\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 46, pp. 1--21.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/46\hfil Existence of solutions] {Existence of solutions to a parabolic $p(x)$-Laplace equation with convection term via $L^\infty$ estimates} \author[Z. Li, B. Yan, W. Gao \hfil EJDE-2015/46\hfilneg] {Zhongqing Li, Baisheng Yan, Wenjie Gao} \address{Zhongqing Li (corresponding author)\newline College of Mathematics, Jilin University, Changchun 130012, China} \email{zqli\_jlu@163.com} \address{Baisheng Yan \newline College of Mathematics, Jilin University, Changchun 130012, China.\newline Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA} \email{yan@math.msu.edu} \address{Wenjie Gao \newline College of Mathematics, Jilin University, Changchun 130012, China} \email{wjgao@jlu.edu.cn} \thanks{Submitted November 28, 2014. Published February 17, 2015.} \subjclass[2000]{35K65, 35K55, 46E35} \keywords{Parabolic $p(x)$-Laplace equation; convection term; \hfill\break\indent De Giorgi iteration; $L^\infty$ estimates} \begin{abstract} This article is devoted to the study of the existence of weak solutions to an initial and boundary value problem for a parabolic $p(x)$-Laplace equation with convection term. Using the De Giorgi iteration technique, the authors establish the critical a priori $L^\infty$-estimates and thus prove the existence of weak solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this article, we consider the initial and boundary value problem for parabolic $p(x)$-Laplace equation \begin{equation}\label{1} \begin{gathered} \frac{\partial{u}}{\partial{t}}- \operatorname{div}\big(|\nabla u|^{p(x)-2}\nabla u\big) =B(x,t)|\nabla u|^{p(x)}-\operatorname{div}\overrightarrow{F}(x,t), \quad (x,t)\in Q_T,\\ u(x,t)=0, \quad (x,t)\in\Gamma_T,\\ u(x,0)=u_0(x)\in L^\infty(\Omega), \quad x\in\Omega. \end{gathered} \end{equation} Here, $\Omega\subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, $Q_T=\Omega\times(0,T)$, $\Gamma_T=\partial\Omega\times(0,T)$,\, $T>0$ is finite, and $p(x)$, $B(x,t)$, $\overrightarrow{F}(x,t)$ are given quantities satisfying conditions to be specified later. Recently, partial differential equations involving variable exponents, such as the $p(x)$-Laplace equation in \eqref{1}, have been extensively investigated, owing to their physical importance and powerful application. The mathematical model of Problem \eqref{1} originates from heat and mass transfer in nonhomogeneous media and non-Newtonian fluids with thermo-convective effects \cite{MR2246902}. Equations of this type also appear in the study of digital image recovery \cite{MR2246061} and electrorheological fluids \cite{MR1810360}. It describes the evolution diffusion and filtration process. In particular, the models like \eqref{1} with variable exponent provide a good mathematical interpretation for the mechanical properties of certain viscous electrorheological fluids characterized by their abilities to undergo significant changes when an electric field is applied. We focus on mathematical analysis concerning the existence of solutions to Problem \eqref{1}. Similar problems with constant exponents or $L^1$ data have been studied by many authors; see, e.g., \cite{MR2677803, MR1378470, MR924524, MR1191957, MR1747629, MR1307456, MR2593046, MR1776929}. To study our problem, we encounter several difficulties arising from the variable exponents. To deal with \eqref{1}, one must face the typical difficulty of how to define the solution space to \eqref{1}. When $p(x)=p$ is a constant, it is well known that $L^p(0,T;W^{1,p}_0(\Omega))$ can be taken as the solution space. However, in the nonconstant case and $p^-=\inf p(x) >1$, if the solution space is defined to be $L^{p(x)}(0,T;W^{1,p(x)}_0(\Omega))$, or $L^{p^-}(0,T;W^{1,p(x)}_0(\Omega))$, etc., then it leads to an unfavorable fact that the $p(x)$-Laplace operator is not bounded and not continuous from this space into its dual. To conquer this difficulty, we adopt the appropriate solution space $V$ as defined below, which helps us to define a weak solution to \eqref{1}. However, other difficulties arise from it at the same time. On one hand, one must verify the