\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 69, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/69\hfil Nonhomogeneous Kirchhoff equations] {Nonhomogeneous elliptic problems of Kirchhoff type involving critical Sobolev exponents} \author[S. Benmansour, M. Bouchekif \hfil EJDE-2015/69\hfilneg] {Safia Benmansour, Mohammed Bouchekif} \address{Safia Benmansour \newline Laboratoire des Syst\`emes Dynamiques et Applications. Facult\'e des Sciences, Universit\'e de Tlemcen. BP 119, 13000 Tlemcen, Alg\'erie} \email{safiabenmansour@hotmail.fr} \address{Mohammed Bouchekif \newline Laboratoire des Syst\`emes Dynamiques et Applications. Facult\'e des Sciences, Universit\'e de Tlemcen. BP 119, 13000 Tlemcen, Alg\'erie} \email{m\_bouchekif@yahoo.fr} \thanks{Submitted December 10, 2014. Published March 24, 2015.} \subjclass[2000]{35J20, 35J60, 47J30} \keywords{Variational methods; critical Sobolev exponent; Nehari manifold; \hfill\break\indent Palais-Smale condition; Kirchhoff equation} \begin{abstract} This article concerns the existence and the multiplicity of solutions for nonhomogeneous elliptic Kirchhoff problems involving the critical Sobolev exponent, defined on a regular bounded domain of $\mathbb{R}^3$. Our approach is essentially based on Ekeland's Variational Principle and the Mountain Pass Lemma. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this work we study the existence and the multiplicity of solutions for the problem \begin{equation} \label{eP} \begin{gathered} -(a\int_{\Omega }|\nabla u|^2dx+b)\Delta u=| u| ^4u+f \quad \text{in }\Omega , \\ u=0\quad \text{on }\partial \Omega , \end{gathered} \end{equation} where $\Omega $ is a smooth bounded domain of $\mathbb{R}^3$, $a,b$ are positive constants and $f$ belongs to $H^{-1}$ (the topological dual of $H_0^1(\Omega )) $ satisfying suitable conditions. The original one-dimensional Kirchhoff equation was introduced by Kirchhoff \cite{K} in 1883. His model takes into account the changes in length of the strings produced by transverse vibrations. Problem \eqref{eP} is called nonlocal because of the presence of the integral over the entire domain $\Omega $, which implies that the equation in \eqref{eP} is no longer a pointwise identity. Problem \eqref{eP} is related to the stationary analog of the Kirchhoff equation \begin{gather*} u_{tt}-(a\int_{\Omega }| \nabla u| ^2dx+b)\bigtriangleup u=h(x,u) \quad \text{in } \Omega \times (0,\text{ }T), \\ u=0 \quad \text{in }\partial \Omega \times (0,\text{ }T), \\ u(x,0)=u_0(x),\quad u_{t}(x,0)=u_1(x), \end{gather*} where $T$ is a positive constant, $u_0$ and $u_1$ are given functions. It can be seen as a generalization of the classical D'Alembert wave equation for free vibrations of elastic strings. For such problems, $u$ denotes the