<\frac{27}{4096} \frac{\alpha_0}{\|\alpha\|_1}\,\frac{ \Gamma(d)}{d^2}. $$ \end{remark} \begin{remark}\label{rem3.5}\rm Theorem \ref{the0} in the introduction is an immediate consequence of Corollary \ref{cor1}, on choosing $g(u)=-u$, $h\equiv 1$, $c=2$ and $d=3\sqrt{3}$. \end{remark} The following lemma will be crucial in our arguments. \begin{lemma}\label{teo:positive} Assume that $f(x,t) \geq 0$ for all $(x,t) \in [0,1]\times \mathbb{R}$. If $u$ is a weak solution of \eqref{e1.1}, then $u(x) \geq 0$ for all $x \in [0,1]$. \end{lemma} \begin{proof} Arguing by contradiction, if we assume that $u$ is negative at a point of $[0,1]$, the set $$ \Omega:=\{x\in [0,1]:{u}(x)<0\}, $$ is non-empty and open. Let us consider $ \bar{v}:=\min\{{u},0\}, $ one has, $\bar{v}\in X$. So, taking into account that ${u}$ is a weak solution and by choosing $v=\bar{v}$, from our assumptions, one has \begin{align*} 0&\geq \lambda\int_{\Omega} f(x,{u}(x)){u}(x)\,dx\\ &= \int_{\Omega}|{u}''(x)|^2\,dx+\int_{\Omega} \Big(\int_0^{{u}'(x)}\frac{1}{h(x,\tau)}d\tau\Big) {u}'(x)\,dx -\int_{\Omega}g({u}(x)){u}(x)\,dx\\ &\geq \frac{\pi^4-L}{\pi^4}\|{u}\|_{H^2(\Omega)\cap H_0^1(\Omega)}^2. \end{align*} Therefore, $\|{u}\|_{H^2(\Omega)\cap H_0^1(\Omega)}=0$ which is absurd. Hence, the conclusion is achieved. \end{proof} Our other main result is as follows. \begin{theorem} \label{thm2} Assume that there exist three positive constants $c_1,c_2,d$, satisfying $\frac{3\sqrt{3}\pi}{16\sqrt{2}}c_1 32. \end{cases} $$ Here, $g(t)=-t$ and $h(x,t)=(2+x+\cos t)^{-1}$ for all $x\in [0,1]$ and $t\in \mathbb{R}$. It is easy to verify that (A2') and (A3') are satisfied with $c=1$ and $d=32$. From Corollary \ref{cor1}, for each parameter $$ \lambda\in \Big]\frac{48(\pi^4+4\pi^2+1)}{\pi^4}, \frac{512(\pi^4+4\pi^2+1)}{\pi^4}\Big[, $$ problem \eqref{arsa} admits at least three weak solutions. \end{example} \begin{example}\label{ex3.12}\rm Consider the problem \begin{equation}\label{arsa1} \begin{gathered} u''''-u''(3+\sin u')-2u=\lambda f(u),\quad \text{in }(0,1),\\ u(0)=u(1)=0=u''(0)=u''(1), \end{gathered} \end{equation} where $f:\mathbb{R}\to \mathbb{R}$ is defined by $$ f(t)=\begin{cases} 2^{-20} &\text{if }|t| \leq 2^{-5},\\ t^4 &\text{if }2^{-5}<|t| \leq 1,\\ t^{-2} &\text{if } |t| > 1. \end{cases} $$ Here, $g(t)=2t$ and $h(x,t)=(3+\sin t)^{-1}$ for all $x\in [0,1]$ and $t\in \mathbb{R}$. It is easy to verify that (B2') and (B3') are satisfied with $c_1=2^{-5}$, $d=1$ and $c_2=2^{10}$. From Corollary \ref{corsi}, for each parameter $$ \lambda\in \Big]\frac{2276(\pi^4+4\pi^2+2)}{\pi^4}, \frac{2^{14}(\pi^4+4\pi^2+2)}{\pi^4}\Big[, $$ problem \eqref{arsa1} admits at least three weak solutions $u_i$, $i=1,2,3$, such that $0<\|u_i\|_{\infty}\leq 1024$. \end{example} \begin{thebibliography}{99} \bibitem{AfHaRa} G. Afrouzi, A. Hadjian, V. D. R\u{a}dulescu; {Variational approach to fourth-order impulsive differential equations with two control parameters,} \emph{Results in Mathematics}, \textbf{65} (2014), 371-384. \bibitem{AfHeiRe} G. A. Afrouzi, S. Heidarkhani, D. O'Regan; {Existence of three solutions for a doubly eigenvalue fourth-order boundary value problem,} \emph{Taiwanese J. Math.}, \textbf{15} (2011), 201-210. \bibitem{AfMirRa} G. Afrouzi, M. Mirzapour, V. D. R\u{a}dulescu; {Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions, } \emph{Collectanea Mathematica}, in press (DOI: 10.1007/s13348-014-0131-x). \bibitem{BONCAND} G. Bonanno, P. Candito; {Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,} \emph{J. Differential Equations,} \textbf{244} (2008), 3031-3059. \bibitem{BONMAR} G. Bonanno, S. A. Marano; {On the structure of the critical set of non-differentiable functionals with a weak compactness condition,} \emph{Appl. Anal.,} \textbf{89} (2010), 1-10. \bibitem{chai} G. Chai; {Existence of positive solutions for fourth-order boundary value problem with variable parameters,} \emph{Math. Comput. Modelling}, \textbf{66} (2007), 870-880. \bibitem{ciarlet} P. G. Ciarlet; {Linear and Nonlinear Functional Analysis with Applications}, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2013. \bibitem{PTV} L. A. Peletier, W. C. Troy, R. C. A. M. Van der Vorst; Stationary solutions of a fourth order nonlinear diffusion equation, (Russian) Translated from the English by V. V. Kurt. \emph{Differentsialnye Uravneniya} \textbf{31} (1995), 327-337. English translation in \emph{Differential Equations} \textbf{31} (1995), 301-314. \bibitem{Rad} V. D. R\u{a}dulescu; {Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,} \emph{Contemporary Mathematics and Its Applications}, Vol. 6, Hindawi Publ. Corp., 2008. \bibitem{Ricceri3} B. Ricceri; {A three critical points theorem revisited}, \emph{Nonlinear Anal.}, \textbf{70} (2009), 3084-3089. \bibitem{sara} V. Shanthi, N. Ramanujam; {A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations,} \emph{Appl. Math. Comput.}, \textbf{129} (2002). 269-294. \bibitem{ZII1} E. Zeidler; \emph{Nonlinear Functional Analysis and its Applications}, vol. II/B and III, Berlin-Heidelberg-New York, 1990. \end{thebibliography} \end{document}