chain rule in the variable exponent space, as given in Lemma \ref{lemma 1.3} with its proof in the Appendix, even if this is an obvious fact in the case when $p$ is a constant \cite{MR1378470,MR924524}. On the other hand, we will get the existence result for Problem \eqref{1} through a limit process in which Simon's compactness theorem \cite{MR916688} plays a crucial role. Nevertheless, the solution space $V$ prevents from directly employing the theorem. We take into account the properties associated with $V$ and surmount this difficulty. There are other differences between the variable exponent case and the constant exponent case. Some important properties and inequalities are no longer valid. For example, the variable exponent spaces are not translation invariant, Young's inequality with convolution $\|f\ast g\|_{p(\cdot)}\leq C\|f\|_{p(\cdot)}\|g\|_1$ holds if and only if $p$ is constant, and for $u\in W_0^{1,p(x)}(\Omega)$, $\int_\Omega|u|^{p(x)}dx\leq C\int_\Omega|\nabla u|^{p(x)}dx$ is not valid for the variable exponent $p$, etc.; we refer to monograph \cite{MR2790542} for details and more references. To define an appropriate solution space for Problem \eqref{1}, we make the following hypotheses on the quantities appearing in \eqref{1}. \begin{itemize} \item[(H1)] $p\in C(\overline{\Omega})$, and $p^+:=\max_{\overline{\Omega}}p(x)$, $p^-:=\min_{\overline{\Omega}}p(x)$ satisfy $1
0$ is a constant, and $\overrightarrow{F}$ is a vector field satisfying $|\overrightarrow{F}|^{(p^-)'}\in L^r(Q_T)$, where $(p^-)'=\frac{p^-}{p^--1}$ and $r>\frac{N+p^-}{p^-}$. Hence, $\overrightarrow{F}\in \big(L^{p'(x)}(Q_T)\big)^N$ as $|\overrightarrow{F}|\in L^{(p^-)'}(Q_T)\hookrightarrow L^{p'(x)}(Q_T)$; see the relevant definitions below. \end{itemize} We remark that, when $p$ is a constant, it is well known that $W^{1,p}_0(\Omega)$ (the closure of $C_0^\infty(\Omega)$ in $W^{1,p}(\Omega)$) is identical to $H_0^{1,p}(\Omega):=\{f\in L^p(\Omega):|\nabla f|\in L^{p}(\Omega) \text{ with } f|_{\partial\Omega}=0\}$. However, when $p$ is a function, there exists an interesting Lavrentiev phenomenon \cite{MR1486765}, which shows that the above two space are not equivalent. The log-H\"{o}lder continuous condition \eqref{log-H} above guarantees an important fact that $C_0^\infty(\Omega)$ is dense in $W^{1,p(x)}(\Omega)$ \cite{MR2120185}. Under this condition, one can define variable Sobolev spaces with homogeneous boundary values, $W_0^{1,p(x)}(\Omega)$, as the closure of $C_0^\infty(\Omega)$ in $W^{1,p(x)}(\Omega)$; moreover, the condition makes $p(x)$-Poincar\'{e}'s inequality hold \cite{MR2737220, MR1134951, MR2593046}. We introduce the function space \[ V=\{v\in L^{p^-}(0,T;W^{1,p(x)}_0(\Omega)): |\nabla v|\in L^{p(x)}(Q_T)\}, \] endowed with the norm $\|u\|_V=|\nabla u|_{L^{p(x)}(Q_T)}$, or the equivalent norm $\|u\|_V=|u|_{L^{p^-}(0,T;W^{1,p(x)}_0(\Omega))}+|\nabla u|_{L^{p(x)}(Q_T)}$; the equivalence follows from $p(x)$-Poincar\'{e}'s inequality. Then $V$ is a separable and reflexive Banach space (see \cite{MR2677803,MR2593046}). We now give the definition of weak solutions to Problem \eqref{1}. \begin{definition} \label{def1.1} \rm We say that $u\in V\cap L^\infty(Q_T)$ is a weak solution to \eqref{1}, provided that $u_t\in V^\ast+L^1(Q_T)$, $u(x,0)=u_0(x)$ in $L^{p^-}(\Omega)$, and \begin{equation}\label{definition 1.1} \begin{aligned} &\int_0^T\langle u_t,\phi\rangle dt +\int_0^T\int_\Omega|\nabla u|^{p(x)-2}\nabla u\cdot\nabla\phi \,dx\,dt\\ &= \int_0^T\int_\Omega B |\nabla u|^{p(x)}\phi \,dx\,dt +\int_0^T\int_\Omega\nabla\phi\cdot\overrightarrow{F}\,dx\,dt \end{aligned} \end{equation} holds for every $\phi(x,t)\in V \cap L^\infty(Q_T)$. Here, with $u_t=\alpha^{(1)}+\alpha^{(2)}\in V^\ast+L^1(Q_T)$, it is understood that \[ \int_0^T\langle u_t,\phi\rangle dt :=\langle u_t,\phi\rangle_{V^\ast+L^1(Q_T),V \cap L^\infty(Q_T)} =\langle \alpha^{(1)},\phi\rangle_{V^\ast,V} +\int_0^T\int_\Omega\alpha^{(2)}\phi \,dx\,dt. \] \end{definition} When $p(x) = p$ is a constant, sup-/sub-solution method is powerful and direct to the existence results (see \cite{MR924524}). Nevertheless, it is not suitable to our problem because, due to the