\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 73, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/73\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions to operator equations involving duality mappings on Sobolev spaces with variable exponents} \author[P. Matei \hfil EJDE-2015/73\hfilneg] {Pavel Matei} \address{Pavel Matei \newline Department of Mathematics and Computer Science\\ Technical University of Civil Engineering\\ 124, Lacul Tei Blvd., 020396 Bucharest, Romania} \email{pavel.matei@gmail.com} \thanks{Submitted September 18, 2014. Published March 24, 2015.} \subjclass[2000]{35J60, 35B38, 47J30, 46E30} \keywords{Mountain Pass Theorem; duality mapping; critical point; Sobolev space with variable exponent} \begin{abstract} The aim of this article is to study the existence and multiplicity of solutions to operator equations involving duality mappings on Sobolev spaces with variable exponents. Our main tools are the well known Mountain Pass Theorem and its $\mathbb{Z} _2$-symmetric version. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} Our starting point for this article is the references \cite{DJM1,DJM}, where the existence of the weak solution for Dirichlet's problem with $p$-Laplacian (when $p$ is a constant $10$, with $p( \cdot) \in \mathcal{C}( \overline{\Omega}) $ and $p( x) >1$ for all $x\in\overline{\Omega}$. For details see \cite[Section 2]{CDM1}. The main result of this article given in Section \ref{S4} and concerns the existence and multiplicity results for operator equation \begin{equation} J_{\varphi}u=N_{g}u, \label{0.1} \end{equation} where $J_{\varphi}$ is a duality mapping on $U_{\Gamma_0}$ corresponding to the gauge function $\varphi$. $N_{g}$ is the Nemytskij operator generated by a Carath\'{e}odory function $g$ satisfying an appropriate growth condition ensuring that $N_{g}$ may be viewed as acting from $U_{\Gamma_0}$ into its dual. In \cite{D}, the author used a topological method to prove the existence of the weak solution in $W_0^{1,p(\cdot)}( \Omega) $ for the problem $J_{\varphi}u=N_{g}u$. In \cite{CDM2}, the existence of suitable solutions in $U_{\Gamma_0}$ to equation \eqref{0.1} is proven by three different methods based, respectively, on reflexivity and smoothness of the space $U_{\Gamma_0}$, the Schauder fixed point theorem, and the Leray-Schauder degree. All vector and function spaces considered in this paper are real. Given a normed vector space $X$, the notation $X^{\ast}$ denotes its dual space and $\langle \cdot,\cdot\rangle _{X,X^{\ast}}$ designates the associated duality pairing. Often, we shall omit the spaces in duality and, simply write $\langle \cdot,\cdot\rangle $. Strong and weak convergence are denoted by $\to$ and $\rightharpoonup$, respectively. \section{An abstract result\label{S2}} The main result of this article is obtained via the following theorem. \begin{theorem}\label{T2.1} Let $X$ be a real reflexive and smooth Banach space, compactly imbedded in the real Banach space $V$ with the compact injection $X\overset {i}{\hookrightarrow}V$. Let $H\in\mathcal{C}^{1}(X,\mathbb{R} )$ be a functional given by \begin{equation} H( u) :=\Psi( u) -G( iu) ,\quad u\in X, \label{1.1} \end{equation} where: \noindent\emph{(i)} $\Psi:X\to\mathbb{R} $ satisfies: \begin{itemize} \item[(i.1)] at any $u\in X$, \begin{equation} \Psi(u):=\Phi(\| u\| _X), \label{1.2} \end{equation} with \begin{equation} \Phi(t):=\int_0^{t} \varphi(\tau)\mathrm{d}\tau\quad \text{for any }t\geq0, \label{1.10} \end{equation} $\varphi:\mathbb{R} _{+}\to\mathbb{R} _{+}$ being a gauge function which satisfies \begin{equation} \varphi^{\ast}:=\sup_{t>0}\frac{t\varphi(t)}{\Phi(t)}<\infty. \label{1.3} \end{equation} \item[(i.2)] $\Psi'=J_{\varphi}$ satisfies condition $(S)_2$ (see \eqref{2.75}); \end{itemize} \noindent\emph{(ii)} $G:V\to\mathbb{R} $ satisfies: \begin{itemize} \item[(ii.0)] $G(0_V)=0$; \item[(ii.1)] $G\in\mathcal{C}^{1}(V,\mathbb{R} )$; \item[(ii.2)] there is a constant $\theta>\varphi^{\ast}$ such that, for any $u\in V$, \begin{equation} \langle G'(u),u\rangle _{V,V^{\ast}}-\theta G(u)\geq C=\text{const}.; \label{1.9} \end{equation} \end{itemize} \noindent \emph{(iii)} there exists $c_0>0$ such that for any $u\in X$, with $\| u\| _Xc_1\| u\| _X^p-c_2 \| i(u)\|_V^{q}, \label{1.4} \end{equation} where $i$ stands for the compact injection of $X$ in $V$ while $00$, $c_2 >0$; \noindent\emph{(iv)} for