\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 78, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/78\hfil Multiple positive solutions] {Multiple positive solutions for elliptic problem with concave and convex nonlinearities} \author[J. Liu, L. Zhao, P. Zhao \hfil EJDE-2015/78\hfilneg] {Jiayin Liu, Lin Zhao, Peihao Zhao} \address{Jiayin Liu (corresponding author) \newline School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China} \email{xecd@163.com} \address{Lin Zhao \newline Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China} \email{zhaolinmath@gmail.com} \address{Peihao Zhao \newline School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China} \email{zhaoph@lzu.edu.cn} \thanks{Submitted November 27, 2014. Published March 31, 2015.} \subjclass[2000]{35J20, 35J25, 35J60} \keywords{Variational methods; supercritical exponent; mountain pass theorem, \hfill\break\indent Moser iteration technique} \begin{abstract} In this article, we consider the existence of multiple solutions to the elliptic problem \begin{gather*} -\Delta u=\lambda u^q+u^s+\mu u^p\quad \text{in } \Omega,\\ u>0\quad \text{in } \Omega,\\ u=0\quad \text{on } \partial\Omega, \end{gather*} where $\Omega\subseteq \mathbb{R}^N$ $(N\geq3)$ is a bounded domain with smooth boundary $\partial\Omega$, $00\quad \text{in } \Omega,\\ u=0\quad \text{on } \partial\Omega, \end{gathered} \end{equation} where $\Omega\subset \mathbb{R}^N (N\geq3)$ is a bounded smooth domain, $\lambda$ and $\mu$ are nonnegative parameters, $00\quad\text{in }\Omega,\\ u=0\quad\text{on }\partial\Omega, \end{gathered} \end{equation} by the linear transformation $v=\mu^{\frac{1}{p-1}}u$, problem \eqref{1.1} is equivalent to \begin{equation}\label{1.2} \begin{gathered} -\Delta v=\widetilde{\lambda} v^q+v^p\quad\text{in }\Omega,\\ v>0\quad\text{in }\Omega,\\ v=0\quad\text{on }\partial\Omega \end{gathered} \end{equation} with $\widetilde{\lambda}=\lambda\mu^{\frac{1-q}{p-1}}$. This concave-convex problem was first considered by Ambrosetti, Brezis and Cerami \cite{ABC}, they discover that there exists $\Lambda >0$ such that for $0<\widetilde{\lambda}<\Lambda$, problem \eqref{1.2} has a solution if $p>1$, and has a second solution if $1 (N +2)/(N -2)$, the authors poses an open problem: When $\Omega$ is a ball in $\mathbb{R}^N$, does problem \eqref{1.2} have two solutions for $\widetilde{\lambda}>0$ small enough? After this seminal work, many works have been devoted to problems with concave-convex nonlinearities, see for example \cite{Alves,Brown,Gar,WTF,ZL,ZC}. Especially in the literature \cite{ZC}, using a concept of radial singular solution, Zhao and Zhong prove that if $\widetilde{\lambda} > 0$ is small enough and $p > 2^*-1$, then problem \eqref{1.2} has exactly one solution. In