complicated nonlinearities of $p(x)$-Laplace, it may be quite difficult to construct a supsolution $\overline{u}$ and a subsolution $\underline{u}$ in $V$ which simultaneously satisfy $\underline{u}\leq\overline{u}$. Roughly speaking, in Equation \eqref{1}, the growth power of $|\nabla u|^{p(x)-2}\nabla u$ at the left-hand side of \eqref{1} is less than that of the convection term $|\nabla u|^{p(x)}$ at the right-hand side, which leads us not to directly utilizing pseudo-monotone operator method \cite{MR0259693}. Instead, to obtain the existence of weak solutions to Problem \eqref{1}, we will employ the $L^\infty$ estimate method and get the solution through a limit process to the approximate equations. We carry out the De Giorgi iteration, different from the classical constant exponent case (see \cite{MR1776929,MR1378470,MR1191957} and the excellent and elegant argument therein), in the setting of variable exponent. We first give a general form of \cite[Theorem 5.1]{MR1378470} or \cite[Lemma 1]{MR1776929}, as stated in \eqref{lemma 1.2-2}, by which we obtain the $L^\infty$ regularity under the classification when $p^-\geq2$ and when $1
1$, for any $x\in\overline{\Omega}$. 1. The space \[ L^{p(x)}(\Omega):=\big\{u: \text{$u$ is measurable in $\Omega$ and $\int_\Omega|u(x)|^{p(x)}dx<\infty$}\big\}. \] This space is equipped with the Luxemburg's norm \[ |u|_{L^{p(x)}(\Omega)}:=\inf\big\{\lambda>0:\int_\Omega|\frac{u(x)}{\lambda} |^{p(x)}dx\leq1\big\}. \] The space $\left(L^{p(x)}(\Omega),|\cdot|_{L^{p(x)}(\Omega)}\right)$ is a separable, uniformly convex Banach space. 2. The space \[ W^{1,p(x)}(\Omega):=\left\{u\in L^{p(x)}(\Omega):|\nabla u|\in L^{p(x)}(\Omega)\right\}, \] endowed with the norm \[ |u|_{W^{1,p(x)}({\Omega})}:=|\nabla u|_{L^{p(x)}(\Omega)}+|u|_{L^{p(x)}(\Omega)}. \] We denote by $W^{1,p(x)}_0(\Omega)$ the closure of $C^\infty_0(\Omega)$ in $W^{1,p(x)}(\Omega)$. In fact, the norm $|\nabla u|_{L^{p(x)}(\Omega)}$ and $|u|_{W^{1,p(x)}({\Omega})}$ are equivalent norms in $W^{1,p(x)}_0(\Omega)$. $W^{1,p(x)}({\Omega})$ and $W^{1,p(x)}_0(\Omega)$ are separable and reflexive Banach spaces. 3. Frequently used relationships for the estimates. \[ \min\big\{|u|_{L^{p(x)}(\Omega)} ^{p^-}, \; |u|_{L^{p(x)}(\Omega)} ^{p^+} \big\} \leq \int_\Omega|u(x)|^{p(x)}dx \leq \max\big \{|u|_{L^{p(x)}(\Omega)} ^{p^-}, \; |u|_{L^{p(x)}(\Omega)} ^{p^+} \big\}. \] Consequently, \[ |u_k-u|_{L^{p(x)}(\Omega)}\to 0\Longleftrightarrow \int_\Omega|u_k-u|^{p(x)}dx\to 0. \] 4. $p(x)$-H\"{o}lder's inequality: For any $u\in L^{p(x)}(\Omega)$ and $v\in L^{p'(x)}(\Omega)$, with $\frac{1}{p(x)}+\frac{1}{p'(x)}=1$, we have \[ \Big|\int_\Omega uv\,dx\Big| \leq\big(\frac{1}{p^-}+\frac{1}{({p'})^-}\big)|u|_{L^{p(x)}(\Omega)} |v|_{L^{p'(x)}(\Omega)} \leq 2|u|_{L^{p(x)}(\Omega)}|v|_{L^{p'(x)}(\Omega)}. \] 5. Embedding relationships: If $p_1$ and $p_2$ are in $C(\overline{\Omega})$, and $1\leq p_1(x)\leq p_2(x)$, for any $x\in\overline{\Omega}$, then there exists a positive constant $C_{p_1(x),p_2(x)}$ such that \[ |u|_{L^{p_1(x)}(\Omega)}\leq C_{p_1(x),p_2(x)}|u|_{L^{p_2(x)}(\Omega)}. \] i.e. the embedding $L^{p_2(x)}(\Omega)\hookrightarrow L^{p_1(x)}(\Omega)$ is continuous. If $q\in C(\overline{\Omega})$ and $1\leq q(x)
1$ such that, for all $s\geq d$, \begin{equation}\label{lemma 1.1-2} \varphi'(s)\leq\lambda M\big[\varphi\big(\frac{s}{p^-}\big)\big]^{p^-},\quad \varphi(s)\leq M\big[\varphi\big(\frac{s}{p^-}\big)\big]^{p^-}. \end{equation} \item Let $\Phi(s)=\int_0^s\varphi(\sigma)d\sigma$. If $p^-\geq2$, then there exists a positive constant $c^\ast$ such that \begin{equation}\label{lemma 1.2-1} \Phi(s)\geq c^\ast\big[\varphi\big(\frac{s}{p^-}\big)\big]^{p^-}, \quad \forall s\ge 0; \end{equation} if $1