any finite dimensional subspace $X_1\subset X$, there exist real constants $d_0>0$, $d_1$, $d_2 >0$, $d_{3}$, $s>0$ and $rd_0$. \noindent Then, the functional $H$ possesses a critical value. Moreover, if the functional $H$ is even, then $H$ has un unbounded sequence of critical values. \end{theorem} Before proving of Theorem \ref{T2.1}, we list some of the results to be used. A function $\varphi:\mathbb{R} _{+}\to\mathbb{R} _{+}$ is said to be a \textit{gauge} function if $\varphi$ is continuous, strictly increasing, $\varphi(0)=0$ and $\varphi(t)\to\infty$ as $t\to\infty$. Firstly, we recall that a real Banach space $X$ is said to be \textit{smooth} if it has the following property: for any $x\in X$, $x\neq0$, there exists a unique $u^{\ast}(x)\in X^{\ast}$ such that $\langle u^{\ast }(x),x\rangle =\| x\| _X$ and $\| u^{\ast }(x)\| _{X^{\ast}}=1$. It is well known (see, for instance, Diestel \cite{Di}, Zeidler \cite{Ze}) that the smoothness of $X$ is equivalent to the G\^{a}teaux differentiability of the norm. Consequently, if $( X,\| \cdot\| _X) $ is smooth, then, for any $x\in X$, $x\neq0$, the only element $u^{\ast}(x)\in X^{\ast}$ with the properties $\langle u^{\ast}(x),x\rangle =\| x\| _X$ and $\| u^{\ast}(x)\| _{X^{\ast}}=1$ is $u^{\ast}(x)=\| \cdot\| _X'(x)$ (where $\| \cdot\| _X'(x)$ denotes the G\^{a}teaux gradient of the $\|\cdot\| _X$-norm at $x$). Secondly, if $X$ is a real Banach space, the operator $T:X\to X^{\ast }$ is said to satisfy \textit{condition }$( S) _2 $ if \begin{equation} ( S) _2: \quad \text{$x_{n}\rightharpoonup x$, and $Tx_{n}\to Tx$ imply $x_{n}\to x$ as $n\to \infty$}. \label{2.75} \end{equation} An operator $T$ is said to satisfy \textit{condition }$(S)_{+}$ if \[ ( S) _{+}: \quad\text{$x_{n}\rightharpoonup x$ and $\limsup_{n\to \infty }\langle Tx_{n},x_{n}-x\rangle \leq 0$ imply $x_{n}\to x$ as $n\to \infty$}. \] It is known that if $T$ satisfies condition $( S) _{+}$, then $T$ satisfies condition $( S) _2 $ (see Zeidler \cite[p. 583]{Ze}). Let $X$ be a real Banach space and let $H\in\mathcal{C}^{1}(X,\mathbb{R} )$ be a functional. We say that $H$ satisfies the \textit{Palais-Smale condition} on $X$ ($( PS) $-condition, for short) if any sequence $( u_{n}) \subset X$ with $( H(u_{n})) $ bounded and $H'(u_{n})\to0$ as $n\to\infty$, possesses a convergent subsequence. By $(PS)$\textit{-sequence} for $H$ we understand a sequence $( u_{n}) \subset X$ which satisfies $( H(u_{n})) $ is bounded and $H'(u_{n})\to0$ as $n\to\infty$. The main tools used in proving Theorem \ref{T2.1} are the well known Mountain Pass Theorem and its $\mathbb{Z} _2$-symmetric version. \begin{theorem}[{\cite[Theorem 2.2]{R}}] \label{T2.2} Let $X$ be a real Banach space and let $H$ belong to $\mathcal{C}^{1}( X,\mathbb{R} ) $ satisfying the $(PS)$-condition. Suppose that $H(0)=0$ and that the following conditions hold: \begin{itemize} \item[(G1)] There exist $\rho>0$ and $r>0$ such that $H(u)\geq r$ for $\| u\| =\rho$; \item[(G2)] There exists $e\in X$ with $\| e\| >\rho$ such that $H(e)\leq0$. \end{itemize} Let \begin{gather} \Gamma=\{\gamma\in\mathcal{C}([0,1];X):\gamma(0)=0,\gamma(1)=e\},\nonumber\\ c=\inf_{\gamma\in\Gamma}\max_{0\leq t\leq1}H(\gamma(t)). \label{1.6} \end{gather} Then, $H$ possesses a critical value $c>r$. \end{theorem} \begin{theorem}[{\cite[Theorem 9.12]{R}}] \label{T2.3} Let $X$ be an infinite dimensional real Banach space and let $H\in\mathcal{C}^{1}( X,\mathbb{R}) $ be even, satisfying the $(PS)$-condition, and $H(0)=0$. Assume {\rm (G1)} and \begin{itemize} \item[(G2')] for each finite dimensional subspace $X_1$ of $X$ the set $\{ u\in X_1\mid H(u)\geq0\} $ is bounded. \end{itemize} Then $H$ possesses an unbounded sequence of critical values. \end{theorem} Now, we show that under the assumptions of Theorem \ref{T2.1}, the functional $H$ has a mountain pass geometry. More precisely: \begin{proposition} \label{P2.1} Let $X$ be a real Banach space, imbedded in the real Banach space $V$, with the injection $X\overset{i}{\hookrightarrow}V$. Let $H\in \mathcal{C}^{1}( X,\mathbb{R} ) $ be given with $H(0)=0$. Suppose that $H$ satisfies the hypotheses {\rm (iii)} and {\rm (iv)} in Theorem \ref{T2.1}. Then, the functional $H$ satisfies the conditions {\rm (G1), (G2)}, and {\rm (G2')} in Theorems \ref{T2.2} and \ref{T2.3}. \end{proposition} \begin{proof} Indeed, let $C$ be such that$ \| i(u)\| _V\leq C\| u\| _X$, for