\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 47, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/47\hfil Existence of solutions] {Existence of solutions for Kirchhoff type equations} \author[Q.-L. Xie, X.-P. Wu, C.-L. Tang \hfil EJDE-2015/47\hfilneg] {Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang} \address{Qi-Lin Xie \newline School of Mathematics and Statistics, Southwest University \\ Chongqing 400715, China.\newline School of Mathematics Sciences LPMC, Nankai University \\ Tianjing 300071, China} \email{xieqilinsxdt@163.com} \address{Xing-Ping Wu (corresponding author) \newline School of Mathematics and Statistics, Southwest University \\ Chongqing 400715, China} \email{wuxp@swu.edu.cn} \address{Chun-Lei Tang \newline School of Mathematics and Statistics, Southwest University \\ Chongqing 400715, China} \email{tangcl@swu.edu.cn, tangcl8888@sina.com} \thanks{Submitted August 13, 2014. Published February 17, 2015.} \subjclass[2000]{35J60, 47J30, 35J20} \keywords{ Kirchhoff type equation; Dirichlet problem; critical point; \hfill\break\indent Mountain Pass Theorem} \begin{abstract} In this article, we prove the existence of solutions for Kirchhoff type equations with Dirichlet boundary-value condition. We use the Mountain Pass Theorem in critical point theory, without the (PS) condition. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction and statement of main results} Consider the Kirchhoff type problem \begin{equation}\label{Eq.(5.1)} %\tag{$\mathcal{K}$} \begin{gathered} -(a+b\int_\Omega |\nabla u|^2dx)\Delta u=f(x,u), \quad\text{in } \Omega, \\ u=0, \quad\text{on } \partial \Omega, \end{gathered} \end{equation} where $\Omega $ is a smooth bounded domain in $ {\mathbb {R}}^N$, $a,b>0$, and $f(x,t): \overline{\Omega}\times {\mathbb R}$ is a continuous real function and satisfies the subcritical condition \begin{equation}\label{8.1} |f(x,t)|\leq C(|t|^{p-1}+1)\quad \text{for some } 2 \max \{1, N/2\}$ and $C>0$ such that $|f (t)|^\sigma\leq CG(t)|t|^\sigma$ for $|t|$ large (see \cite{AM}); or some limitation forms, \item[(S3)] $\lim_{|t|\to \infty} [f(t)t-4F(t)]=\infty$ (see \cite{YYJ}); \item[(S4)] $ \liminf_{|t|\to\infty}\frac{f(x,t)t-4F(x,t)}{|t|^\tau} >-\alpha$ uniformly in $x\in \Omega$, where $\tau \in [0, 2]$ and $0< \alpha4$ such that $f(x, t)t\geq \theta F(x,t)$ for $|t|$ large, where $F (x, t)=\int_0^tf(x, s)ds$. \end{itemize} We consider the nonlinear eigenvalue problem \begin{equation} \begin{gathered} -\Big(\int_{\Omega} |\nabla u|^2 dx\Big)\Delta u=\mu u^3, \quad\text{in } \Omega, \\ u=0, \quad\text{on } \partial\Omega, \end{gathered} \end{equation} whose the eigenvalues are the critical values of the functional \begin{equation} J(u)=\|u\|^4 ,\quad u\in S:=\big\{u \in H_0^1(\Omega): \int_\Omega |u|^4dx=1\big\}, \end{equation} where $\|u\|=\big(\int_\Omega |\nabla u|^2dx\big)^{1/2}$. We already know the first eigenvalue $\mu_1 > 0$ and the first