\|u_0\|_{L^\infty(\Omega)}$ and let $\varphi$ be the function defined in \eqref{lemma 1.1-0} with constant $\lambda\ge \frac12 +2b$, where $b>0$ is the constant in Hypothesis (H2). (We shall use \eqref{lemma 1.1-1} with $a=1$ and $a=1/2$ below.) Define \[ G_k(u)= \begin{cases} u-k, &\text{if } u>k,\\ u+k, &\text{if } u<-k,\\ 0, &\text{if } |u|\leq k. \end{cases} \] Note that $u\in L^{\infty}(Q_T)\cap V$; so does $\varphi(G_k(u))$. Then, for each $\tau\in[0,T]$, one may choose $v=\varphi(G_k(u))\chi_{[0,\tau]}$ as a test function in \eqref{definition 1.1} (where $\chi_A$ is the characteristic function on the set $A$). Noting that $\nabla v=\chi_{[0,\tau]}\chi\{|u|>k\}\varphi'(G_k(u))\nabla u$, we have \begin{equation}\label{thm2.1-1} \begin{split} &\int_0^\tau\langle u_t,\varphi(G_k(u))\rangle dt +\int_0^\tau\int_\Omega|\nabla u|^{p(x)}\varphi'(G_k(u))\chi\{|u|>k\}\,dx\,dt\\ &= \int_0^\tau\int_\Omega B |\nabla u|^{p(x)}\varphi(G_k(u))\,dx\,dt +\int_0^\tau\int_\Omega\chi\{|u|>k\}\varphi'(G_k(u)) \nabla u\cdot\overrightarrow{F}\,dx\,dt. \end{split} \end{equation} Denote $A_k(t)=\left\{x\in\Omega:|u(x,t)|>k\right\}$. In what follows, we write $\varphi=\varphi(G_k(u))$ and $\varphi'=\varphi'(G_k(u))$ for simplicity. Thanks to the choice of $k$, one has \begin{equation} \label{thm2.1-2} \begin{aligned} \int_0^\tau\langle u_t,\varphi(G_k(u))\rangle dt &=\int_\Omega\Phi(G_k(u))(\tau)dx-\int_\Omega\Phi(G_k(u_0))dx\\ &=\int_{A_k(\tau)}\Phi(G_k(u))(\tau)dx-\int_{A_k(0)}\Phi(G_k(u_0))dx\\ &=\int_{A_k(\tau)}\Phi(G_k(u))(\tau)dx. \end{aligned} \end{equation} From Young's inequality with $\epsilon$, it follows that \begin{equation}\label{thm2.1-3} \begin{aligned} &\int_0^\tau\int_{A_k(t)}\varphi' \nabla u\cdot\overrightarrow{F}\,dx\,dt\\ &\leq\epsilon\int_0^\tau\int_{A_k(t)}|\nabla u|^{p^-}\varphi' \,dx\,dt +C(\epsilon)\int_0^\tau\int_{A_k(t)}|\overrightarrow{F}|^{(p^-)'}\varphi' \,dx\,dt. \end{aligned} \end{equation} Substituting \eqref{thm2.1-2} and \eqref{thm2.1-3} in \eqref{thm2.1-1} yields \begin{equation}\label{thm2.1-4} \begin{split} &\int_{A_k(\tau)}\Phi(G_k(u))(\tau)dx +\int_0^\tau\int_{A_k(t)}|\nabla u|^{p(x)}\left(\varphi'-B|\varphi|\right)\,dx\,dt\\ &\leq\epsilon\int_0^\tau\int_{A_k(t)}|\nabla u|^{p^-}\varphi' \,dx\,dt +C(\epsilon)\int_0^\tau\int_{A_k(t)}|\overrightarrow{F}|^{(p^-)'}\varphi' \,dx\,dt. \end{split} \end{equation} Note that $\varphi'-B|\varphi|\geq\varphi'-b|\varphi| \geq\frac{1}{2}e^{\lambda|G_k(u)|}>0$ by \eqref{lemma 1.1-1} (with $a=1$). By utilizing $|\nabla u|^{p(x)}\geq|\nabla u|^{p^-}-1$ and choosing $\epsilon=\frac{1}{2}$, we get from \eqref{thm2.1-4} that \begin{equation} \label{thm2.1-5} \begin{aligned} &\int_{A_k(\tau)}\Phi(G_k(u))(\tau)dx +\int_0^\tau\int_{A_k(t)}|\nabla u|^{p^-}\big(\frac{1}{2}\varphi'-B|\varphi|\big)\,dx\,dt \\ &\leq C\int_0^\tau\int_{A_k(t)}|\overrightarrow{F}|^{(p^-)'}\varphi' \,dx\,dt +\int_0^\tau\int_{A_k(t)}\left(\varphi'-B|\varphi|\right)\,dx\,dt \\ &\leq\int_0^\tau\int_{A_k(t)}\left(C|\overrightarrow{F}|^{(p^-)'}+1\right)\varphi' \,dx\,dt. \end{aligned} \end{equation} Using \eqref{lemma 1.1-1} with $a=\frac12$, we have $\frac12 \varphi'-B|\varphi|\geq\frac12 \varphi'-b|\varphi| \geq\frac{1}{4}e^{\lambda|G_k(u)|}>0$. Denoting $w_k=\varphi\left(\frac{|G_k(u)|}{p^-}\right)$, we proceed to estimate \eqref{thm2.1-5}, \begin{equation}\label{thm2.1-6} \begin{split} \int_0^\tau\int_{A_k(t)}|\nabla u|^{p^-} \Big(\frac{1}{2}\varphi'-B|\varphi|\Big)\,dx\,dt &\geq\frac{1}{4}\int_0^\tau\int_{A_k(t)}|e^{\lambda\frac{|G_k(u)|}{p^-}}\nabla u|^{p^-}\,dx\,dt\\ &\geq\frac{1}{4}\big(\frac{1}{\lambda}\big)^{p^-} \int_0^\tau\int_{A_k(t)}|\nabla w_k|^{p^-}\,dx\,dt. \end{split} \end{equation} By definition, $A_k(t)\setminus A_{k+d}(t)=t\{x\in\Omega:k<|u(x,t)|\leq k+d\}$; hence $0<|G_k(u)|\leq d$ and $\varphi'(G_k(u))=\lambda e^{\lambda|G_k(u)|}\leq\lambda e^{\lambda d}$ on $A_k(t)\setminus A_{k+d}(t)$. So, from \eqref{lemma 1.1-2}, it follows that \begin{equation} \label{thm2.1-7} \begin{aligned} &\int_0^\tau\int_{A_k(t)}\left(C|\overrightarrow{F}|^{(p^-)'}+1\right)\varphi' \,dx\,dt \\ &\leq\lambda M\int_0^\tau\int_{A_{k+d}(t)} \left(C|\overrightarrow{F}|^{(p^-)'}+1\right)|w_k|^{p^-}\,dx\,dt \\ &\quad +\int_0^\tau\int_{A_k(t)\setminus A_{k+d}(t)} \left(C|\overrightarrow{F}|^{(p^-)'}+1\right)\varphi' \,dx\,dt \\ &\leq\lambda M\int_0^\tau\int_{A_{k+d}(t)}h|w_k|^{p^-}\,dx\,dt +\lambda e^{\lambda d}\int_0^\tau\int_{A_k(t)\setminus A_{k+d}(t)}h \,dx\,dt, \end{aligned} \end{equation} where $h=C|\overrightarrow{F}|^{(p^-)'}+1$. Putting \eqref{thm2.1-5}, \eqref{thm2.1-6} and \eqref{thm2.1-7} together, we deduce \begin{equation}\label{thm2.1-8} \begin{split} &\int_{A_k(\tau)}\Phi(G_k(u))(\tau)dx +\frac{1}{4}\big(\frac{1}{\lambda}\big)^{p^-} \int_0^\tau\int_{A_k(t)}|\nabla w_k|^{p^-}\,dx\,dt\\ &\leq\lambda M\int_0^\tau\int_{A_{k+d}(t)}h|w_k|^{p^-}\,dx\,dt +\lambda e^{\lambda d}\int_0^\tau\int_{A_k(t)\setminus A_{k+d}(t)}h \,dx\,dt. \end{split} \end{equation} \smallskip \noindent\textbf{Case 1. $p^-\geq2$.