any $u\in X$. According to \cite[Theorem 1, p. 422]{DM2}, from \eqref{1.4} it follows that (G1) is satisfied with \begin{equation} 0<\rho<\min \Big( c_0,\big( \frac{c_1}{2C^{q}c_2 }\big)^{1/( q-p)}\Big) \label{1.7} \end{equation} and $r=c_1\rho^p/2$. Next we show that (G2) is also satisfied. Let $X_1$ be a finite dimensional subspace of $X$ and let $e_0\in X_1$ with $\| e_0\| _X>d_0$. Since for any $\lambda>1$, one has $\| \lambda e_0\| _X>d_0$, it follows from \eqref{1.5} that, \begin{equation} H(\lambda e_0)\leq d_1\lambda^{r}\| e_0\| _X ^{r}-d_2 \lambda^{s}\| e_0\| _X^{s}+d_{3}. \label{1.8} \end{equation} Since, in general $s>r$, from \eqref{1.8} we deduce that $H(\lambda e_0)\to-\infty$ as $\lambda\to\infty$. Consequently, there exists a $\lambda_0$ such that, for $\lambda\geq\lambda_0$, $H(\lambda e_0)<0$. Let $e:=\lambda e_0$ with $\lambda>\max( 1,\lambda_0 ,\rho/\| e_0\| _X) $, $\rho$ being given by \eqref{1.7}. Clearly with such a choice one has $\| e\|_X>\rho$ and $H( e) <0$. Finally, according to \cite[Theorem 1, p. 422]{DM2}, from \eqref{1.5} it follows that (G2') is fulfilled. The proof is complete. \end{proof} To prove that the functional $H$ satisfies the $(PS)$-condition, the following result will be useful. \begin{proposition}[{\cite[Corollary 1]{DM1}}] \label{P2.4} Let $X$ be a real reflexive Banach space, compactly imbedded in the real Banach space $V$ and $H\in\mathcal{C}^{1}(X,\mathbb{R} )$ be such that \[ H'(u)=Su-Nu, \] where $S:X\to X^{\ast}$ is monotone, hemicontinuous, satisfies condition $( S) _2 $ and $N:V\to V^{\ast}$ is demicontinuous. Assume that any Palais-Smale sequence for $H$ is bounded. Then $H$ satisfies the $( PS) $-condition. \end{proposition} To apply Proposition \ref{P2.4}, we recall that, if $X$ is a real smooth Banach space and $\varphi:\mathbb{R} _{+}\to\mathbb{R} _{+}$ is a gauge function, the duality mapping on $X$ corresponding to $\varphi$ is the mapping $J_{\varphi}:X\to X^{\ast}$ defined by \[ J_{\varphi}0:=0,\quad J_{\varphi}x:=\varphi( \| x\| _X) \| \cdot\| _X'(x),\quad \text{if } x\neq0. \] The following result is standard in the theory of monotone operators (see, e.g. Browder \cite{Br}, Zeidler \cite{Ze}). \begin{proposition}\label{P2.5} Let $X$ be a real reflexive and smooth Banach space. Then, any duality mapping $J_{\varphi}:X\to X^{\ast}$ is: \begin{itemize} \item[(a)] monotone ($\langle J_{\varphi}u-J_{\varphi}v,u-v\rangle \geq0$, $u,v\in X$); \item[(b)] demicontinuous ($x_{n}\to x\Rightarrow J_{\varphi} x_{n}\rightharpoonup J_{\varphi}x$). \end{itemize} \end{proposition} Since, generally, demicontinuity implies hemicontinuity, it follows that any duality mapping $J_{\varphi}:X\to X^{\ast}$ is hemicontinuous ($\langle J_{\varphi}(u+\lambda v),w\rangle \to\langle J_{\varphi}u,w\rangle $ as $\lambda\searrow0$ for all $u,v,w\in X$). Consequently, from Proposition \ref{P2.4}, we obtain the following result. \begin{corollary}\label{C1.1} Let $X$ be a real reflexive Banach space, compactly imbedded in the real Banach space $V$ and $H\in\mathcal{C}^{1}(X,\mathbb{R} )$ such that \[ H'(u)=J_{\varphi}u-Nu, \] where $J_{\varphi}\ $is a duality mapping corresponding to the gauge function $\varphi$, satisfying condition $( S) _2 $ and $N:V\to V^{\ast}$ is demicontinuous. Assume that any Palais-Smale sequence for $H$ is bounded. Then $H$ satisfies the $( PS) $-condition. \end{corollary} Taking into account \cite[Corollary 2, p. 897]{DM1}, we obtain \begin{corollary} \label{C2.2} Let $X$ be a real reflexive and smooth Banach space, compactly imbedded in the real Banach space $V$ with the compact injection $X\overset {i}{\hookrightarrow}V$. Let $H\in\mathcal{C}^{1}(X,\mathbb{R} )$ be a functional given by \[ H( u) =\Psi( u) -G( iu) ,\quad u\in X, \] where: \begin{itemize} \item[(i.1)] at any $u\in X$, $\Psi(u)=\Phi(\| u\|_X)$ with $\Phi$ given by \eqref{1.10}, where $\varphi:\mathbb{R}_{+}\to\mathbb{R} _{+}$ is a gauge function which satisfies \eqref{1.3}; \item[(i.2)] $\Psi'$ satisfies condition \emph{(S)}$_2 $; \item[(ii)] $G:V\to\mathbb{R} $ is $\mathcal{C}^{1}$ \ on $V$ and satisfies: there is a constant $\theta>\varphi^{\ast}$ such that, at any $u\in V$, \[ \langle G'(u),u\rangle _{V,V^{\ast}}-\theta G(u)\geq C=\text{const.