particular, this means that problem \eqref{1.1} cannot have a second solution if $p > (N +2)/(N -2)$, and gives a negative answer to that open problem. In other words, \eqref{1.1} has exactly one solution for $\lambda$ and $\mu$ small enough. Now, we are interested in what will happen with adding a subcritical term $u^s$ in \eqref{1.1}. In this paper, we show that the appearance of the subcritical term $u^s$ in \eqref{1.1} destroys the uniqueness result. More precisely, we prove the following main results. \begin{theorem}\label{thm1.1} Let $\Omega\subset\mathbb{R}^N$ be a bounded smooth domain. Assume $00$ such that $J|_{\partial B_\rho}\geq \alpha$, and \item[(J2)] there is an $e\in X\setminus B_\rho$ such that $J(e)\leq0$. \end{itemize} Then $J$ possesses a critical value $c\geq\alpha$. Moreover, $c$ can be characterized as \begin{equation*} c=\inf_{g\in\Gamma}\max_{u\in g([0,1])}J(u), \end{equation*} where $\Gamma=\{g\in C([0,1],X): g(0)=0,\; g(1)=e\}$. \end{lemma} In this article, the norm in $L^r(\Omega)$ $(1 \frac{N+2}{N-2}$. Following the idea in \cite{FZ,MMT,PH,ZZ}, we first investigate the truncated problem \begin{equation} \label{ePK} \begin{gathered} -\Delta u=\lambda u^q+u^s+\mu g_K(u)\quad\text{in }\Omega,\\ u>0\quad\text{in }\Omega,\\ u=0\quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $K>0$ is a real number, whose value will be fixed later, $g_K(u)$ is given by \begin{equation}\label{2.1} g_K(u)= \begin{cases} u^p, &|u|\leq K,\\ K^{p-r+1}u^{r-1}, &|u|\geq K, \end{cases} \end{equation} where $p\geq 2^*-1$, $20$. Since $00$ and $\mu_0>0$ such that for all $0<\lambda<\lambda_0$ and $0<\mu<\mu_0$, there exits $M=M(\lambda, \mu)>0$ satisfying \[ M\geq \lambda M^q\|e\|^q_\infty + M^s\|e\|^s_\infty + \mu K^{p-r+1}M^{r-1}\|e\|^{r-1}_\infty. \] As a consequence, the function $Me$ satisfies \begin{align*} -\Delta(Me)=(-\Delta e)M=M & \geq \lambda M^q\|e\|^q_\infty + M^s\|e\|^s_\infty + \mu K^{p-r+1}M^{r-1}\|e\|^{r-1}_\infty\\ & \geq \lambda(Me)^q+(Me)^s+\mu g_K(Me), \end{align*} and hence it is a supersolution of \eqref{ePK}. Moreover, any $\varepsilon\varphi_1$ is a subsolution of \eqref{ePK}, provided \[ -\Delta(\varepsilon\varphi_1)=\lambda_1\varepsilon\varphi_1 \leq \lambda(\varepsilon\varphi_1)^q+(\varepsilon\varphi_1)^s +\mu g_K(\varepsilon\varphi_1), \] which is satisfied for all $\varepsilon>0$ small enough and all $\lambda>0, \mu>0$. Taking $\varepsilon$ possibly smaller, we also have \[ \varepsilon\varphi_10$ we have \begin{align*} J_K(tu) &=\frac{t^2}{2}\|u\|^2-\frac{\lambda t^{q+1}}{q+1}\int_\Omega u^{q+1}{\rm d}x-\frac{ t^{s+1}}{s+1}\int_\Omega u^{s+1}{\rm d}x-\mu\int_\Omega G_K(tu){\rm d}x\\ &=\frac{t^2}{2}\|u\|^2-\frac{\lambda t^{q+1}}{q+1}\int_\Omega u^{q+1}{\rm d}x-\frac{ t^{s+1}}{s+1}\int_\Omega u^{s+1}{\rm