} In this case, by \eqref{lemma 1.2-1}, one has \begin{equation}\label{thm2.1.1-1} \int_{A_k(\tau)}\Phi(G_k(u))(\tau)dx \geq c^\ast\int_{A_k(\tau)}|w_k|^{p^-}dx. \end{equation} Substituting \eqref{thm2.1.1-1} in \eqref{thm2.1-8} and taking the supremum for $\tau\in[0,t_1]$, with $t_1\leq T$ to be determined later, we have \begin{equation}\label{thm2.1.1-2} \begin{split} &c^\ast\sup_{\tau\in[0,t_1]}\int_{A_k(\tau)}|w_k|^{p^-}dx +\frac{1}{4}\big(\frac{1}{\lambda}\big)^{p^-} \int_0^{t_1}\int_{A_k(t)}|\nabla w_k|^{p^-}\,dx\,dt\\ &\leq\lambda M\int_0^{t_1}\int_{A_k(t)}h|w_k|^{p^-}\,dx\,dt +\lambda e^{\lambda d}\int_0^{t_1}\int_{A_k(t)\setminus A_{k+d}(t)}h \,dx\,dt. \end{split} \end{equation} By the embedding inequality (see \cite{MR1230384,MR0241822}), we have \begin{equation}\label{thm2.1.1-3} \begin{aligned} &\Big(\int_0^{t_1}\int_{A_k(t)}|w_k|^{p^-\frac{N+p^-}{N}}\,dx\,dt \Big)^\frac{N}{N+p^-}\\ &\leq\gamma \Big(\sup_{\tau\in[0,t_1]}\int_{A_k(\tau)}|w_k|^{p^-}dx +\int_0^{t_1}\int_{A_k(t)}|\nabla w_k|^{p^-}\,dx\,dt\Big), \end{aligned} \end{equation} where $\gamma$ is a constant depending on $N,p^-$, but independent of $t_1\le T$. Hence, from (\ref{thm2.1.1-2}), it follows that \begin{align*} &J_{k_{t_1}}:=\Big(\int_0^{t_1}\int_{A_k(t)}|w_k|^{p^-\frac{N+p^-}{N}}\,dx\,dt \Big)^\frac{N}{N+p^-}\\ &\leq C\Big( \int_0^{t_1}\int_{A_k(t)}h|w_k|^{p^-}\,dx\,dt + \int_0^{t_1}\int_{A_k(t)\setminus A_{k+d}(t)}h \,dx\,dt\Big), \end{align*} where $C$ is a constant independent of $t_1$. Consequently, by H\"{o}lder's inequality (thanks to the assumption $|\overrightarrow{F}|^{(p^-)'}\in L^r(Q_T)$ with $r>\frac{N+p^-}{p^-}$), we deduce \begin{flalign*} J_{k_{t_1}} & \leq C\Big(\int_0^{t_1}\int_{A_k(t)}|w_k|^{p^-\frac{N+p^-}{N}}\,dx\,dt\Big)^\frac{N}{N+p^-} \Big(\int_0^{t_1}\int_{A_k(t)}h^\frac{N+p^-}{p^-}\,dx\,dt\Big)^\frac{p^-}{N+p^-} \\ &\quad+C\Big(\int_0^{t_1}\int_{A_k(t)}h^r\,dx\,dt\Big)^{1/r} \Big(\int_0^{t_1}\mu(A_k(t))dt\Big)^{1-\frac{1}{r}} \\ &\leq C\Big(\int_0^{t_1}\int_{A_k(t)}|w_k|^{p^-\frac{N+p^-}{N}}\,dx\,dt \Big)^\frac{N}{N+p^-} \|h\|_{L^r(Q_{t_1})} \big(t_1\mu(\Omega)\big)^{\frac{p^-}{N+p^-}-\frac{1}{r}} \\ &\quad+C\|h\|_{L^r(Q_{t_1})} \Big(\int_0^{t_1}\mu(A_k(t))dt\Big)^{1-\frac{1}{r}}, \end{flalign*} where $\mu(\Omega)$ represents the Lebesgue measure of $\Omega$. Choosing $t_1$ small enough such that \begin{equation}\label{thm2.1.1-(1)} C\|h\|_{L^r(Q_{t_1})}\left(t_1\mu(\Omega)\right)^{\frac{p^-}{N+p^-} -\frac{1}{r}}\leq\frac{1}{2} \end{equation} and we obtain \begin{equation}\label{thm2.1.1-5} J_{k_{t_1}}\leq C\|h\|_{L^r(Q_T)} \Big(\int_0^{t_1}\mu(A_k(t))dt\Big)^{1-\frac{1}{r}}. \end{equation} For any $l>k\geq\|u_0\|_{L^\infty(\Omega)}$, using \eqref{lemma 1.1-1}, we conclude that \begin{equation} \label{thm2.1.1-6} \begin{aligned} J_{k_{t_1}} &\geq\Big(\int_0^{t_1}\int_{A_k(t)}| \frac{\lambda G_k(u)}{p^-}|^{p^-\frac{N+p^-}{N}}\,dx\,dt\Big)^\frac{N}{N+p^-} \\ &\geq\big(\frac{\lambda}{p^-}\big)^{p^-} \Big(\int_0^{t_1}\int_{A_k(t)}\big(|u|-k\big)^{p^-\frac{N+p^-}{N}}\,dx\,dt \Big)^\frac{N}{N+p^-} \\ &\geq\big(\frac{\lambda}{p^-}\big)^{p^-} (l-k)^{p^-}\Big(\int_0^{t_1}\mu({A_l(t)})dt\Big)^\frac{N}{N+p^-}. \end{aligned} \end{equation} Let $\psi_k=\int_0^{t_1}\mu({A_k(t)})dt$. It follows from \eqref{thm2.1.1-5} and \eqref{thm2.1.1-6} that \begin{equation}\label{thm2.1.1-7} \psi_l\leq\frac{C}{(l-k)^{\frac{p^-(N+p^-)}{N}}} \psi_k^{(1-\frac{1}{r})\frac{N+p^-}{N}}. \end{equation} \smallskip \noindent\textbf{Case 2. $1
\frac{N+p^-}{p^-}$, after a straightforward computation,
we have $\frac{2}{2-p^-}(1-\frac{N+2}{2r})>1-\frac{1}{r}$.
Meanwhile, the choice of $t_1$ ensures $\psi_k\leq t_1\mu(\Omega)\leq1$.
As a result, \eqref{thm2.1.2-5} becomes
\begin{equation}\label{thm2.1.2-5'}
J^{(1)}_{k_{t_1}}
\leq C\Big(\int_0^{t_1}\mu(A_k(t))dt\Big)^{1-\frac{1}{r}}.