eigenfunction $\psi_1 > 0$ (see \cite{ZT}). Now, we can state our main results. \begin{theorem} \label{thm1.1} Assume that $f\in C(\Omega\times{\mathbb {R}}, {\mathbb {R}})$ satisfies \eqref{8.1} and \begin{itemize} \item[(F1)] ${\lim_{|t|\to\infty}\big(\frac{a\lambda_1}{2}t^2 +\frac{b\mu_1}{4}t^4-F(x,t)\big)=+\infty}$ uniformly in $x\in \Omega$; \item[(F2)] there exists $\lambda>\lambda_1$ such that $F(x,t)\geq\frac{a\lambda}{2}t^2$ for $|t|$ small. \end{itemize} Then \eqref{Eq.(5.1)} has at least one nontrivial solution. \end{theorem} \begin{remark} \label{rmk1} \rm Theorem \ref{thm1.1} is a new for the case $\liminf_{|t|\to\infty}\frac{F(x, t)}{t^4}\leq\frac{b\mu_1}{4}$. The condition (F1) is weaker than (F3) in \cite{YYJ}. So our theorem is different from their theorems and obtains one nontrivial solution by adding the condition (F2) near zero. \end{remark} \begin{theorem} \label{thm1.2} Assume that $f\in C(\Omega\times{\mathbb {R}}, {\mathbb {R}})$ satisfies \eqref{8.1} and \begin{itemize} \item[(F3)] ${\liminf_{|t|\to\infty}\frac{F(x, t)}{t^4}>\frac{b\mu_1}{4}}$ uniformly in $x\in \Omega$; \item[(F4)] ${\lim_{|t|\to \infty}\big(\frac{1}{4}f(x,t)t-F(x,t) +\frac{a\lambda_1}{4}t^2\big)=+\infty}$ uniformly in $x\in \Omega$; \item[(F5)] there exists $\mu<\mu_1$ such that $F(x,t)\leq\frac{a\lambda_1}{2}t^2+\frac{b\mu}{4}t^4$ for $|t|$ small. \end{itemize} Then \eqref{Eq.(5.1)} has at least one nontrivial solution. \end{theorem} \begin{remark} \label{rmk2} \rm Condition (F4) is a new condition for a class of function $f(x,t)$ and is weaker than (S1)--(S5). For example, let $$ f(x,t)=\frac{a\lambda_1}{8}\Big(8t^3\ln(1+t^2)+\frac{4t^5}{1+t^2} +4t^3\cos t^4\Big). $$ A simple computation shows that $$ \frac{1}{4}f(x,t)t-F(x,t)+\frac{a\lambda_1}{4}t^2 = \frac{a\lambda_1}{8}\Big(\frac{t^6 (1+\cos t^4)}{1+t^2} + \frac{t^4 (2+\cos t^4)+2t^2}{1+t^2}- \sin t^4\Big) $$ and $$ \lim_{|t|\to \infty}\Big(\frac{1}{4}f(x,t)t-F(x,t)+\frac{a\lambda_1}{4}t^2\Big) =+\infty. $$ Hence, $f(x,t)$ satisfies all the assumptions of Theorem \ref{thm1.2}, but it does not satisfy any conditions of (S1)--(S5). \end{remark} \section{Preliminaries} We consider $H:=H_0^1(\Omega)$ endowed with the norm $\|u\|=\big(\int_\Omega |\nabla u|^2dx\big)^{1/2}$. We denote the usual $L^p(\Omega)$-norm by $|\cdot|_p$. Since $\Omega $ is a bounded domain, it is well known that $H \hookrightarrow L^p(\Omega)$ continuously for $p\in[1, 2^*]$, and compactly for $p\in[1, 2^*)$. Moreover there exists $\gamma_p>0$ such that \begin{equation}\label{eq6.1} |u|_p\leq\gamma_p\|u\|, \quad u\in H. \end{equation} Seeking a weak solution of problem \eqref{8.1} is equivalent to finding a critical point of the $C^1$ functional \begin{equation}\label{eq6.2} I(u):=\frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4-\int_\Omega F(x,u)dx, \quad u\in H, \end{equation} which implies that \begin{equation}\label{eq6.3} \langle I'(u),v \rangle =(a+b\|u\|^2)\int_\Omega \nabla u \cdot\nabla v dx-\int_\Omega f(x,u)vdx, \ \ u,v\in H. \end{equation} Let $$ {E_j:=\oplus_{i\leq j} \ker(-\Delta-\lambda_i)}, $$ where $0<\lambda_1\leq\lambda_2\leq\lambda_3 \leq\dots\leq\lambda_i\leq\dots$ are the eigenvalues of $(-\Delta,H)$. We denote a subsequence of a sequence $\{u_n\}$ as $\{u_n\}$ to simplify the notation unless specified. We need the following concept, which was introduced by Cerami \cite{GC} and is a weak version of the (PS) condition. \begin{definition}[\cite{GC}] \label{def2.1} \rm Let $J\in C^1(X,\mathbb {R})$, we say that $J$ satisfies the Cerami condition at the level $c\in \mathbb {R}$ ($(Ce)_c$ for short), if any sequence $\{u_n\}\subset X$ with $$ J(u_n)\to c, \quad (1+\|u_n\|)J'(u_n)\to 0\quad\text{as } n\to \infty, $$ possesses a convergence subsequence in $X$; $J$ satisfies the $(Ce)$ condition if $J$ satisfies the $(Ce)_c$ for all $c\in \mathbb {R}$. \end{definition} The following lemma, which can be found in \cite{DG}, is our main tool in this article. \begin{lemma}[Mountain Pass Theorem] \label{lem2.1} Let $H$ be a real Banach space and $I\in C^1(H, \mathbb R)$ satisfying the $(Ce)$ condition. Suppose $I(0)=0$, \begin{itemize} \item[(i)] there are constants $\rho, \beta> 0$ such that $I|_{\partial B_\rho}\geq\beta$ where $$ B_\rho=\{u\in H : \|u\|\leq \rho\}; $$ \item[(ii)] there is $u_1\in H$ and $\|u_1\|>\rho$ such that $I(u_1)<0$. \end{itemize} Then $I$ possesses a critical value $c\geq \beta$. Moreover $c$ can be characterized as $$ c =\inf_{g\in\Gamma}\max_{u\in g([0,1])} I(u), \quad \Gamma= \{g\in C([0, 1],H) : g(0) = 0, g(1) = u_1\}. $$ \end{lemma} We give a lemma about the $(Ce)$ condition which will play an important role in the proof of our theorems. \begin{lemma} \label{lem2.2} Assume that $f(x,t)$ satisfies \eqref{8.1} and (F4), then $I$ satisfies the $(Ce)$ condition. \end{lemma} \begin{proof} Suppose that $\{u_n\} $ is a $(Ce)_c$ sequence for $c\in \mathbb {R}$ \begin{equation}\label{eq6.4} I(u_n)\to c, \quad (1+\|u_n\|)I'(u_n)\to 0 \quad\text{as } n\to \infty. \end{equation} Now firstly, we prove that $\{u_n\} $ is a bounded sequence. From \eqref{eq6.2}, \eqref{eq6.3} and \eqref{eq6.4}, we obtain \begin{equation}\label{eq6.5} 1+c \geq I(u_n)-\frac{1}{4} I'(u_n)u_n =\frac{a}{4}\|u_n\|^2+\int_\Omega \Big(\frac{1}{4}f(x,u_n)u_n-F(x,u_n)\Big)dx. \end{equation} By (F4), there exists $M>0$ such that \begin{equation}\label{eq6.6} \frac{1}{4}f(x,t)t-F(x,t)+\frac{a\lambda_1}{4}|t|^2\geq -M \end{equation} for all $x\in\Omega$ and $t\in\mathbb {R}$. And let $u_n=\phi_n+w_n$, where $\phi_n\in E_1$ and $w_n\in E^{\perp}_1$. From \eqref{eq6.5} and \eqref{eq6.6}, one obtains \begin{equation} \label{eq6.7} \begin{aligned} 1+c &\geq I(u_n)-\frac{1}{4} I'(u_n)u_n \\ &=\frac{a}{4}\|u_n\|^2-\frac{a\lambda_1}{4}|u_n|^2_2 +\int_\Omega \Big(\frac{1}{4}f(x,u_n)u_n-F(x,u_n) +\frac{a\lambda_1}{4}|u_n|^2\Big)dx \\ &\geq \frac{a}{4}\big(1-\frac{\lambda_1}{\lambda_2}\big)\|w_n\|^2-M|\Omega| \end{aligned} \end{equation} which implies that $\|w_n\|$ is bounded. We claim that $\{u_n\}$ is a bounded sequence. Otherwise, there is a subsequence of $\{u_n\}$ satisfying $\|u_n\| \to+\infty$ as $n\to+\infty$. Then we obtain $$ \frac{w_n}{\|u_n\|} \to 0 \in H. $$ Since $\phi_n/\|u_n\|$ is bounded in $E_1$ ($E_1$ has finite dimension), we have $\phi_n/\|u_n\|\to v$ in $E_1$. By $$ v_n:=\frac{u_n}{\|u_n\|}=\frac{\phi_n+w_n}{\|u_n\|} =\frac{\phi_n}{\|u_n\|}+\frac{w_n}{\|u_n\|}\to v\in E_1, $$ one has \begin{equation}\label{eq6.8} \frac{u_n(x)}{\|u_n\|}\to v(x)\quad\text{a.e. in }\Omega. \end{equation} From $\|v_n\|=1$, we obtain that $\|v\|=1$. And by $v\in E_1$, one has that $v(x)>0$ or $v(x)<0$, which implies that \begin{equation}\label{eq6.9} |u_n(x)|\to +\infty\quad\text{as }n\to+\infty \end{equation} for all $x\in \Omega$ by \eqref{eq6.8}. It follows from \eqref{eq6.7}, \eqref{eq6.9} and Fatou's lemma that \begin{align*} 1+c &\geq I(u_n)-\frac{1}{4} I'(u_n)u_n \\ &=\frac{a}{4}\|u_n\|^2+\int_\Omega \Big(\frac{1}{4}f(x,u_n)u_n-F(x,u_n)\Big)dx \\ &\geq \int_\Omega \Big(\frac{1}{4}f(x,u_n)u_n-F(x,u_n)+\frac{a\lambda_1}{4}|u_n|^2 \Big)dx \\ &\to+\infty\quad\text{as }n \to +\infty, \end{align*} which is a contradiction. Then we get that $\{u_n\}$ is bounded in $H$. Since $f(x,t)$ is subcritical growth, we can easily obtain that $\{u_n\}$ has a convergence subsequence. Hence, $I$ satisfies the $(Ce)$ condition. \end{proof} \section{Proof of main results} \begin{proof}[Proof of Theorem \ref{thm1.1}] Let $$ \overline{u}=\Big(\int_\Omega \nabla u \cdot \nabla \phi_1 dx \Big)\phi_1, \quad \widetilde{u}=u-\overline{u}, $$ where the $\phi_1$ is the first eigenfunction corresponding to $\lambda_1$. The following statements come from \cite{SQ}. First, there exist a real function $g\in L^1(\Omega)$, and $G\in C(\mathbb{R},\ \mathbb{R})$ which is subadditive; that is, $$ G(s+t)\leq G(s)+G(t) $$ for all $s,\ t\in \mathbb{R}$, and coercive; that is, $G(t)\to+\infty$ as $|t|\to\infty$, and satisfies $$ G(t)\leq|t|+4 $$ for all $t\in \mathbb{R}$, such that $$ F(x, t)-\frac{a\lambda_1}{2}t^2-\frac{b\mu_1}{4}t^4\leq-G(t)+g(x) $$ for all $t\in \mathbb{R}$ and $x\in \Omega$. Second, the functional $\int_\Omega G(v)dx$ is coercive on $E_1$ (this result also can be seen in \cite{SQ}). We claim that $I(u)$ is coercive. \begin{align*} &\int_\Omega \Big( F(x, u)-\frac{a\lambda_1}{2}u^2-\frac{b\mu_1}{4}u^4 \Big)dx\\ &\leq -\int_\Omega G(u)dx+\int_\Omega g(x)dx \\ & \leq -\int_\Omega\left( G(\overline{u})-G(-\widetilde{u})\right) dx +\int_\Omega g(x)dx \\ & \leq -\int_\Omega G(\overline{u})dx +|\widetilde{u}|_{1}+4 |\Omega| +\int_\Omega g(x)dx \\ & \leq -\int_\Omega G(\overline{u})dx +C_1(\|\widetilde{u}\|+1) \end{align*} for all $u\in H$ and some $$ C_1=C+4 |\Omega|+\int_\Omega g(x)dx, $$ where $C$ is a positive constant in Sobolev's inequality, $$ |u|_{1}\leq C\|u\|,\quad |u|_{2}\leq C\|u\| $$ for all $u\in H$. Hence we have \begin{align*} I(u_n) &=\frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4-\int_\Omega F(x,u)dx \\ &=\frac{a}{2}\|u_n\|^2-\frac{a\lambda_1}{2}|u_n|^2_2 +\frac{b}{4}\|u_n\|^4-\frac{b\mu_1}{4}|u_n|^4_4 \\ &\quad+\int_\Omega\Big(\frac{a\lambda_1}{2}|u_n|^2+\frac{b\mu_1}{4}|u_n|^4 -F(x,u_n)\Big)dx \\ &\geq\frac{a}{2}\|u_n\|^2-\frac{a\lambda_1}{2}|u_n|^2_2 +\int_\Omega\Big(\frac{a\lambda_1}{2}|u_n|^2+\frac{b\mu_1}{4}|u_n|^4-F(x,u_n)\Big)dx \\ &\geq \frac{a}{2}\big(1-\frac{\lambda_1}{\lambda_2}\big) \|\widetilde{u}\|^2+\int_\Omega G(\overline{u})dx-C_1(\|\widetilde{u}\|+1) \end{align*} for all $u\in H$. By the coercivity of the functional $\int_\Omega G(v)dx$ on $E_1$ and that fact $$ \|u\|^2=\|\overline{u}\|^2+\|\widetilde{u}\|^2, $$ which implies that the functional $I(u)$ is coercive. $I$ satisfies the $(Ce)$ condition and is bounded from below. By (F2), we have $$ F(x,t)\geq \frac{a\lambda}{2}t^2-C|t|^p $$ for all $x\in \Omega$ and $t\in\mathbb{R}$, which implies that \begin{align*} I(u) &\leq\frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4-\frac{a\lambda}{2}|u|_2^2+C|u|_p^p \\ &=\frac{a}{2}\big(1-\frac{\lambda}{\lambda_1}\big)\|u\|^2 +\frac{b}{4}\|u\|^4+C\|u\|^p <0 \end{align*} for $u\in E_1\cap B_\delta$, $\lambda>\lambda_1$, where $\delta>0$ small enough and $E_1$ is the subspace of $H$ spanned by $\phi_1$ the eigenfunctions of $\lambda_1$. Then $I(u)$ achieves the negative infimum. This completes the proof \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] By Lemmas \ref{lem2.1} and \ref{lem2.2}, it is sufficient to show that $I$ satisfies (i) and (ii). \smallskip \noindent\textbf{Step 1.} There are constants $\rho,\ \beta> 0$ such that $I(u)\geq\beta$ for all $\|u\|=\rho$. In fact, by (F5), it is easy to see that $$ F(x,t)\leq\frac{a\lambda_1}{2}t^2+\frac{b(\mu_1-\varepsilon)}{4}t^4+C|t|^p $$ for all $t\in \mathbb{R}$ and $x\in \Omega$, \begin{align*} I(u)&\geq\frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4 -\frac{a\lambda_1}{2}|u|_2^2-\frac{b(\mu_1-\varepsilon)}{4}|u|_4^4 -C\int_\Omega |u|^pdx \\ &\geq\frac{b}{4}\big(1-\frac{\mu_1-\varepsilon}{\mu_1}\big)\|u\|^4-C\gamma_p\|u\|^p. \end{align*} Note that $4< p < 2^*$, then for $\varepsilon$ small enough. So there exists $\beta>0$ such that $I(u)\geq\beta$ for all $\|u\|=\rho$, where $\rho>0$ small enough. \smallskip \noindent\textbf{Step 2.} There exists $u_1\in H$ and $\|u_1\|>\rho$ such that $I(u_1)<0$. Indeed, for small $\varepsilon > 0$, by the definition of $\mu_1$, we can choose $u\in S$ satisfying \begin{equation}\label{eq7.6} \mu_1+\frac{\varepsilon}{2}\geq\|u\|^4. \end{equation} It follows from (F3) that \begin{equation}\label{eq7.7} F(x,t)\geq\frac{b(\mu_1+\varepsilon)}{4}t^4-C. \end{equation} Hence, by \eqref{eq7.6} and \eqref{eq7.7}, we have \begin{equation} \label{eq7.8} \begin{aligned} I(tu) &\leq\frac{a}{2}t^2\|u\|^2+\frac{b}{4}t^4\|u\|^4 -\frac{b}{4}t^4(\mu_1+\varepsilon)+C|\Omega| \\ &\leq\frac{a}{2}t^2\|u\|^2+\frac{b}{4}t^4\mu_1 +\frac{b\varepsilon}{8}t^4-\frac{b}{4}t^4(\mu_1+\varepsilon)+C|\Omega| \\ &=-\frac{b\varepsilon}{8}t^4+\frac{a}{2}t^2\|u\|^2+C|\Omega|. \end{aligned} \end{equation} Thus, $I(tu)\to-\infty$ as $t\to\infty$. Therefore, there is $u_1 \in H$ with $\|u_1\|>\rho$ such that $I(u_1)< 0$. This completes the proof. \end{proof} \subsection*{Acknowledgements} The authors would like to thank the anonymous referees and the editors for their valuable suggestions. This research was supported by National Natural Science Foundation of China (No.11471267). \begin{thebibliography}{99} \bibitem{CO} C. O. Alves, F. J. S. A. Corra, T. F. Ma; \emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type}, Comput. Math. Appl. 49 (1) (2005) 85-93. \bibitem{SB} S. Bernstein; \emph{Sur une classe d'\'{e}quations fonctionnelles aux d\'{e}riv\'{e}es}, Bull. Acad. Sci. URSS, S\'{e}r 4 (1940) 17-26 (Izvestia Akad. Nauk SSSR). 4, 313-345. \bibitem{GC} G. Cerami; \emph{Un criterio di esistenza per i punti critici su variet\'{a} illimitate}, Rend. Ist. Lomb. Sci. Lett. 112 (1978) 332-336. \bibitem{CY} C. Y. Chen, Y. C Kuo, T. F. Wu; \emph{The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions}, J. Diffrential Equations. 250(4) (2011) 1876-1908. \bibitem{BC} B. T. Cheng; \emph{New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems}, J. Math. Anal. Appl. 394 (2) (2012) 488-495. \bibitem{CX} B. T. Cheng, X. Wu; \emph{Existence results of positive solutions of Kirchhoff type problems}, Nonlinear Anal. 71 (10) (2009) 4883-4892. \bibitem{MB} M. Chipot, B. Lovat; \emph{Some remarks on nonlocal ellptic and parabolic problems}, Nonlinear Anal. 30 (7) (1997) 4619-4627. \bibitem{DG} D. G. Costa, O. H. Miyagaki; \emph{Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains}, J. Math. Anal. Appl. 193 (1995) 737-775. \bibitem{HZ} X. M. He, W. M. Zou; \emph{Existence and concentration behavior of positive solutions for a Kirchhoff equation in $ {\mathbb {R}}^3$}, J. Differential Equations 252 (2) (2012) 1813-1834. \bibitem{HZ2} X. M. He, W. M. Zou; \emph{Ground states for nonlinear Kirchhoff equations with critical growth}. Ann. Mat. Pura Appl. (4) 193 (2014), no. 2, 473-500. \bibitem{hl} Y. He, G. B. Li, S. J. Peng; \emph{Concentration bound states for Kirchhoff tpye problem in $\mathbb R^3$ involving critical Sobolev exponents}. Prepint. \bibitem{JXW} J. H. Jin, X. Wu; \emph{Infinitely many radial solutions for Kirchhoff-type problems in $ \mathbb {R}^3$}, J. Math. Anal. Appl. 369 (2) (2010) 564-574. \bibitem{GK} G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. \bibitem{GL} G. B. Li, H. Y. Ye; \emph{Existence of positive solutions for nonlinear Kirchhoff type problems in $ {\mathbb {R}}^3$ with critical Sobolev exponent}, Math. Meth. Appl. Sci. 2013 \bibitem{LL} Y. H. Li, F. Y. Li, J.P. Shi; \emph{Existence of a positive