}; \] \end{itemize} Then, the functional $H$ satisfies the $( PS) $-condition. \end{corollary} \begin{proof} The hypotheses of Corollary \ref{C1.1} are fulfilled with $N=G'$. Indeed, by Asplund's Theorem \cite{As}, $\Psi'=J_{\varphi }$ and, by hypothesis (i.2) $J_{\varphi}$ satisfies condition $( S) _2 $. The demicontinuity of $G'$ is assumed by (ii.2). According to \cite[Corollary 2, p. 897]{DM1} we obtain that any $( PS) $ sequence for $H$ is bounded. \end{proof} \begin{proof}[Proof of Theorem \ref{T2.1}] The assumptions of Theorem \ref{T2.1} entail the fulfillment of those of Corollary \ref{C2.2}, therefore the functional $H$ satisfies the $(PS)$-condition. According to Proposition \ref{P2.1}, the functional $H$ satisfies the conditions (G1), (G2), and (G2') from Theorems \ref{T2.2} and \ref{T2.3}. Applying these theorems, the conclusions of Theorem \ref{T2.1} follow. \end{proof} \section{Lebesgue and Sobolev spaces with variable exponent\label{S3}} The Lebesgue measure in $\mathbb{R} ^{N}$ is denoted d$x$. No distinction will be made between d$x$-measurable functions and their equivalence classes modulo the relation of d$x$-almost everywhere equality. The notation $\mathcal{D}( \Omega) $ denotes the space of functions that are infinitely differentiable in $\Omega$ and whose support is a compact subset of $\Omega$. The usual Lebesgue and Sobolev spaces, i.e., \emph{with constant exponent} $p\geq1$, are denoted $L^p(\Omega)$ and $W^{1,p}(\Omega)$. Given a function $p( \cdot) \in L^{\infty}( \Omega) $ that satisfies \[ 1\leq p^{-}:=\operatorname{ess\,inf}_{x\in\Omega}p( x) \leq p^{+}:=\operatorname{ess\,sup}_{x\in\Omega}p( x) , \] the Lebesgue space $L^{p(\cdot)}( \Omega) $ with variable exponent $p( \cdot) $ is defined as \[ L^{p(\cdot)}( \Omega) :=\{v:\Omega\to\mathbb{R}; v\text{ is d}x\text{-measurable and }\rho_{0,p(\cdot)}(v) :=\int_{\Omega}| v(x)| ^{p(x)}\mathrm{d}x<\infty\}, \] where $\rho_{0,p(\cdot)}(v)$ is called the \textit{convex modular} of $v$. \begin{theorem} \label{thm4} Let $\Omega$ be a domain in $\mathbb{R} ^{N}$. \noindent\emph{(a)} Let $p( \cdot) \in L^{\infty}( \Omega) $ be such that $p^{-}\geq1$. Equipped with the norm \[ v\in L^{p(\cdot)}( \Omega) \to\| v\| _{0,p(\cdot)}:=\inf\{\lambda>0;\text{ }\int_{\Omega}| \frac{v(x)}{\lambda}| ^{p(x)}\mathrm{d}x\leq1\}, \] the space $L^{p(\cdot)}( \Omega) $ is a separable Banach space. If $p^{-}>1$, the space $L^{p(\cdot)}( \Omega) $ is uniformly convex, hence reflexive. \noindent\emph{(b)} Let $p_1( \cdot) \in L^{\infty}( \Omega) $ and $p_2 ( \cdot) \in L^{\infty}( \Omega) $ be such that $p_1^{-}\geq1$ and $p_2 ^{-}\geq1$. Then \[ L^{p_2 (\cdot)}( \Omega) \hookrightarrow L^{p_1(\cdot)}( \Omega) \] if and only if \[ p_1(x)\leq p_2 (x)\quad \text{for almost all }x\in\Omega. \] \noindent\emph{(c)} For any $u\in L^{p(\cdot)}( \Omega) $ with $p(\cdot) \in L^{\infty}( \Omega) $ satisfying $p^{-}>1$ and $v\in L^{p'(\cdot)}( \Omega) $, \begin{equation} \int_{\Omega}| u(x)v(x)| dx\leq\Big( \frac {1}{p^{-}}+\frac{1}{( p') ^{-}}\Big) \| u\| _{0,p(\cdot)}\| v\| _{0,p'(\cdot)}\,. \label{3.1} \end{equation} \end{theorem} \begin{remark}[{\cite[p. 430]{FZ}}] \label{R2} If $p(x)$ is constant, then the space $L^{p(\cdot )}( \Omega ) $ coincides with the classical Lebesgue space $L^p( \Omega ) $ and the norms on these spaces are equal. \end{remark} The next theorem sums up the relations between the norm $\|\cdot\| _{0,p(\cdot)}$ and the convex modular $\rho_{0,p(\cdot)}$. Its proof can be found in \cite{FZ}. \begin{theorem}\label{T3.2} Let $p( \cdot) \in L^{\infty}( \Omega)$ be such that $p^{-}\geq1$ and let $u\in L^{p(\cdot)}( \Omega)$. The following properties hold: \begin{itemize} \item[(a)] If $u\neq0$, then $\| u\| _{0,p(\cdot)}=a$ if and only if $\rho_{0,p(\cdot)}( a^{-1}u) =1$. \item[(b)] $\| u\| _{0,p(\cdot)}<1$ (resp. $=1$ or $>1$) if and only if $\rho_{0,p(\cdot)}(u)<1$ (resp. $=1$, or $>1$). \item[(c)] $\| u\| _{0,p(\cdot)}>1$ implies $\|u\| _{0,p(\cdot)}^{p^{-}}\leq\rho_{0,p(\cdot)}(u) \leq\|u\| _{0,p(\cdot)}^{P^{+}}$. \item[(d)] $\| u\| _{0,p(\cdot)}<1$ implies $\|u\| _{0,p(\cdot)}^{p^{+}}\leq\rho_{0,p(\cdot)}(u)\leq\|u\| _{0,p(\cdot)}^{p^{-}}$. \end{itemize} \end{theorem} The Sobolev space $W^{1,p( \cdot) }( \Omega) $ with variable exponent $p( \cdot) $ is defined as \[ W^{1,p( \cdot) }( \Omega) :=\{ v\in L^{p(\cdot)}( \Omega) : \partial_{i}v\in L^{p(\cdot )}( \Omega) ,1\leq i\leq N\} , \] where, for each $1\leq i\leq N$, $\partial_{i}$ denotes the distributional derivative operator with respect to the\ $i$-th variable. \begin{theorem}\label{T3.3} Let $\Omega$ be a domain in $\mathbb{R} ^{N}$. \noindent\emph{(a)} Let $p( \cdot) \in L^{\infty}( \Omega) $ be such that $p^{-}\geq1$. Equipped with the norm \[ v\in W^{1,p( \cdot) }( \Omega) \to\| v\| _{1,p(\cdot)}:=\| v\| _{0,p(\cdot)} +{\textstyle\sum_{i=1}^{N}} \| \partial_{i}v\| _{0,p(\cdot)}, \] the space $W^{1,p( \cdot) }( \Omega) $ is a separable Banach space. If $p^{-}>1$, the space $W^{1,p( \cdot) }( \Omega) $ is reflexive. \noindent\emph{(b)} Let $p_1( \cdot) \in L^{\infty}( \Omega) $ with $p_1^{-}\geq1$ and $p_2 ( \cdot) \in L^{\infty}( \Omega) $ with $p_2 ^{-}\geq1$ be such that \[ p_1(x)\leq p_2 (x)\text{ for almost all }x\in\Omega. \] Then \[ W^{1,p_2 ( \cdot) }( \Omega) \hookrightarrow W^{1,p_1( \cdot) }( \Omega) . \] \noindent\emph{(c)} Let $p( \cdot) \in\mathcal{C}( \overline{\Omega }) $ be such that $p^{-}\geq1$. Given any $x\in\overline{\Omega}$, let \begin{equation} p^{\ast}(x):=\frac{Np(x)}{N-p(x)}\text{ if }p(x)0$, let $p( \cdot) \in\mathcal{C}( \overline{\Omega}) $ be such that $p(x) >1$ for all $x\in\overline{\Omega}$ and let \[ U_{\Gamma_0}:=\{ u\in( W^{1,p( \cdot) }( \Omega) ,\| \cdot\| _{1,p(\cdot),\nabla}): \operatorname{ tr }u=0\text{ on }\Gamma_0\} . \] Then: \noindent\emph{(a)} The space $U_{\Gamma_0}$ is closed in $( W^{1,p( \cdot) }( \Omega) ,\| \cdot\| _{1,p(\cdot),\nabla}) $; hence $( U_{\Gamma_0},\| \cdot\| _{1,p(\cdot),\nabla}) $ is a separable reflexive Banach space. \noindent\emph{(b)} The map \begin{equation} u\in U_{\Gamma_0}\to\| u\| _{0,p(\cdot),\nabla }:=\| | \nabla u| \| _{0,p( \cdot) } \label{3.2} \end{equation} is a norm on $U_{\Gamma_0}$ equivalent with the norm $\| \cdot\| _{1,p(\cdot),\nabla}$. \noindent\emph{(c)} The norm $\| u\| _{0,p( \cdot) ,\nabla}$ is Fr\'{e}chet-differentiable at any nonzero $u\in U_{\Gamma_0}$ and the Fr\'{e}chet-differential of this norm at any nonzero $u\in U_{\Gamma_0}$ is given for any $h\in U_{\Gamma_0}$ by \[ \langle \| \cdot\| _{0,p(\cdot),\nabla}'(u),h\rangle =\frac{\int_{\Omega\backslash\Omega_{0,u} }p(x)\frac{| \nabla u( x) | ^{p(x)-2}\text{ }\langle \nabla u( x) ,\nabla h( x) \rangle }{\| u\| _{0,p(\cdot),\nabla}^{p(x)-1}} \mathrm{d}x}{\int_{\Omega}p(x)\frac{| \nabla u( x) | ^{p(x)}}{\| u\| _{0,p(\cdot),\nabla }^{p(x)}}\mathrm{d}x}, \] where $\Omega_{0,u}:=\{ x\in\Omega;| \nabla u( x)| =0\} $. \end{theorem} By Theorem \ref{T3.3} (c) and Theorem \ref{T3.4} (a)--(b) we derive the following result. \begin{lemma}\label{L1} Let $p( \cdot) \in\mathcal{C}( \overline{\Omega }) $ be such that $p^{-}\geq1$. Given any $x\in\overline{\Omega}$, let $p^{\ast}$ be given by \eqref{3.3} and let $q( \cdot) \in\mathcal{C}( \overline{\Omega}) $ be a function that satisfies \eqref{3.4}. Then the following compact inclusion holds: \[ \big( U_{\Gamma_0},\| \cdot\| _{1,p(\cdot),\nabla }\big) \Subset \big( L^{q(\cdot)}( \Omega) ,\| \cdot\| _{0,q( \cdot) }\big) . \] \end{lemma} \begin{remark} \label{R1}\rm If $\varphi ^{\ast }1$, $q^{-}>1$ and \eqref{3.4} holds. For $\varphi^{\ast}1$, and let $p^{\ast}(\cdot)$ be given by \eqref{3.3}. Let $\varphi:\mathbb{R} _{+}\to\mathbb{R} _{+} $ be a gauge function which satisfies \eqref{1.3}, where $\Phi$ is given by \eqref{1.10}. Let there be given a Carath\'{e}odory function $g:\Omega\times\mathbb{R} \to\mathbb{R} $ satisfying the hypotheses: \begin{itemize} \item[(H1)] there exists a function $q( \cdot) \in\mathcal{C}( \overline{\Omega}) $ that satisfies \eqref{3.4} such that \begin{equation} | g( x,s) | \leq C_1| s| ^{q( x) /q'( x) }+a( x) \quad\text{ for almost all $x\in\Omega$ and all $s\in\mathbb{R}$} , \label{4.4} \end{equation} where $\frac{1}{q(x)}+\frac{1}{q'(x)}=1$, a is a bounded function, $a( x) \geq0$ for almost all $x\in\Omega$, and $C_1$ is a constant, $C_1>0$; \item[(H2)] there exist $s_0>0$ and $\theta>\varphi^{\ast} :=\sup_{t>0}\frac{t\varphi(t)}{\Phi(t)}$ such that \begin{equation} 0<\theta G(x,s)\leq sg(x,s), \label{4.5} \end{equation} for almost every $x\in\Omega$ and all $s$ with $| s| \geq s_0$, where \begin{equation} G( x,s) :={\textstyle\int_0^{s}} g( x,\tau) \mathrm{d}\tau. \label{4.6} \end{equation} \end{itemize} Also assume that \begin{itemize} \item[(H3)] \begin{equation} \limsup_{s\to0}\frac{g( x,s) }{| s| ^{\varphi^{\ast}-2}s}<\frac{\varphi^{\ast}\Phi( 1) }{2}\lambda_{1,\varphi^{\ast}} \label{4.17} \end{equation} uniformly with respect to almost all $x\in\Omega$, where $\lambda _{1,\varphi^{\ast}}$ is given by \eqref{4.9}. \item[(H4)] $\varphi^{\ast}0$ and $\theta>0$ such that \eqref{4.5} holds for almost all $x\in\Omega$ and all $s$ with $| s| \geq s_0$, where $\mathcal{G}$ is given by \eqref{4.8}. Then, the functional $\mathcal{G}:L^{q( \cdot) }( \Omega) \to\mathbb{R} $ given by \eqref{4.8} satisfies the inequality \eqref{1.9}. \end{proposition} \begin{proof} One has \[ \langle \mathcal{G}'(u),u\rangle -\theta\mathcal{G} (u)={\int_{\Omega}} [ g( x,u( x) ) u( x) -\theta G(x,u( x) )] \mathrm{d}x. \] Now, we shall give an estimation for the right term of this equality. Define $\overline{\Omega}=\{x\in\Omega:| u(x)| >s_0\}$. Taking into account \eqref{4.5}, one has \begin{equation} \int_{\overline{\Omega}} [ g( x,u( x) ) u( x) -\theta G(x,u( x) )] \mathrm{d}x\geq0. \label{4.15} \end{equation} Also, considering \eqref{4.29}, one has \begin{align*} \big| {\int_{\Omega\backslash\overline{\Omega}}} G( x,u(x)) \mathrm{d}x\big| &\leq{\int _{\Omega\backslash\overline{\Omega}}} [ c| u( x) | ^{q( x) }+| u( x) | a( x) ] \mathrm{d}x\\ & \leq c s_0^{q^{+}} \operatorname{vol}(\Omega) +s_0{\int_{\Omega}} a( x) \mathrm{d}x=K, \end{align*} where $c:=C_1/q^{-}$. On the other hand, from \eqref{4.4}, it follows that \begin{align*} \big| {\int_{\Omega\backslash\overline{\Omega}}} g( x,u( x) ) u( x) \mathrm{d}x\big| &\leq{\int_{\Omega\backslash\overline{\Omega}}} [ c| u( x) | ^{q( x) }+|u( x) | a( x) ] \mathrm{d}x \\ &\leq c s_0^{q^{+}} \operatorname{vol}(\Omega)+s_0{\int_{\Omega}} a( x) \mathrm{d}x=K. \end{align*} Thus \begin{equation} \big| {\int_{\Omega\backslash\overline{\Omega}}} [ g( x,u( x) ) u( x) -\theta G(x,u( x) )] \mathrm{d}x\big| \leq C, \label{4.16} \end{equation} with $C:=K( 1+\theta) $. From \eqref{4.15} and \eqref{4.16}, we infer that \[ {\int_{\Omega}} [ g( x,u( x) ) u( x) -\theta G(x,u( x) )] \mathrm{d}x\geq-C, \] that is \eqref{1.9}. \end{proof} Using the same arguments as in \cite[Remark 7.2, p. 26]{DM3}, we obtain the following result. \begin{lemma} \label{L2} Let $\varphi:\mathbb{R} _{+}\to\mathbb{R} _{+}$ be a gauge function which satisfies \eqref{1.3}, where $\Phi$ is given by \eqref{1.10}. Then, for all $u\in U_{\Gamma_0}$ with $\| u\| _{0,p( \cdot) ,\nabla}<1$ one has \begin{equation} \Phi(\| u\| _{0,p( \cdot) ,\nabla})\geq \Phi( 1) \| u\| _{0,p( \cdot) ,\nabla}^{\varphi^{\ast}}\,. \label{4.24} \end{equation} Also for all $u\in U_{\Gamma_0}$ with $\| u\| _{0,p( \cdot) ,\nabla}>1$ one has \[ \Phi(\| u\| _{0,p( \cdot) ,\nabla})\leq \Phi( 1) \| u\| _{0,p( \cdot) ,\nabla}^{\varphi^{\ast}}\,. \] \end{lemma} \begin{proof}[Proof of Theorem \ref{T4.1}] We use Theorem \ref{T2.1} with $X=U_{\Gamma_0}$ and $V=L^{q(\cdot)}( \Omega) $. Indeed, $X$ is reflexive (Theorem \ref{T3.4}, (a)) and smooth (Theorem \ref{T3.4} (c)). Also, by Theorem \ref{T3.4} (a) and Theorem \ref{T3.3}, (c) $(U_{\Gamma_0},\| \cdot\| _{0,p( \cdot) ,\nabla}) $ is compactly embedded in $( L^{q(\cdot)}(\Omega) ,\| \cdot\| _{0,q( \cdot)}) $. According to \cite[Theorem 4.6 a)]{CDM2}, $\Psi'$ satisfies condition $( S) _2 $. Obviously $\mathcal{G}( 0) =0$ and taking into account Propositions \ref{P4.2} and \ref{P4.3}, it follows that $\mathcal{G}$ is $\mathcal{C}^{1}$ and that the hypothesis (ii) of Theorem \ref{T2.1} is fulfilled. Let us prove that hypothesis (iii) of Theorem \ref{T2.1} is fulfilled. For the first term in \eqref{4.10}, we have \eqref{4.24} for all $u\in U_{\Gamma_0}$ with $\| u\| _{0,p( \cdot) ,\nabla}<1$. Arguing as in \cite[p. 239]{DJM}, from (H3) we deduce that there exists \begin{equation} 0<\mu<( \varphi^{\ast}\Phi( 1) /2) \lambda_{1,\varphi^{\ast}} \label{4.32} \end{equation} and $\underline{s}>0$ such that \begin{equation} G(x,s)<( \mu/\varphi^{\ast}) | s| ^{\varphi^{\ast}},\quad \text{for }x\in\Omega,0<| s| <\underline{s}. \label{4.20} \end{equation} Now, let us consider $| s| \in[\underline{s},\infty)$. The function $| s| ^{q( x) -1}$ being increasing as function of $| s| $, we have \[ | s| \leq\frac{1}{\underline{s}^{q( x) -1}}| s| ^{q( x) }. \] Since the function $a$ in \eqref{4.4} is assumed to be bounded, it follows from \eqref{4.29} that \[ | G(x,s)| \leq c_{3}\cdot s^{q( x) },\quad \text{for }| s| \geq\underline{s}\,, \] where $c_{3}:=C_1/q^{-}+\| a\| _{\infty}/\underline {s}^{q^{-}-1}$. Now, we denote $\underline{\Omega}=\{x\in\Omega: | u(x)|\geq\underline{s}\}$. Then, for every $u\in L^{q( \cdot) } (\Omega)$, we have \begin{equation} {\int_{\underline{\Omega}}} G( x,u(x)) \mathrm{d}x\leq