\end{equation}
For any $l>k\geq\|u_0\|_{L^\infty(\Omega)}$, using \eqref{lemma 1.1-1},
we deduce that
\begin{align*}
J^{(1)}_{k_{t_1}}
&\geq\Big(\int_0^{t_1}\int_{A_{k+d}(t)}|\frac{\lambda G_k(u)}{p^-}
|^{p^-\frac{N+p^-}{N}}\,dx\,dt\Big)^{\frac{N}{N+p^-}}\\
&\quad +\Big(\int_0^{t_1}\int_{A_k(t)\backslash A_{k+d}(t)}
|\frac{\lambda G_k(u)}{p^-}|^{p^-\frac{N+2}{N}}\,dx\,dt\Big)^{\frac{N}{N+p^-}}\\
&\geq\big(\frac{\lambda}{p^-}\big)^{p^-}
\Big(\int_0^{t_1}\int_{A_{k+d}(t)}\big(|u|-k\big)^{p^-\frac{N+p^-}{N}}
\,dx\,dt\Big)^\frac{N}{N+p^-}\\
&\quad +\big(\frac{\lambda}{p^-}\big)^{{p^-}\frac{N+2}{N+p^-}}
\Big(\int_0^{t_1}\int_{A_k(t)\backslash A_{k+d}(t)}
\big(|u|-k\big)^{p^-\frac{N+2}{N}}\,dx\,dt\Big)^{\frac{N}{N+p^-}} \\
&\geq\big(\frac{\lambda}{p^-}\big)^{p^-}(l-k)^{p^-}
\Big(\int_0^{t_1}\mu\left({A_l(t)}\cap{A_{k+d}(t)}\right)dt\Big)^\frac{N}{N+p^-}\\
&\quad+\big(\frac{\lambda}{p^-}\big)^{{p^-}\frac{N+2}{N+p^-}}(l-k)^{{p^-}
\frac{N+2}{N+p^-}}
\Big(\int_0^{t_1}\mu\left({A_l(t)}\backslash{A_{k+d}(t)}\right)dt\Big)^{\frac{N}{N+p^-}}.
\end{align*}
In fact, we have
\begin{equation}\label{thm2.1.2-5''}
\begin{split}
\left( J^{(1)}_{k_{t_1}}\right)^{\frac{N+p^-}{N}}
&\geq\big(\frac{\lambda}{p^-}\big)^{p^-\frac{N+p^-}{N}}(l-k)^{p^-\frac{N+p^-}{N}}
\int_0^{t_1}\mu\left({A_l(t)}\cap{A_{k+d}(t)}\right)dt\\
&\quad+\big(\frac{\lambda}{p^-}\big)^{{p^-}\frac{N+2}{N}}(l-k)^{{p^-\frac{N+2}{N}}}
\int_0^{t_1}\mu\left({A_l(t)}\backslash{A_{k+d}(t)}\right)dt.
\end{split}
\end{equation}
Consequently, combining \eqref{thm2.1.2-5''} and \eqref{thm2.1.2-5'},
with $\psi_k=\int_0^{t_1}\mu({A_k(t)})dt$, we have again
\begin{equation}\label{thm2.1.2-6}
\psi_l\leq\frac{C}{\min\big\{(l-k)^{\frac{p^-(N+p^-)}{N}},(l-k)
^{\frac{p^-(N+2)}{N}}\big\}}
\psi_k^{(1-\frac{1}{r})\frac{N+p^-}{N}}.
\end{equation}
Now we have proved \eqref{thm2.1.2-6} and \eqref{thm2.1.1-7}. Our hypothesis $r>\frac{N+p^-}{p^-}$ guarantees $\left(1-\frac{1}{r}\right)\frac{N+p^-}{N}>1$. Therefore, thanks to the iteration lemma in \cite{MR1776929}, we eventually obtain that
$\psi_{(\|u_0\|_{L^\infty(\Omega)}+D)}=0,$ where $D>0$ is a constant depending only on $p^-, N, t_1, r, b, \Omega,\||\overrightarrow{F}|^{(p^-)'}\|_{L^r(Q_{t_1})}$.
This proves that, for a fixed $\lambda$ validating Lemma \ref{lemma 1.1},
\begin{equation}\label{thm2.1.1-9}
\|u(x,t)\|_{L^\infty(Q_{t_1})}\leq\|u_0\|_{L^\infty(\Omega)}+D.
\end{equation}
Finally, partition the time interval $[0,T]$ into finite subintervals
$[0,t_1]$, $[t_1,t_2]$ $\cdot\cdot\cdot$ $[t_{n-1},T]$
such that the conditions similar to those in \eqref{thm2.1.1-(1)}
and \eqref{thm2.1.2-(1)} are available for each subinterval $[t_i,t_{i+1}]$;
then, using the same method, we deduce an inequality of the form
\eqref{thm2.1.1-9}.
Eventually, we conclude that
$\|u(x,t)\|_{L^\infty(Q_T)}\leq \|u_0\|_{L^\infty(\Omega)}+C$,
where the constant $C$
depends only on $p^-, N, T, r, b, \Omega,
\||\overrightarrow{F}|^{(p^-)'}\|_{L^r(Q_T)}$.
\end{proof}
\section{Application to the existence of solutions to \eqref{1}}
With the $L^\infty$-estimate obtained above,
we can prove the existence of solutions to Problem \eqref{1}.
First, we recall a lemma from \cite{MR924524},
which plays an important role in our estimates.
\begin{lemma}\label{lemma 3.1}
Let $\theta(s)=se^{\eta s^2}$, $s\in\mathbb{R}$, where
$\eta\geq\frac{b^2}{4a^2}$ is fixed, and let
$\Theta(s)=\int_0^s\theta(\tau)d\tau$. Then $\theta(0)=0$ and
\begin{equation} \label{lemma 3.1-2}
\Theta(s)\geq0, \quad a\theta'(s)-b|\theta(s)|\geq\frac{a}{2}, \quad\forall \, s\in\mathbb{R}.
\end{equation}
\end{lemma}
We are now in a position to prove the existence of solutions to \eqref{1}
based on the $L^\infty$ estimate.
\begin{theorem}\label{thm3.1}
Under the hypotheses {\rm (H1)} and {\rm (H2)}, there exists a solution
$u\in L^\infty(Q_T)\cap V$ to \eqref{1}.
\end{theorem}
\begin{proof}
\textbf{Step 1: The approximation equation.}
We introduce the following approximation equation of Problem \eqref{1}.
\begin{equation}\label{thm3.1-0}
\begin{gathered}
\frac{\partial{u_n}}{\partial{t}}-
\operatorname{div}\left(|\nabla u_n|^{p(x)-2}\nabla u_n\right)
=B(x,t)\min\{|\nabla u_n|^{p(x)},n\}
-\operatorname{div}\overrightarrow{F}(x,t), \\
(x,t)\in Q_T,\\
u_n(x,t)=0, \quad (x,t)\in\Gamma_T,\\
u_n(x,0)=u_0(x)\in L^\infty(\Omega), \quad x\in\Omega.