solution to Kirchhoff type problems without compactness conditions}, J. Differential Equations 253 (7) (2012) 2285-2294. \bibitem{JL} J. L. Lions; \emph{On some equations in boundary value problems of mathematical physics}, in: Contemporary Developments in Continuum Mechanics and Partial Differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. fed. Rio de Janeiro, Riio de Janeiro, 1977), in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978, pp. 284-346. \bibitem{SQ} S. Q. Liu, C. L. Tang; \emph{Existence and multiplicity of solutions for a class of semilinear elliptic equations}. J. Math. Anal. Appl. 257 (2) (2001), 321-331. \bibitem{df} D. F. L\"{u}; \emph{A note on Kirchhoff-type equations with Hartree-type nonlinearities}. Nonlinear Anal. 99 (2014), 35-48. \bibitem{TF} T. F. Ma, J. E. M. Rivera; \emph{Positive solutions for a nonlinear elliptic transmission problem}, Appl. Math. Lett. 16 (2) (2003) 243-248. \bibitem{AM} A. M. Mao, Z. T. Zhang; \emph{Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition}, Nonlinear Anal. 70 (3) (2009) 1275-1287. \bibitem{NX} J. J. Nie, X. Wu; \emph{Existence and multiplicity of non-trivial solutions for Schr\"{o}dinger-Kirchhoff-type equations with radial potential}, Nonlinear Anal. 75 (8) (2012) 3470-3479. \bibitem{KP} K. Perera, Z. T. Zhang; \emph{Nontrivial solutions of Kirchhoff-type problems via the Yang-index}, J. Differential Equations 221 (1) (2006) 246-255. \bibitem{SI} S. I. Poho\v{z}aev; \emph{A certain class of quasilinear hyperbolic equations}, Mat. Sb. (NS) 96 (138) (1975) 152-166, 168 (in Russian). \bibitem{JJS} J. J. Sun, C. L. Tang; \emph{Existence and multipicity of solutions for Kirchhoff type equations}, Nonlinear Anal. 74 (2011) 1212-1222. \bibitem{SJ} J. Sun, S. B. Liu; \emph{Nontrivial solutions of Kirchhoff type problems}, Appl. Math. Lett. 25 (3) (2012) 500-504. \bibitem{WT} J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang; \emph{Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth}, J. Differential Equations 253 (7) (2012) 2314-2351. \bibitem{LH} L. Wei, X. M. He; \emph{Multiplicity of high energy solutions for superlinear Kirchhoff equations}, J. Appl. Math. Comput. 39 (1-2) (2012) 473-487. \bibitem{XW} X. Wu; \emph{Existence of nontrivial solutions and high energy solutions for Schr\"{o}dinger-Kirchhoff-type equations in $ {\mathbb {R}}^3$}, Nonlinear Anal. Real World Appl. 12 (2) (2011) 1278-1287. \bibitem{YJ} Y. Yang, J. H. Zhang; \emph{Positive and negative solutions of a class of nonlocal problems}, Nonlinear Anal. 73 (1) (2010) 25-30. \bibitem{YYJ} Y. Yang, J. H. Zhang; \emph{Nontrivial solutions of a class of nonlocal problems via local linking theory}, Appl. Math. Lett. 23 (2010) 377-380. \bibitem{ZT} Z. T. Zhang, K. Perera; \emph{Sign-changing solutions of Kirchhoff type problems via invariant sets of descent flow}, J. Math. Anal. Appl. 317 (2) (2006) 456-463. \end{thebibliography} \end{document}