d}x\\ &\quad -\frac{\mu t^{p+1}}{p+1}\int_{\{|tu|\leq K\}}u^{p+1}{\rm d}x-\frac{\mu t^r K^{p-r+1}}{r}\int_{\{|tu|\geq K\}}u^r{\rm d}x. \end{align*} Since \[ \int_{\{|tu|\leq K\}}u^{p+1}{\rm d}x\to0\quad \text{as }t\to+\infty, \] and $10$ is independent of $\mu$. \end{lemma} \begin{proof} Let $c_M$ be the mountain pass level for $J_K$ obtained in previous section, \begin{align*} c_M &\geq J_K(u_i)=J_K(u_i)-\frac{1}{s+1}J_K'(u_i)u_i \\ &=\Big(\frac{1}{2}-\frac{1}{s+1}\Big)\int_\Omega|\nabla u_i|^2{\rm d}x-\Big(\frac{\lambda}{q+1}-\frac{\lambda}{s+1}\Big)\int_\Omega u_i^{q+1}{\rm d}x\\ &\quad +\mu\int_\Omega\Big[\frac{1}{s+1}g_K(u_i)u_i-G_K(u_i)\Big]{\rm d}x \\ &\geq \Big(\frac{1}{2}-\frac{1}{s+1}\Big)\int_\Omega|\nabla u_n|^2{\rm d}x-\Big(\frac{\lambda}{q+1}-\frac{\lambda}{s+1}\Big)\int_\Omega u_i^{q+1}{\rm d}x \\ &\geq \Big(\frac{1}{2}-\frac{1}{s+1}\Big)\|u_i\|^2 -\Big(\frac{\lambda}{q+1}-\frac{\lambda}{s+1}\Big)S_b^{q+1}\|u_i\|^{q+1}. \end{align*} Since $10$, let us define the following functions \begin{equation*} u_L(x)= \begin{cases} u(x),&\text{if }u(x)\leq L,\\ L, &\text{if }u(x)>L, \end{cases} \end{equation*} $z_L=u_L^{2(\beta-1)}u$ and $w_L=u_L^{\beta-1}u$, where $\beta>1$ will be fixed later. Taking $z_L$ as a test function in \eqref{3.1}, we obtain \begin{equation}\label{3.2} \int_\Omega\nabla u\nabla z_L{\rm d}x=\lambda\int_\Omega u^q z_L{\rm d}x+\int_\Omega u^sz_L{\rm d}x+\mu\int_\Omega g_K(u)z_L{\rm d}x. \end{equation} The left hand side of the above equality is \begin{align*} \int_\Omega\nabla u\nabla z_L{\rm d}x &=\int_\Omega\nabla u\nabla (u_L^{2(\beta-1)}u){\rm d}x\\ &=\int_\Omega|\nabla u|^2u_L^{2(\beta-1)}{\rm d}x +2(\beta-1)\int_\Omega uu_L^{2(\beta-1)-1}\nabla u \nabla u_L {\rm d}x\\ &=\int_\Omega|\nabla u|^2u_L^{2(\beta-1)}{\rm d}x +2(\beta-1)\int_{\{0\leq u\leq L\}}|\nabla u|^2u_L^{2(\beta-1)}{\rm d}x \end{align*} Since $2(\beta-1)\int_{\{0\leq u\leq L\}}|\nabla u|^2u_L^{2(\beta-1)}{\rm d}x\geq 0$, it follows that \begin{equation} \label{3.3} \begin{aligned} &\int_\Omega|\nabla u|^2u_L^{2(\beta-1)}{\rm d}x\\ &\leq \int_\Omega\nabla u\nabla z_L{\rm d}x \\ &=\lambda\int_\Omega u^q z_L{\rm d}x+\int_\Omega u^s z_L{\rm d}x+\mu\int_\Omega g_K(u)z_L{\rm d}x \\ &=\lambda\int_\Omega u^q u_L^{2(\beta-1)}u{\rm d}x+\int_\Omega u^s u_L^{2(\beta-1)}u{\rm d}x +\mu\int_\Omega g_K(u)u_L^{2(\beta-1)}u{\rm d}x \\ &\leq \lambda\int_\Omega u^{q+1} u_L^{2(\beta-1)}{\rm d}x+\int_\Omega u^{s+1}u_L^{2(\beta-1)}{\rm d}x +\mu K^{p-r+1}\int_\Omega u^r u_L^{2(\beta-1)}{\rm d}x \end{aligned} \end{equation} where we have used \eqref{2.3}, \eqref{3.1} and \eqref{3.2}. By \eqref{1.3}, we obtain \begin{equation} \label{3.4} \begin{aligned} &\Big(\int_\Omega |w_L|^{2^*}\Big)^{2/2^*}{\rm d}x\\ &\leq S^{-1}\int_\Omega |\nabla w_L|^2{\rm d}x = S^{-1}\int_\Omega |\nabla (u_L^{\beta-1}u)|^2{\rm d}x \\ &= S^{-1}\int_\Omega |(\beta-1)u u_L^{\beta-2}\nabla u_L +u_L^{\beta-1}\nabla u|^2{\rm d}x \\ &\leq 2S^{-1}\int_\Omega |(\beta-1)u u_L^{\beta-2}\nabla u_L|^2{\rm d}x +\int_\Omega |u_L^{\beta-1}\nabla u|^2{\rm d}x \\ &=2S^{-1}\int_{\{0\leq u\leq L\}}(\beta-1)^2 u_L^{2(\beta-1)}|\nabla u|^2{\rm d}x +\int_\Omega u_L^{2(\beta-1)}|\nabla u|^2{\rm d}x \\ &\leq 2S^{-1}[(\beta-1)^2+1]\int_\Omega u_L^{2(\beta-1)}|\nabla u|^2{\rm d}x \\ &=2S^{-1}\beta^2\big[\big(\frac{\beta-1}{\beta}\big)^2+\frac{1}{\beta^2}\big] \int_\Omega u_L^{2(\beta-1)}|\nabla u|^2{\rm d}x \\ &\leq 4S^{-1}\beta^2\int_\Omega u_L^{2(\beta-1)}|\nabla u|^2{\rm d}x. \end{aligned} \end{equation} Since $u_L\leq u, 01$ and $u\in L^{2^*}(\Omega)$, the inequality \eqref{3.9} holds for this choice of $\beta$. Now, let us choose a sequence of positive numbers $\{\beta_m\}_m$ in the following way: \begin{equation}\label{3.10} \beta_0=\beta,\quad \beta_m=\beta^m. \end{equation} Noting that $\beta^2\alpha^*=\beta2^*$, we have \begin{equation}\label{3.11} \beta_{m+1}\alpha^*=\beta^{m+1}\alpha^*=\beta^{m-1} \left(\beta^2\alpha^*\right)=\beta^{m-1}\cdot \beta2^*=\beta^m2^*=\beta_m2^*. \end{equation} In view of \eqref{3.10} and \eqref{3.11}, we can restate \eqref{3.9} as \[ \|u\|_{\beta_m\alpha^*}\leq\beta_{m-1}^{\frac{1}{\beta_{m-1}}} C_{\lambda,\mu,K}^{\frac{1}{2\beta_{m-1}}} \max\{1,\|u\|_{\beta_{m-1}\alpha^*}\}. \] Define $b_m=\max\{1,\|u\|_{\beta_m\alpha^*}\}$, then \begin{equation} \label{3.12} \begin{aligned} \log b_m &\leq \frac{1}{\beta_{m-1}}\log\beta_{m-1}+\frac{1}{2\beta_{m-1}}\log C_{\lambda,\mu,K}+\log b_{m-1} \\ &\leq \sum_{i=1}^{m-1}\frac{\log\beta_i}{\beta_i}+\frac{\log C_{\lambda,\mu,K}}{2}\sum_{i=1}^{m-1}\frac{1}{\beta_i}+\log b_0\\ &=\sum_{i=1}^{m-1}\frac{\log\beta^i}{\beta^i}+\frac{\log C_{\lambda,\mu,K}}{2}\sum_{i=1}^{m-1}\frac{1}{\beta^i} +\log\max\{1,\|u\|_{2^*}\}. \end{aligned} \end{equation} Notice that \[ \sum_{i=1}^{m-1}\frac{\log\beta^i}{\beta^i}+\frac{\log C_{\lambda,\mu,K}}{2}\sum_{i=1}^{m-1}\frac{1}{\beta^i}\to C_\beta+C'_\beta\log C_{\lambda,\mu,K}:=C_0 \] as $m\to\infty$, with \[ C_\beta=\sum_{i=1}^{\infty}\frac{\log\beta^i}{\beta^i},\quad 2C'_\beta=\sum_{i=1}^{\infty}\frac{1}{\beta^i},~\beta>1. \] Taking the limit as $m\to\infty$ in \eqref{3.12}, and using \eqref{3.6}, we deduce that \[ \|u\|_\infty\leq e^{C_0}\max\{1,\|u\|_{2^*}\} \leq e^{C_0}\max\{1,\gamma S^{-1/2}\}. \] We should pay attention that $C_0$ depends on $\lambda,\mu,K, |\Omega|, S, \gamma$ and control the dependence of $C_0$ on $|\Omega|,S$ and $\gamma$. Now, to prove our theorem, we need choose suitable value of $\lambda,\mu,K$ carefully, such that \begin{equation}\label{3.13} e^{C_0}\max\big\{1,\gamma S^{-1/2}\big\} =e^{C_\beta+C'_\beta\log