\end{gathered}
\end{equation}
For each fixed $n\in \mathbb{N}$, since $\min\left\{|\nabla u_n|^{p(x)},n\right\}$
is bounded, the existence of a weak solution $u_n\in L^{\infty}\cap V $
to \eqref{thm3.1-0} follows from the standard methods (for instance, the
pseudo-monotonicity operator theory in \cite{MR0259693,MR1134951,MR1033498},
or the difference and variation methods in \cite{MR2593046}).
We write the term $B(x,t)\min\{|\nabla u_n|^{p(x)},n\}$
in \eqref{thm3.1-0} as $B_n(x,t)|\nabla u_n|^{p(x)}$, with
$B_n(x,t)$ defined by
\[
B_n(x,t)=\begin{cases}
0, & \text{if } |\nabla u_n(x,t)|=0,\\[4pt]
B(x,t)\frac{\min\{|\nabla u_n(x,t)|^{p(x)},n\}}{|\nabla u_n(x,t)|^{p(x)}},
&\text{if }|\nabla u_n(x,t)|\ne 0.
\end{cases}
\]
Then $B_n\in L^\infty(Q_T)$ satisfies $0\le B_n(x,t)\le B(x,t)\le b$.
Hence, by Theorem \ref{thm2.1}, we have the uniform bound
\begin{equation}\label{thm3.1-1}
\|u_n(x,t)\|_{L^\infty(Q_T)}
\leq\|u_0\|_{L^\infty(\Omega)}+C,
\end{equation}
where $C$ depends only on
$p^-, N, T, r, b, \Omega, \||\overrightarrow{F}|^{(p^-)'}\|_{L^r(Q_T)}$
and it is independent of $n$.
Our goal is to show that a subsequence of the approximate solution
sequence $\{u_n\}$ converges to a measurable function $u$,
which coincides with a weak solution of Problem \eqref{1}.
\smallskip
\noindent\textbf{Step 2: The weak convergence $u_n\rightharpoonup u$ in
$L^{p^-}(0,T;W^{1,p(x)}_0(\Omega))$.}
Choosing $\theta(u_n)$ as a testing function in \eqref{thm3.1-0}, we have
\begin{equation}\label{thm3.1-2}
\begin{split}
&\int_0^T\langle \frac{\partial{u_n}}{\partial t},\theta(u_n)\rangle dt
+\iint_{Q_T}|\nabla u_n|^{p(x)}\theta'(u_n)\,dx\,dt\\
&= \iint_{Q_T} B\min\{|\nabla u_n|^{p(x)},n\}\theta(u_n)\,dx\,dt
+\iint_{Q_T}\theta'(u_n)\nabla{u_n}\cdot\overrightarrow{F}\,dx\,dt.
\end{split}
\end{equation}
Lemma \ref{lemma 1.3} yields
$\int_0^T\langle \frac{\partial{u_n}}{\partial t},\theta(u_n)\rangle dt
=\int_\Omega\left[\Theta(u_n(T))-\Theta(u_0)\right]dx$.
Using Young's inequality with $\epsilon$ in the last term of the right-hand
side, \eqref{thm3.1-2} becomes
\begin{align*}
&\int_\Omega\Theta(u_n(T))dx
+\iint_{Q_T}|\nabla u_n|^{p(x)}\theta'(u_n)\,dx\,dt\\
&\leq \int_\Omega\Theta(u_0)dx+ \iint_{Q_T} B |\nabla u_n|^{p(x)}|\theta(u_n)|\,dx\,dt\\
&\quad+\epsilon\iint_{Q_T}|\nabla u_n|^{p(x)}\theta'(u_n)\,dx\,dt
+\iint_{Q_T}\epsilon^{-\frac{1}{p(x)-1}}|\overrightarrow{F}|^{p'(x)}\theta'(u_n)\,dx\,dt.
\end{align*}
Taking $\epsilon=1/2$, we rewrite the above inequality as
\begin{equation}\label{thm3.1-3}
\begin{split}
&\int_\Omega\Theta(u_n(T))dx
+\iint_{Q_T}\left[\frac{1}{2}\theta'(u_n)-B|\theta(u_n)|\right]|\nabla u_n|^{p(x)}\,dx\,dt\\
&\leq \int_\Omega\Theta(u_0)dx
+\left(\frac{1}{2}\right)^{-\frac{1}{p^--1}}
\iint_{Q_T}|\overrightarrow{F}|^{p'(x)}\theta'(u_n)\,dx\,dt.
\end{split}
\end{equation}
With the aid of \eqref{lemma 3.1-2} in Lemma \ref{lemma 3.1} (with $a=\frac{1}{2}$,
and $\frac{1}{2}\theta'(u_n)-B|\theta(u_n)|
\geq\frac{1}{2}\theta'(u_n)-b|\theta(u_n)|\geq\frac{1}{4}$), we deduce that
\begin{equation}\label{thm3.1-4}
\frac{1}{4}\iint_{Q_T}|\nabla u_n|^{p(x)}\,dx\,dt
\leq \int_\Omega\Theta(u_0)dx
+\left(\frac{1}{2}\right)^{-\frac{1}{p^--1}}
\iint_{Q_T}|\overrightarrow{F}|^{p'(x)}\theta'(u_n)\,dx\,dt.
\end{equation}
Since $u_n$ is uniformly bounded with respect to $n$ and
$u_0\in L^\infty(\Omega)$, it follows that
\begin{equation}\label{thm3.1-5}
\iint_{Q_T}|\nabla u_n|^{p(x)}\,dx\,dt
\leq C\Big(|\overrightarrow{F}|_{L^{p'(x)}(Q_T)},
\|u_0\|_{L^\infty(\Omega)},\sup_n\|u_n\|_{L^\infty(Q_T)}\Big).
\end{equation}
This implies that $u_n$ is uniformly bounded in $V$. By the way, obviously,
the following inequality holds
\begin{align*}
&|u_n|^{p^-}_{L^{p^-}(0,T;W^{1,p(x)}_0(\Omega))}\\
&=\int_0^T|\nabla u_n|^{p^-}_{L^{p(x)}(\Omega)}dt\\
&\leq\max\Big\{\Big(\iint_{Q_T}|\nabla u_n|^{p(x)}\,dx\,dt
\Big)^{\frac{p^-}{p^+}}T^{1-\frac{p^-}{p^+}},
\iint_{Q_T}|\nabla u_n|^{p(x)}\,dx\,dt\Big\},
\end{align*}
which implies
\begin{equation}\label{thm3.1-6}
|u_n|_{L^{p^-}(0,T;W^{1,p(x)}_0(\Omega))}
\leq C\Big(|\overrightarrow{F}|_{L^{p'(x)}(Q_T)},
\|u_0\|_{L^\infty(\Omega)},\sup_n\|u_n\|_{L^\infty(Q_T)},p^-,p^+,T\Big).