displacement, $h(x$, $u)$ the external force, $b$ is the initial tension and $a$ is related to the intrinsic properties of the strings (such as Young's modulus). For more details, we refer the readers to the work of D'Ancona and Shibata \cite{AS} and the references therein. Nonlocal problems arise not only from mathematical and physical fields but also from several other branches. When they appear in biological systems, $u$ describes a process depending on the average of itself, as population density. Their theoretical study has attracted a lot of interests from mathematicians for a long time and many works have been done. We quote in particular the famous article of Lions \cite{L}. However in most of papers, the used approach relies on topological methods. In the last two decades, many authors have considered the stationary elliptic problem \begin{equation} \label{ePS} \begin{gathered} -\Big(a\int_{\Omega }|\nabla u|^2dx+b\Big)\Delta u=h(x,u) \quad \text{in }\Omega \\ u=0 \quad \text{on }\partial \Omega , \end{gathered} \end{equation} where $\Omega \subset\mathbb{R}^{N}$ and $h(x,u)$ is a continuous function, see for example \cite{ACM}. Alves and colleagues were the first to obtain existence results via variational methods. After this breakthrough, many works have been done in this direction. One can quote \cite{BB} for the case where $h(x,u)$ is asymptotically linear at infinity. Problem \eqref{ePS} has also been extensively studied in the whole space when the potential function has a subcritical or critical growth, for more details see \cite{LS}. In the case of a bounded domain of $\mathbb{R}^{N}$ with $N\geq 3$, Tarantello \cite{T} proved, under a suitable condition on $f$, the existence of at least two solutions to \eqref{ePS} for $a=0$, $b=1$ and $h(x,u)=|u|^{4/(N-2)}u+f$. A natural and interesting question is whether results in \cite{T} remain valid for $a>0$. Our answer is affirmative and given for $N=3$. To our best knowledge, this kind of problems has not been considered before. We will use the following notation: $S$ is the best Sobolev constant for the embedding from $H_0^1(\Omega )$ to $L^{6}(\Omega );\|\cdot\|$ is the norm of $H_0^1(\Omega )$ induced by the product $(u,v)=\int_{\Omega }\nabla u\nabla vdx$; $\|\cdot \|_{-}$ and $|\cdot| _{p}:=( \int_{\Omega }|\cdot|^{p}dx) ^{1/p}$ are the norms in $H^{-1}$and $L^{p}(\Omega )$ for $1\leq p<\infty $ respectively; we denote the space $H_0^1(\Omega )$ by $H$ and the integrable $\int_{\Omega }udx$ by $\int u$; $B_c^{r}$ is the ball of center $c$ and radius $r$; $o_n( 1) $ denotes any quantity which tends to zero as $n$ tends to infinity, $O( \varepsilon ^{\alpha }) $ means that $| O( \varepsilon ^{\alpha })\varepsilon ^{-\alpha }| \leq K$ for some constant $K>0$ and $o( \varepsilon ^{\alpha }) $ means $| o( \varepsilon ^{\alpha }) \varepsilon ^{-\alpha }| \to0$ as $\epsilon \to 0$. In what follows, we fix $b>0$ and consider $a$ as a positive parameter. To state our main results, we need the following hypothesis \begin{itemize} \item[(H1)] $| \int fv| 0\} ,\quad \mathcal{N}^{0}:=\{ u\in \mathcal{N}:h_u''(1)=0\}, \\ \mathcal{N}^{-}:=\{ u\in \mathcal{N}: h_u''(1)<0\} , \end{gather*} where $h_u'' (t)=-5|u|_6^{6}t^4+3a\|u\|^4t^2+b\|u\|^2$. These subsets correspond to local minima, points of inflexion and local maxima of $I_a$ respectively. \begin{definition} \label{def1} \rm A sequence $(u_n)$ is said to be a Palais-Smale sequence at level $c$ ((P-S)$_c$ in short) for $I$ in $H$ if \[ I(u_n)=c+o_n( 1) \text{ and }I'(u_n)=o_n(1) \text{ in }H^{-1}. \] We say that $I$ satisfies the Palais-Smale condition at level $c$ if any (P-S)$_c$ sequence for $I$ has a convergent subsequence in $H$. \end{definition} Put \[ H_u(t)=h_u'(t)+\int fu=-|u|_6^{6}t^{5}+a\|u\|^4t^3+b\|u\|^2t. \] The function $H_u(t)$ attains its maximum $\widetilde{K}_a(u)$ at the point $t_{a,{\rm max} }^{u}$ where \[ \widetilde{K}_a(u) :=10^{-5/2}|u|_6^{-9}[12a^2\|u\|^{8}+80b|u|_6^{6}\|u\|^2+4a\|u\|^4 \widetilde{A}_a(u)][3a\|u\|^4+\widetilde{A}_a(u)]^{1/2} \] and \[ t_{a,{\rm max} }^{u}=10^{-1/2}|u|_6^{-3}( 3a\|u\|^4+\widetilde{A} _a(u)) ^{1/4} \] with $\widetilde{A}_a(u):=\|u\|(9a^2\|u\|^{6}+20b|u|_6^{6}) ^{1/2}$. For $a\geq 0$, let \[ \widetilde{\mu }_{a,f}:=\inf_{v\in H\backslash\{ 0\}} \{ \widetilde{K_a}(v)-| \int fv|\}, \quad \mu _{a,f}:=\inf_{|v|_6=1} \{ K_a(v)-\int fv\}. \] \begin{remark} \label{rmk2} \rm (i) If $\widetilde{\mu }_{a,f}>0$ then $\mu _{a,f}>0$. (ii) We have, for $a>0$, $\widetilde{\mu }_{a,f}\geq \widetilde{\mu }_{0,f}$. Under the hypothese (H1) with $a=0$, Tarantello has proved that $\mu _{0,f}>0$. Thus we deduce that $\widetilde{\mu }_{a,f}>0$. \end{remark} The following lemmas play crucial roles in the sequel. \begin{lemma} \label{lem1} Suppose {\rm (H1)} holds. Then, for any $u\in H\backslash \{0\}$, there exist three unique values $t_1^{+}=t_1^{+}(u)$, $t^{-}=t^{-}(u)\neq 0$ and $t_2^{+}=t_2^{+}(u)$ such that: \begin{itemize} \item[(i)] $t_1^{+}<-t_{a,{\rm max} }^{u}$, $t_1^{+}u\in \mathcal{N}^{-}$, and $I_a(t_1^{+}u)=\underset{t\leq -t_{a,{\rm max} }^{u}}{\max }I_a(tu)$, \item[(ii)] $-t_{a,{\rm max} }^{u}<$ $t^{-}t_{a,{\rm max} }^{u},t_2^{+}u\in \mathcal{N}^{-}$ and $ I_a(t_2^{+}u)=\max\limits_{t\geq t_{a,{\rm max} }^{u}} I_a(tu)$. \end{itemize} \end{lemma} \begin{proof} An easy computation shows that $H_u(t)$ is concave for $t>0$ and attains its maximum $\widetilde{K}_a(u)$ at $t_{a,{\rm max} }^{u}$. As $H_u(t)$ is odd and under the hypothesis (H1) we obtain the desired results. \end{proof} For $t>0$, we have \[ \Psi (tu)=t\Psi (u),\quad \text{where }\Psi (u)=\widetilde{K_a}(u)-| \int fu| , \] and for a given $\gamma >0$, we derive that \begin{equation} \label{e2.1} \inf_{|u|_6\geq \gamma } \Psi (u)\geq \gamma \widetilde{\mu }_{a,f}. \end{equation} In particular if $f$ satisfies (H1) this infimum is bounded away from zero. \begin{lemma} \label{lem2} If $f$ satisfies {\rm (H1)}, then $\mathcal{N}^{0}=\emptyset $. \end{lemma} \begin{proof} Arguing by contradiction we assume that there exists $u\in \mathcal{N}^{0}$, i.e., \begin{equation} \label{e2.2} 3a\| u\| ^4+b\| u\| ^2=5| u| _6^{6}; \end{equation} thus, we obtain: \[ \widetilde{A}_a(u)=3a\| u\| ^4+2b\| u\| ^2,\text{ and }( t_{a,{\rm max} }^{u}) ^2=1\,. \] Consequently, \begin{equation} \label{e2.3} \Psi (u)=\widetilde{K_a}(u)-| \int fu| \leq \widetilde{ K_a}(u)-\int fu=H_u(1)-\int fu=h_u'(1)=0\,. \end{equation} Condition \eqref{e2.2} implies that \[ | u| _6\geq ( \frac{b}{5}S) ^{1/4}:=\gamma . \] From \eqref{e2.1} and \eqref{e2.3} we obtain \[ 0<\gamma \widetilde{\mu }_{a,f}\leq \Psi (u)=0, \] which yields a contradiction. \end{proof} \begin{lemma} \label{lem3} Suppose that $f\neq 0$ satisfies {\rm (H1)}, then for each $u\in \mathcal{N}$, there exist $\varepsilon >0$ and a differentiable function $t:B(0,\varepsilon )\subset H\to\mathbb{R}^{+}$ such that $t(0)=1$, $t(v)(u-v)\in \mathcal{N}$ for $\|v\| <\epsilon $ and \begin{equation} \label{e2.4} \langle t'(0),v\rangle =\frac{2( 2a\| u\| ^2+b) \int \nabla u\nabla v-6b\int | u| ^4uv-\int fv}{3a\|u\|^4+b\|u\|^2-5|u|_6^{6}}. \end{equation} \end{lemma} \begin{proof} Define the map $F:\mathbb{R}\times H\to\mathbb{R}$, by \[ F(s,w)=as^3\|u-w\|^4+bs\|u-w\|^2-s^{5}|u-w|_6^{6}-\int f(u-w). \] Since $F(1,0)=0$, $\frac{\partial F}{\partial s} (1,0)=3a\|u\|^4+b\|u\|^2-5|u|_6^{6}\neq 0$ and applying the implicit function theorem at the point $(1,0)$, we get the desired result. \end{proof} Define \begin{equation} \label{e2.5} c_0=\underset{v\in \mathcal{N}^{+}}{\inf }I_a( v), \quad c_1=\underset{v\in \mathcal{N}^{-}}{\inf }I_a( v) . \end{equation} Moreover if $u_0$ is a local minimum for $I_a$ then we have $3a\| u_0\| ^4+b\| u_0\|^2-5| u_0| _6^{6}\geq 0$ and since $\mathcal{N}^{0}=\emptyset $, we obtain $u_0\in \mathcal{N}^{+}$. Consequently $c_0=\underset{u\in \mathcal{N}}{\inf }I_a( u) $. \begin{lemma} \label{lem4} The functional $I_a$ is coercive and bounded from below on $\mathcal{N}$. \end{lemma} \begin{proof} For $u\in \mathcal{N}$, we have $a\| u\| ^4+b\|u\| ^2=| u| _6^{6}+\int fu$. Therefore, we get \begin{align*} I_a(u) &=\frac{a}{12}\| u\| ^4+\frac{b}{3}\| u\| ^2-\frac{5}{6}\int fu \\ &\geq \frac{b}{3}\| u\| ^2-\frac{5}{6}\|f\| _{-}\| u\| , \\ &\geq \frac{-25}{48b}\| f\| _{-}^2, \end{align*} Thus $I_a$ is coercive and bounded from below on $\mathcal{N}$. \end{proof} In particular, we have $c_0\geq $ $\frac{-25}{48b}\| f\|_{-}^2$. To prove that $c_0<0$, we need an upper bound for $c_0$. For this, consider $v\in H$ the unique solution of the equation $-\Delta u=f$. Then for $f\not\equiv 0$ we have $\int fv=\| v\| ^2=\| f\| _{-}^2$. Let $t_0=t^{-}(v)$, $v\in H\backslash \{0\}$ defined as in Lemma \ref{lem1}. So $t_0v\in \mathcal{N}^{+}$ and consequently we have \begin{align*} I_a(t_0v) &= -\frac{3a}{4}t_0^4\| v\| ^4-\frac{b}{2}t_0^2\| v\| ^2+\frac{5}{6}t_0^{6}| v| _6^{6} \\ &\leq -\frac{a}{4}t_0^4\| v\| ^4-\frac{b}{3} t_0^2\| v\| ^2<0, \end{align*} thus $c_0<0$. \begin{lemma} \label{lem5} Let $f$ verifying {\rm (H1)}, then there exist minimizing sequences $(u_n)\subset \mathcal{N}^{+}$ and $(v_n)\subset \mathcal{N}^{-}$ such that \begin{itemize} \item[(i)] $I_a( u_n) 0, \end{equation} and consequently we have \begin{equation} \label{e2.7} \frac{2}{5}bt_0^2\| f\| _{-} \leq \| u_n\| \leq \frac{5}{2b}\| f\| _{-}. \end{equation} So, we deduce that $( u_n) $ is bounded in $H$. \begin{lemma} \label{lem6} Let $f$ verifying {\rm (H1)}, then $\| I_a'(u_n) \| $ tends to $0$ as $n$ tends to $+\infty $. \end{lemma} \begin{proof} Assume that $\| I_a'( u_n) \| >0$ for $n$ large, by applying Lemma \ref{lem3} with $u=u_n$ and $w=\delta \frac{I_a'( u_n) }{\| I_a'(u_n) \| }$, $\delta >0$ small, we find $t_n(\delta ):=t [ \delta \frac{I_a'( u_n) }{\| I_a'( u_n) \| }] $, such that \[ w_{\delta }=t_n(\delta )\big[ u_n-\delta \frac{I_a'( u_n) }{\| I_a'( u_n) \| } \big] \in \mathcal{N}. \] From the Ekeland Variational Principle, we have \begin{align*} \frac{1}{n}\| w_{\delta }-u_n\| &\geq I_a( u_n) -I_a( w_{\delta }) \\ &=(1-t_n(\delta ))\langle I_a(w_{\delta }),u_n\rangle +\delta t_n(\delta )\langle I_a'(w_{\delta }),\frac{I_a'(u_n) }{\| I_a'( u_n) \| } \rangle +o_n( \delta ) . \end{align*} Dividing by $\delta $ and passing to the limit as $\delta $ goes to zero, we get \[ \frac{1}{n}(1+| t_n'(0)| \| u_n\| )\geq -t_n'(0)\langle I_a'(u_n),\text{ }u_n\rangle +\| I_a'( u_n) \| =\| I_a'( u_n)\| , \] where $t_n'(0)=\langle t'(0),\frac{I_a'( u_n) }{\| I_a'( u_n) \| }\text{ }\rangle $. Thus from \eqref{e2.7}, we conclude that \[ \| I_a'( u_n) \| \leq \frac{C}{n} ( 1+| t_n'(0)| ) . \] We claim that $| t_n'(0)| $ is bounded uniformly on $n$; indeed, since $(u_n)$ is a bounded sequence, from \eqref{e2.4} and the estimate \eqref{e2.7}, we have \[ | t_n'(0)| \leq \frac{C}{|3a\| u_n\| ^4+b\| u_n\| ^2-5| u_n| _6^{6}| }. \] Hence we must prove that $| 3a\| u_n\|^4+b\| u_n\| ^2-5| u_n|_6^{6}| $ is bounded away from zero. Arguing by contradiction, assume that for a subsequence still called $(u_n)$, we have \begin{equation} \label{e2.8} 3a\| u_n\| ^4+b\| u_n\|^2-5| u_n| _6^{6}=o_n(1). \end{equation} From \eqref{e2.7} and \eqref{e2.8} we derive that \[ | u_n| _6\geq \gamma ,\text{ for a suitable constant } \gamma \] In addition \eqref{e2.8} and the fact that $u_n\in \mathcal{N}$ also give \[ \int fu_n=-2a\| u_n\| ^4+4| u_n|_6^{6}+o_n(1), \] which together with the definition of $\widetilde{\mu }_{a,f}$ imply that \begin{align*} 0 &<\gamma \widetilde{\mu }_{a,f}\leq \gamma (\widetilde{K_a}(u_n)-\int fu_n)+o_n(1) \\ &=\gamma h_{u_n}'(1)+o_n(1) =o_n(1). \end{align*} which is absurd. Thus $\| I_a'( u_n) \| $ tends to $0$ as $n$ tends to $\infty $. \end{proof} \section{Proofs of Theorems \ref{thm1} and \ref{thm2}} \subsection{Existence of a local minimizer on $\mathcal{N}^{+}$} In this subsection, we prove that $I_a$ achieves a local minimum in $\mathcal{N}^{+}$ by the Ekeland Variational Principle. \begin{proof}[Proof of Theorem \ref{thm1}] Since $( u_n) $ is bounded in $H$, passing to a subsequence if necessary, we have $u_n\rightharpoonup $ $u_0$ weakly in $H$, then we get $\langle I_a'( u_0) ,w\rangle =0$, for all $w\in H$. So $u_0$ is a weak solution for \eqref{eP}. From \eqref{e2.6}, we deduce that $\int fu_0>0$, then $u_0\in H\backslash \{ 0\} $ and in particular $u_0\in \mathcal{N}$. Thus \[ c_0\leq I_a( u_0) =\frac{a}{12}\| u_0\| ^4+\frac{b}{3}\| u_0\| ^2-\frac{5}{6}\int fu_0\leq \liminf_{n\to \infty } I_a(u_n)=c_0, \] then $c_0=I_a( u_0) $. It follows that $( u_n)$ converges strongly to $u_0$ in $H$ and necessarily $u_0\in \mathcal{N}^{+}$. To conclude that $u_0$ is a local minimum of $I_a$, let us recall that for every $u\in H$, we have \[ I_a(su)\geq I_a( t^{-}u) \quad \text{for every }00$ sufficiently small to have $10$. We have the following important result. \begin{lemma} \label{lem7} Let $f$ satisfying {\rm (H1)}, then $I_a$ satisfies the (P-S)$_c$ condition for \[ c0$, it follows that \[ | w_n| _6^{6}=al^4+bl^2+2al^2\|u\| ^2+o_n(1)\,. \] From the definition of $S$, we have \[ \| w_n\| ^2\geq S| w_n| _6^2,\quad \text{for all }n\,.. \] As $n\to +\infty $, we deduce that \[ l^2\geq \frac{a}{2}S^3+\frac{1}{2}S\big( a^2S^4+4S(b+2a\|u\| ^2)\big) ^{1/2}. \] Consequently we obtain \begin{align*} c &=\frac{a}{12}l^4+\frac{b}{3}l^2+\frac{a}{6}l^2\| u\| ^2+I_a(u) \\ &\geq \frac{a}{12}l^4+\frac{b}{3}l^2+c_0 \\ &\geq \frac{ab}{4}S^3+\frac{a^3}{24}S^{6}+\frac{b}{6}SE_1+\frac{a^2 }{24}S^4E_1+c_0=c^{\ast } \end{align*} which is a contradiction. Therefore $l=0$, then $u_n\to u$ strongly in $H$. \end{proof} Now, we shall give some useful estimates of the extremal functions. Let $ \phi \in C_0^{\infty }( \Omega ) $ such that $\phi (x)=1$ for $x\in B_{x_0}^{r}$, $\phi (x)=0$ for $x\in\mathbb{R}^3\backslash B_{x_0}^{2r}$, $0\leq \phi \leq 1$ and $| \nabla\phi | \leq C$. Set $u_{\varepsilon ,x_0}( x) =\phi (x)U_{\varepsilon,x_0}(x)$. The following estimates are obtained in \cite{BN}, as $\varepsilon $ tends to $0$: \[ | u_{\varepsilon ,x_0}| _6^{6}=A+O( \varepsilon ^3) \quad\text{and}\quad \| u_{\varepsilon ,x_0}\|^2=B+O( \varepsilon ) , \] where \[ A=\int_{\mathbb{R}^3}( 1+| x-x_0| ^2) ^{-3}, \quad B=\int_{\mathbb{R}^3}| \nabla U_{1,x_0}( x) | ^2, \] and from \cite{T}, we have $\int u_{\varepsilon ,x_0}^{5}u_0=O(\varepsilon ^{1/2}) +o( \varepsilon ^{1/2}) $. In the search of our second solution, it is natural to show that $c_10$ on $\Omega '$ (if not replace $u_0$ and $f$ by $-u_0$ and $-f$ respectively), where $u_0$ is given in Theorem \ref{thm1}. \begin{lemma} \label{lem8} Assume that the hypothesis {\rm (H1)} is satisfied, then there exist $a_0$ and $\varepsilon _0$ small enough such that for every $0<\varepsilon <\varepsilon _0$ and $00$. \end{lemma} \begin{proof} From the above estimates and the Holder Inequality, we obtain \begin{align*} &I_a( u_0+tu_{\varepsilon ,x_0}) \\ &= I_a( u_0)+\frac{a}{4}t^4\| u_{\varepsilon ,x_0}\| ^4+\frac{b}{2 }t^2\| u_{\varepsilon ,x_0}\| ^2-\frac{1}{6} t^{6}| u_{\varepsilon ,x_0}| _6^{6}-\frac{t^{5}}{6} \int u_{\varepsilon }^{5}u_0\\ &\quad + at^2\Big[ \Big( \int \nabla u_0\nabla u_{\varepsilon }\Big) ^2+\| u_{\varepsilon }\| ^2\Big(\frac{1}{2} \| u_0\| ^2+t\int \nabla u_0\nabla u_{\varepsilon }\Big)\Big] +o( \varepsilon ^{1/2}) \\ &\leq I_a( u_0) +\frac{a}{4}t^4B^2+\frac{b}{2}t^2B- \frac{1}{6}t^{6}A-\frac{t^{5}}{6}O( \varepsilon ^{1/2}) + \\ &\quad +at^2\big[ \frac{3}{2}\| u_0\| ^2B+tB^{3/2}\| u_0\| \big] +o( \varepsilon ^{1/2}) \\ &= c_0+Q_{\varepsilon}( t) +R(t), \end{align*} where \[ Q_{\varepsilon}( t) =-\frac{1}{6}At^{6}+\frac{a}{4}B^2t^4+ \frac{b}{2}Bt^2-\frac{t^{5}}{6}O( \varepsilon ^{1/2}) +o( \varepsilon ^{1/2}) , \] and \[ R(t)=a\big[ \frac{3}{2}t^2\| u_0\| ^2B+t^3B^{3/2}\| u_0\| \big] . \] We know that $\lim_{t\to +\infty } Q_{\varepsilon}( t) =-\infty $, and $Q_{\varepsilon}( t) >0$ for $t$ near $0$, so $\sup_{t\geq 0} Q_{\varepsilon}( t) $ is achieved for $t=T_{\varepsilon }>0$ and $ T_{\varepsilon }$ satisfies: \[ -AT_{\varepsilon }^{5}+aB^2T_{\varepsilon }^3+bBT_{\varepsilon }=O( \varepsilon ^{1/2}) . \] Also $Q_{_0}( t) $ attains its maximum at $T_0$ given by \[ T_0^2=\frac{aB^2+( a^2B^4+4bAB) ^{1/2}}{2A}. \] It is clear that $T_{\varepsilon }$ tends to $T_0$ as $\varepsilon $ goes to $0$. Write $T_{\varepsilon }=T_0(1\pm \delta _{\varepsilon})$, hence $\delta _{\varepsilon}$ tends to $0$ as $\varepsilon $ goes to $0$. Moreover, since $I_a( u_0+tu_{\varepsilon }) \to -\infty $ as $t$ approaches $\infty $, there exists $T_{\varepsilon }0$ such that $ t^{+}( u) u\in \mathcal{N}^{-}$ and $I_a(t^{+}u)\geq I_a(tu)$, for all $| t| \geq t_{a,{\rm max} }^{u}$ and every $u\in H$ such that $\| u\| =1$. The extremal property of $t^{+}( u) $ and its uniqueness give that it is a continuous function of $u$. Set \[ V_1=\{ 