c_{3}{\int_{\Omega}} | u(x)| ^{q( x) }\mathrm{d}x. \label{4.30} \end{equation} But $U_{\Gamma_0}$ is continuously imbedded in $L^{q( \cdot) }( \Omega) $ (Lemma \ref{L1}), therefore there exists a positive constant $\underline{c}$ such that \[ \| u\| _{0,q(\cdot)}\leq\underline{c}\| u\| _{0,p(\cdot),\nabla}\quad \text{for all }u\in U_{\Gamma_0}. \] Consequently, for all $u\in U_{\Gamma_0}$ with $\| u\|_{0,p(\cdot),\nabla}<1/\underline{c}$ it follows that $\| u\|_{0,q( \cdot) }<1$. Therefore, taking into account \eqref{4.30} and Theorem \ref{T3.2} (d), we obtain \begin{equation} {\int_{\underline{\Omega}}} G( x,u(x)) \mathrm{d}x\leq c_{3}\| u\| _{0,q( \cdot) } ^{q^{-}}, \label{4.33} \end{equation} for all $u\in U_{\Gamma_0}$ with $\| u\| _{0,p(\cdot),\nabla}<1/\underline{c}$. On the other hand, from \eqref{4.20}, for $u\in U_{\Gamma_0}$, we deduce \begin{equation} {\int_{\Omega\backslash\underline{\Omega}}} G( x,u(x)) \mathrm{d}x\leq\frac{\mu}{\varphi^{\ast}}{\int _{\Omega}} | u(x)| ^{\varphi^{\ast}} \mathrm{d}x=\frac{\mu}{\varphi^{\ast}}\| u\| _{L^{\varphi ^{\ast}}( \Omega) }^{\varphi^{\ast}}. \label{4.11} \end{equation} Since $\varphi^{\ast}\Phi( 1) \| u\| _{0,p(\cdot),\nabla }^{\varphi^{\ast}}-\frac{\Phi( 1) }{2}\| u\| _{0,p(\cdot),\nabla}^{\varphi^{\ast}}-c_{3}\| u\| _{0,q( \cdot) }^{q^{-}} \\ &=\frac{\Phi( 1) }{2}\| u\| _{0,p(\cdot),\nabla }^{\varphi^{\ast}}-c_{3}\| u\| _{0,q( \cdot) }^{q^{-}}\,, \end{align*} for all $u\in U_{\Gamma_0}$ with $\| u\| _{0,p(\cdot ),\nabla}<\min( 1,1/\underline{c}) $. Therefore, the hypothesis (iii) of Theorem \ref{T2.1} is fulfilled. Now, we shall verify the hypothesis (iv) of Theorem \ref{T2.1}. Let $\theta$ and $s_0$ be as in (H2). We shall deduce that one has \begin{equation} G(x,s)\geq\gamma(x)| s| ^{\theta},\quad \text{for almost all $x\in\Omega$ and $| s| \geq s_0$}, \label{4.28} \end{equation} where the function $\gamma$ will be specified below. Indeed, it follows from \cite[p. 236]{DJM} that \begin{equation} G(x,s)\geq( G(x,s_0)/s_0^{\theta}) s^{\theta},\quad \text{for almost all $x\in\Omega$ and $s\geq s_0$}. \label{4.26} \end{equation} On the other hand, for almost all $x\in\Omega$ and $\tau\leq-s_0$, from \eqref{4.5}, we have $G(x,s)>0$ for almost all $x\in\Omega$ and $| s|\geq s_0$, and \[ \frac{\theta}{\tau}\geq\frac{g(x,\tau)}{G(x,\tau)}. \] By integrating from $s\leq-s_0$ to $-s_0$, it follows that \[ \frac{s_0^{\theta}}{| s| ^{\theta}}\geq\frac{G(x,-s_0 )}{G(x,s)}, \] which implies \begin{equation} G(x,s)\geq( G(x,-s_0)/s_0^{\theta}) | s| ^{\theta},\quad\text{for almost all $x\in\Omega$ and $s\leq-s_0$}. \label{4.27} \end{equation} Setting \[ \gamma(x)=\begin{cases} ( G(x,s_0)/s_0^{\theta}), & \text{if }s\geq s_0\\ ( G(x,-s_0)/s_0^{\theta}), & \text{if }s\leq-s_0, \end{cases} \] from \eqref{4.26} and \eqref{4.27}, we obtain \eqref{4.28}. For $v\in U_{\Gamma_0}$, we define \[ \Omega_{\geq}:=\{x\in\Omega: | v(x)| \geq s_0\},\Omega_{<} :=\Omega\backslash\Omega_{\geq}. \] From \eqref{4.28} it follows that \begin{align*} {\int_{\Omega}} G(x,v(x))\mathrm{d}x &\geq{\int_{\Omega_{\geq}}} \gamma(x)| v(x)| ^{\theta }\mathrm{d}x+{\int_{\Omega_{<}}} G(x,v(x))\mathrm{d}x \\ &={\int_{\Omega}} \gamma(x)| v(x)| ^{\theta}\mathrm{d}x+{\int_{\Omega_{<}}} G(x,v(x))\mathrm{d} x-{\textstyle\int_{\Omega_{<}}} \gamma(x)| v(x)| ^{\theta}\mathrm{d}x \end{align*} Since \[ {\int_{\Omega_{<}}} \gamma(x)| v(x)| ^{\theta}\mathrm{d}x\leq\| \gamma\| _{\infty} s_0^{\theta} \operatorname{vol}(\Omega), \] we have \[ {\int_{\Omega}} G(x,v(x))\mathrm{d}x\geq{\int _{\Omega}} \gamma(x)| v(x)| ^{\theta} \mathrm{d}x+{\int_{\Omega_{<}}} G(x,v(x))\mathrm{d}x-k, \] where $k:=\| \gamma\| _{\infty} s_0^{\theta} \operatorname{vol}(\Omega)$. On the other hand, it follows from \eqref{4.29} that \[ {\int_{\Omega_{<}}} G(x,v(x))\mathrm{d}x\leq\| a\| _{\infty}s_0+c_{4}\max( s_0^{q^{+}},s_0^{q^{-} }) \operatorname{vol}(\Omega), \] where $c_{4}=c_1/q^{-}$. Therefore \[ {\int_{\Omega}} G(x,v(x))\mathrm{d}x\geq{\int _{\Omega}} \gamma(x)| v(x)| ^{\theta} \mathrm{d}x-K, \] where $K:=k+\| a\| _{\infty}s_0+c_{4}\max( s_0^{q^{+}},s_0^{q^{-}}) \operatorname{vol}(\Omega)$. Consequently, \[ H(v)\leq\Phi( \| v\| _{0,p( \cdot),\nabla}) -{\int_{\Omega}} \gamma(x)| v(x)| ^{\theta}\mathrm{d}x+K, \] where $K$ is a positive constant and $\theta$ is given by (H)$_2 $. Taking into account Lemma \ref{L2}, for $\| v\|_{0,p( \cdot) ,\nabla}>1$ we have \begin{equation} H(v)\leq\Phi(1)\| v\| _{0,p( \cdot) ,\nabla }^{\varphi^{\ast}}-{\int_{\Omega}} \gamma(x)| v(x)| ^{\theta}\mathrm{d}x+K. \label{4.25} \end{equation} Now, the functional $\| \cdot\| _{\gamma}:U_{\Gamma_0 }\to\mathbb{R} $ defined by \[ \| v\| _{\gamma}=\Big( {\int_{\Omega }} \gamma(x)| v(x)| ^{\theta}\mathrm{d}x\Big) ^{1/\theta} \] is a norm on $U_{\Gamma_0}$. Let $X_1$ be a finite dimensional subspace of $U_{\Gamma_0}$. Since the tow norms $\| \cdot\| _{0,p( \cdot) ,\nabla}$ and $\| \cdot\| _{\gamma}$ are equivalent on the finite dimensional subspace $X_1$, there is a constant $\delta=\delta(X_1)>0$ such that \[ \| v\| _{0,p( \cdot) ,\nabla}\leq\delta \| v\| _{\gamma}. \] Therefore, from \eqref{4.25} it follows that \[ H(v)\leq\Phi(1)\| v\| _{0,p( \cdot) ,\nabla }^{\varphi^{\ast}}-\frac{1}{\delta^{\theta}}\| v\| _{0,p( \cdot) ,\nabla}^{\theta}+K, \] if $v\in X_1$, $\| v\| _{0,p( \cdot) ,\nabla }>1$, that is the hypothesis (iv) is fulfilled. Taking into account Theorem \ref{T2.1}, it follows that the functional $F$ possesses a sequence of critical positive values. By Proposition \ref{P4.2}, equation \[ J_{\varphi}u=g(x,u) \] has a sequence of solutions in $U_{\Gamma_0}$ or, equivalently, the problem \eqref{4.1}, \eqref{4.2} possesses a sequence of weak solutions in $U_{\Gamma_0} $. \end{proof} Taking into account Remark \ref{RR}, if $p( x) =p=$const. and $\varphi (t)=t^{r-1}$, $r>1$, from Theorem \ref{T4.1} it follows: \begin{corollary} \label{coro4} Let $\Omega $ be a domain in $\mathbb{R}^{N}$ $(N\geq 2)$, $p\in ( 1,\infty ) $, and let $p^{\ast }$ be given by \[ p^{\ast }:=\frac{Np}{N-p}\text{ if }p0$; \item[(2)] there exist $s_0>0$ and $\theta >r$ such that \eqref{4.5} holds for almost every $x\in \Omega $ and all $s$ with $| s| \geq s_0$, where $G$ is given by \eqref{4.6}. \end{itemize} Also assume that \begin{itemize} \item[(3)] \[ \limsup_{s\to 0}\frac{g( x,s) }{| s| ^{r-2}s}<\frac{\lambda _{1,r}}{2} \] uniformly with respect to almost all $x\in \Omega $, where $\lambda _{1,r}$ is given by \eqref{4.9}. \item[(4)] $r1$, and let $p^{\ast }$ be given by \[ p^{\ast }:=\frac{Np}{N-p}\text{ if }p0$; \item[(2)] there exist $s_0>0$ and $\theta >p$ such that \eqref{4.5} holds for almost every $x\in \Omega $ and all $s$ with $ | s| \geq s_0$, where $G$ is given by \eqref{4.6}. \end{itemize} Also assume that \begin{itemize} \item[(3)] \[ \limsup_{s\to 0}\frac{g( x,s) }{| s| ^{p-2}s}<\frac{\lambda _{1,p}}{2} \] uniformly with respect to almost all $x\in \Omega $, where $\lambda _{1,p}$ is given by \eqref{4.9}. \item[(4)] $p1$. From \eqref{1.10} we have \[ \Phi (t)=\frac{t^{r}}{r}\ln ( 1+t) -\frac{1}{r} \int_0^{t}\frac{\tau ^{r}}{1+\tau }\mathrm{d}\tau ,t>0. \] According to \cite[p. 54]{CGMS}, $\varphi ^{\ast }=r+1$. We shall apply Theorem \ref{T4.1} with $\varphi ^{\ast }=r+1$. From definition of $\varphi ^{\ast }$ it follows that \[ \varphi ^{\ast }\Phi ( 1) \geq \varphi ( 1) =\ln 2\,. \] From Theorem \ref{T4.1} we have the following result. \begin{theorem} \label{thm9} Let $\Omega $ be a domain in $\mathbb{R}^{N}$ $(N\geq 2)$, let $p\in \mathcal{C}( \overline{\Omega }) $ be a function such that $p^{-}>1$, and let $p^{\ast }(\cdot )$ be given by \eqref{3.3}. Let us consider the function \begin{equation} \varphi :\mathbb{R}_{+}\to \mathbb{R}_{+},\quad \varphi (t)=t^{r-1} \ln ( 1+t) ,r>1. \label{5.5} \end{equation} Let there be given a Carath\'{e}odory function $g:\Omega \times \mathbb{R} \to \mathbb{R}$ satisfying the hypotheses: \begin{itemize} \item[(1)] there exists a function $q( \cdot ) \in \mathcal{C}( \overline{\Omega }) $ that satisfies \eqref{3.4} such that \[ | g( x,s) | \leq C_1| s| ^{q( x) /q'( x) }+a( x),\quad \text{for almost all $x\in \Omega$ and all $s\in \mathbb{R}$,} \] where $\frac{1}{q(x)}+\frac{1}{q'(x)}=1$, a is a bounded function, $a( x) \geq 0$ for almost all $x\in \Omega $, and $C_1$ is a constant, $C_1>0$; \item[(2)] there exist $s_0>0$ and $\theta >r+1$ such that \[ 0<\theta G(x,s)\leq sg(x,s), \] for almost every $x\in \Omega $ and all $s$ with $| s| \geq s_0$, where \[ G( x,s) :={\textstyle\int_0^{s}}g( x,\tau ) \mathrm{d}\tau . \] \end{itemize} Also assume that \begin{itemize} \item[(3)] \[ \limsup_{s\to 0}\frac{g( x,s) }{| s| ^{r-1}s}<\frac{\ln 2}{2}\lambda _{1,r+1} \] uniformly with respect to almost all $x\in \Omega $, where $\lambda _{1,r+1}$ is given by \eqref{4.11}. \item[(4)] $r+1