\end{equation}
Therefore, $u_n$ is bounded in the space
$L^\infty(Q_T)\cap L^{p^-}(0,T;W^{1,p(x)}_0(\Omega))$.
We can extract a subsequence of $u_n$, still denoted by $u_n$,
such that $u_n\rightharpoonup u$, weakly in
$L^{p^-}(0,T;W^{1,p(x)}_0(\Omega))$. Simultaneously,
$u_n\rightharpoonup u$, weakly* in $L^\infty(Q_T)$.
\smallskip
\noindent \textbf{Step 3: The strong convergence $u_n\to u$ in
$L^{p^-}(0,T;L^{p(x)}(\Omega))$.}
From \eqref{thm3.1-0}, we deduce that
\begin{equation}\label{thm3.2-0}
\begin{split}
\frac{\partial{u_n}}{\partial{t}}
=\operatorname{div}\left(|\nabla u_n|^{p(x)-2}\nabla u_n-\overrightarrow{F}\right)
+B\min\{|\nabla u_n|^{p(x)},n\}\in V^\ast+L^1(Q_T).
\end{split}
\end{equation}
For each $v\in V$, by the definition of the norm on $V$ and
$p(x)$-H\"{o}lder's inequality, we have
\begin{align*}
&\sup_{\|v\|_V\leq1}
|\langle\operatorname{div}\left(|\nabla u_n|^{p(x)-2}\nabla u_n-\overrightarrow{F}\right),v\rangle_{V^\ast,V}|\\
&=\sup_{\|v\|_V\leq1}
\big|\iint_{Q_T}\left(-|\nabla u_n|^{p(x)-2}\nabla u_n\cdot\nabla v
+\overrightarrow{F}\cdot\nabla v\right)\,dx\,dt\big|\\
&\leq \sup_{\|v\|_V\leq1}\big[
2||\nabla u_n|^{p(x)-2}\nabla u_n|_{L^{p'(x)}(Q_T)}
|\nabla v|_{L^{p(x)}(Q_T)}
+2|\overrightarrow{F}|_{L^{p'(x)}(Q_T)}|\nabla v|_{L^{p(x)}(Q_T)}\big]\\
&\leq 2\max\Big\{\Big(\iint_{Q_T}|\nabla u_n|^{p(x)}\,dx\,dt
\Big)^{\frac{1}{(p')^+}},
\Big(\iint_{Q_T}|\nabla u_n|^{p(x)}\,dx\,dt\Big)^{\frac{1}{(p')^-}}\Big\}\\
&\quad +2|\overrightarrow{F}|_{L^{p'(x)}(Q_T)}.
\end{align*}
It follows from \eqref{thm3.1-5} that
\begin{equation}\label{thm3.2-1}
\big\|\operatorname{div}\big(|\nabla u_n|^{p(x)-2}\nabla u_n-\overrightarrow{F}\big)
\big\|_{V^\ast}\leq C,
\end{equation}
where $C$ is independent of $n$. Thanks to the embedding relationship
\begin{equation}\label{thm3.2-2}
\begin{aligned}
&L^{(p^-)'}(0,T;W^{-1,p'(x)}(\Omega))
\hookrightarrow V^\ast\\
&\hookrightarrow L^{(p^+)'}(0,T;W^{-1,p'(x)}(\Omega))
=L^{(p')^-}(0,T;W^{-1,p'(x)}(\Omega)),
\end{aligned}
\end{equation}
from \eqref{thm3.2-1}, \eqref{thm3.1-5} and \eqref{thm3.2-0},
we conclude that $\frac{\partial{u_n}}{\partial{t}}$
is bounded in the space \\
$L^{(p')^-}(0,T;W^{-1,p'(x)}(\Omega))+L^1(Q_T)$.
For a fixed $s$ such that $s>\frac{N}{2}+1$, the following embedding
relationships hold $1^\diamond$ $s>\frac{N}{2}$, we have
$H_0^s(\Omega)\hookrightarrow L^\infty(\Omega)$,
and then $L^1(\Omega)\hookrightarrow H^{-s}(\Omega)$;
$2^\diamond$ $s-1>\frac{N}{2}$, one has
$H_0^s(\Omega)\hookrightarrow W^{1,p(x)}(\Omega)$,
consequently, $W^{-1,p'(x)}(\Omega)\hookrightarrow H^{-s}(\Omega)$.
As a result, we have
\begin{equation}\label{thm3.2-3}
\|\frac{\partial{u_n}}{\partial{t}}\|_{L^1\left(0,T;H^{-s}(\Omega)\right)}\leq C,
\end{equation}
where $C$ is independent of $n$.
Noticing that
$W_0^{1,p(x)}(\Omega)\overset{\text{compact}}{\hookrightarrow}
L^{p(x)}(\Omega)\hookrightarrow H^{-s}(\Omega)$ and by
\eqref{thm3.1-6},
we employ Simon's compactness theorem in \cite{MR916688}
to obtain that $u_n\to u$, strongly in $L^{p^-}(0,T;L^{p(x)}(\Omega))$.
\smallskip
\noindent \textbf{Step 4: The convergence $\nabla u_n\to \nabla u$ a.e. in $Q_T$.}
From the strong convergence obtained in Step 3,
one may choose a subsequence of $u_n$, still denoted by $u_n$ for simplicity,
such that $u_n\to u$, a.e. in $Q_T$.
We now use Egoroff's theorem (recalling $\mu(Q_T)<+\infty$) to obtain,
for fixed $\delta>0$, there exists a measurable closed subset
$E_\delta\subset Q_T$ such that
\begin{enumerate}
\item $\mu(Q_T-E_\delta)\leq\delta$;
\item $u_n\rightrightarrows u$ uniformly on $E_\delta$.
It follows that $|u_n-u_m|