C_{\lambda,\mu,K}}\max\{1,\gamma S^{-1/2}\}\leq K. \end{equation} this is equivalent to \[ C^{C'_\beta}_{\lambda,\mu,K}e^{C_\beta}\max\{1,\gamma S^{-1/2}\}\leq K. \] That is, \begin{align*} &\Big[4S^{-1}(1+|\Omega|)(2\lambda+\gamma^{s-1} S^{-\frac{s-1}{2}}) \\ &+\mu K^{p-r+1}(\gamma S^{-1/2}+1)^{2^*}\Big]^{C'_\beta} e^{C_\beta}\max\{1,\gamma S^{-1/2}\}\leq K. \end{align*} Choose $K>0$ to satisfy the inequality (note that $\lambda\leq\lambda_0$) \begin{equation}\label{3.14} \Big(\frac{K}{e^{C_\beta}\max\{1,\gamma S^{-1/2}\}}\Big)^{1/C'_\beta} -4S^{-1}(1+|\Omega|)(2\lambda+\gamma^{s-1} S^{-\frac{s-1}{2}})>0, \end{equation} and then fix $\mu_K$ such that \begin{align*} \mu_K &:=\frac{1}{K^{p-r+1}(\gamma S^{-1/2}+1)^{2^*}} \Big[\Big(\frac{K}{e^{C_\beta}\max\{1,\gamma S^{-1/2}\}}\Big)^{1/C'_\beta}\\ &\quad- 4S^{-1}(1+|\Omega|)(2\lambda+\gamma^{s-1} S^{-\frac{s-1}{2}})\Big]. \end{align*} Let $\mu^*:=\min\{\mu_0,\mu_K\}$, we obtain \eqref{3.13} for $\mu\in[0,\mu^*]$ and some $K$ satisfying \eqref{3.14}. This completes the proof. \end{proof} Since $u_i\in L^{\infty}(\Omega),~i=1, 2$, using bootstrap technique, we obtain $u_i\in C^{2,\alpha}(\Omega)$, $i=1, 2$ for some constant $0<\alpha<1$. \begin{corollary} \label{coro3.1} The solutions obtained in Theorem \ref{thm2.2} are smooth; i.e., $u_i$ belongs to $ C^{2,\alpha}(\overline{\Omega})$, $i=1, 2$ for some constant $0<\alpha<1$. \end{corollary} \begin{remark} \rm Our method could be generalized to obtain analogous results for equations with more general perturbation $h(x,u)$, i.e. \begin{equation}\label{3.15} \begin{gathered} -\Delta u=\lambda u^q+u^s+\mu h(x,u)\quad\text{in }\Omega,\\ u>0\quad\text{in }\Omega,\\ u=0\quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $00$ is a constant. \end{remark} We have the following result similar to Theorem \ref{thm1.1}. \begin{theorem} Problem \eqref{3.15} has at least two positive solutions for $\lambda$ and $\mu$ small enough. \end{theorem} \begin{proof} In fact, the truncation of $h(x,t)$ can be given by \begin{equation}\label{3.16} h_K(x,t)=\begin{cases} h(x,t),&|t|\leq K,\\ \min\{h(x,t),C_0(1+K^{p-r}t^{r-1})\},&|t|>K, \end{cases} \end{equation} where $r\in(2,2^*)$. Then $h_K$ satisfies \begin{equation}\label{3.17} |h_K(x,t)|\leq C_0 (1+K^{p-r}|t|^{r-1}). \end{equation} The truncated problem associated to problem \eqref{3.15} becomes \begin{equation}\label{3.18} \begin{gathered} -\Delta u=\lambda u^q+u^s+\mu h_K(x,u)\quad\text{in }\Omega,\\ u>0\quad\text{in }\Omega,\\ u=0\quad\text{on }\partial\Omega, \end{gathered} \end{equation} By \eqref{3.16}--\eqref{3.18} and a technique similar to the one in Theorem \ref{thm1.1}, we can prove that the two solutions (one is a local minimum, the other is of Mountain Pass type) for truncated problem \eqref{3.18} satisfy $\|u_i\|\leq K$, $i=1,2$. In view of the definition of $h_K$, we know that $u_1$ and $u_2$ are also solutions of the original problem \eqref{3.15}. \end{proof} \subsection*{Acknowledgements} This work is supported by the NSF of China (No. 11471147 and 11201206), and by the Fundamental Research Funds for the Central Universities (No. lzujbky-2014-25). \begin{thebibliography}{99} \bibitem{Alves} C. O. Alves, A. El Hamidi; \emph{Nehari manifold and existence of positive solutions to a class of quasilinear problems}, Nonlinear Anal. \textbf{60} (2005), 611--624. \bibitem{ABC} A. Ambrosetti, H. Brezis, G. Cerami; \emph{Combined effects of concave and convex nonlinearities in some elliptic problems}, J. Funct. Anal. \textbf{122} (1994), 519--543. \bibitem{AR} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal. \textbf{14} (1973), 349--381. \bibitem{Brown} K. J. Brown, T. F. Wu; \emph{A fibering map approach to a semilinear elliptic boundary value problem}, Electron. J. Differential Equations \textbf{69} (2007), 1--9. \bibitem{Corr} F. J. S. A. Corr\^{e}a, G. M. Figueiredo; \emph{On an elliptic equation of p-Kirchhoff type via variational methods}, Bull. Austral. Math. Soc. \textbf{74} (2006), 263--277. \bibitem{FZ} F. Faraci, L. Zhao; \emph{Bounded multiple solutions for $p$-laplacian problems with arbitrary perturbations} (to appear). \bibitem{Gar} J. Garcia-Azorero, I. Peral, J. D. Rossi; \emph{A convex-concave problem with a nonlinear boundary condition}, J. Differential Equations \textbf{198} (2004), 91--128. \bibitem{MMT} S. Miyajima, D. Motreanu, M. Tanaka; \emph{Multiple existence results of solutions for the Neumann problems via super- and sub-solutions}, J. Funct. Anal. \textbf{262} (2012), 1921--1953. \bibitem{PH} P. H. Rabinowitz; \emph{Variational methods for nonlinear elliptic eigenvalue problems}, Indiana Univ. Math. J. \textbf{23} (1974), 729--754. \bibitem{Willem} M. Willem; \emph{Minimax theorems}, Birkh\"auser, Boston, 1996. \bibitem{WTF} T. F. Wu; \emph{Multiple positive solutions for a class of concave-convex eliptic problems in $\mathbb{R}^N_+$ involving sign-changing weight}, J. Funct. Anal. \textbf{258} (2010), 99--131. \bibitem{ZL} J. Zhang, X. Liu; \emph{The Nehari manifold for a semilinear elliptic problem with the nonlinear boundary condition}, J. Math. Anal. Appl. \textbf{400} (2013), 100--119. \bibitem{ZZ} L. Zhao, P. Zhao; \emph{The existence of threee solutions for $p$-Laplacian problems with critical and supercritical growth}, Rocky Mountain J. Math. \textbf{44} (2014) 1383--1397. \bibitem{ZC} P. Zhao, C. Zhong; \emph{Positive solutions of elliptic equations involving both supercritical and sublinear growth}, Houston J. Math. \textbf{28} (2002), 649--663. \end{thebibliography} \end{document}