0\} \cup \{ u:\|u\| t^{+}( \frac{u}{\| u\| }) \} . \] As in \cite{T}, we remark that under the condition (H1), we have $H\backslash \mathcal{N}^{-}=V_1\cup V_2$ and $\mathcal{N}^{+}\subset V_1$, $u_0\in V_1$ and $u_0+t_0u_{\varepsilon }\in V_2$ for a $t_0>0$, carefully chosen. Let $\Gamma =\{ h:[ 0,1] \to H\text{ continuous}, h(0)=u_0, h(1)=u_0+t_0u_{\varepsilon }\} $. It is obvious that $h:[ 0,1] \to H$ given by $h(t)=u_0+tt_0u_{\varepsilon }$ belongs to $\Gamma $. We conclude that \[ c=\underset{h\in \Gamma }{\inf }\underset{t\in [ 0,1] }{\max } I_a(h(t))0$ satisfying $t^{+}| u_1| \in \mathcal{N}^{-}$. From Lemma \ref{lem1} we have $I_a(u_1)=\max\limits_{t\geq t_{a,{\rm max} }}I_a(tu_1)\geq I_a(t^{+}u_1)\geq I_a(t^{+}| u_1| )$. So we conclude that $u_1\geq 0$. \subsection*{Acknowledgments} The authors want to thank an anonymous referee for the careful reading, which greatly improved this article. \begin{thebibliography}{99} \bibitem{ACM} C. O. Alves, F. J. S. A. Correa, T. F. Ma; \emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type}, Comput. Math. Appl. 49 (2005) 85-93. \bibitem{BB} A. Bensedik, M. Bouchekif; \emph{On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity}, Math. Comput. Model. 49, 1089-1096 (2009). \bibitem{BN} H. Brezis, L. Nirenberg; \emph{Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponent}, Comm. Pure Appl. Math. 36 (1983) 437-477. \bibitem{BL} H. Brezis, E. Lieb; \emph{A relation between pointwise convergence of functions and convergence of functional}, Proc. Am. Math. Soc. 88 (1983) 486-490. \bibitem{CKW} Y. Chen, Y. C. Kuo, T. F. Wu; \emph{The Nehari manifold for a Kirchhoff type problems with critical exponent functions}, J. Differential Equations. 250 (2011) 1876-1908. \bibitem{AS} P. D'Ancona, Y. Shibata; \emph{On global solvability of nonlinear viscoelastic equations in the analytic category}, Math. Methods Appl. Sci. 17 (1994) 477-489. \bibitem{DP} P. Dr\'{a}bek, S. I. Pohozaev; \emph{Positive solutions for the p-Laplacian: application of the fibering method}, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 703-726. \bibitem{K} G. Kirchhoff; \emph{Mechanik}. Teubner. Leipzig (1883). \bibitem{LS} S. H. Liang, S. Y. Shi; \emph{Soliton Solutions for Kirchhoff type problems involving the critical growth in $\mathbb{R}^{N}$}, Nonlinear Anal. 81 (2013) 31-41. \bibitem{L} J. L. Lions; \emph{On some questions in boundary value problems of mathematical physics}, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations in: North-Holland Math. Stud. vol. 30. North-Holland. Amsterdam.(1978) 284-346. \bibitem{T} G. Tarantello; \emph{On nonhomogeneous elliptic equations involving critical Sobolev exponent}, Ann. Inst. Henri Poincar\'e Anal. Nonlin\'eaire 9 (1992) 281-304. \end{thebibliography} \end{document}