\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 84, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/84\hfil Ground state solutions] {Ground state solutions for semilinear elliptic equations with zero mass in $\mathbb{R}^N$} \author[J. Liu, J.-F. Liao, C.-L. Tang \hfil EJDE-2015/84\hfilneg] {Jiu Liu, Jia-Feng Liao, Chun-Lei Tang} \address{Jiu Liu \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{jiuliu2011@163.com} \address{Jia-Feng Liao \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China.\newline School of Mathematics and Computational Science, Zunyi Normal College, Zunyi, \newline Guizhou 563002, China} \email{liaojiafeng@163.com} \address{Chun-Lei Tang (corresponding author)\newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{tangcl@swu.edu.cn, Phone +86 23 68253135, Fax +86 23 68253135} \thanks{Submitted January 17, 2015. Published April 7, 2015.} \subjclass[2000]{35J20, 35J61} \keywords{ Semilinear elliptic equation; zero mass; Nehari manifold; \hfill\break\indent ground state solution} \begin{abstract} In this article, we study the semilinear elliptic equation \begin{gather*} -\Delta u=|u|^{p(x)-2}u, \quad x\in \mathbb{R}^N\\ u\in D^{1,2}(\mathbb{R}^N), \end{gather*} where $N\geq3$, $p(x)=\begin{cases} p, &x\in\Omega\\ 2^*, &x\not\in\Omega, \end{cases}$ with $20$ such that $t_uu\in\mathcal{N}$. \end{lemma} \begin{proof} For any $u\in D^{1,2}(\mathbb{R}^N)\backslash\{0\}$, define \[ f(t):=I(tu)=\frac{t^2}{2}\|u\|_{D^{1,2}(\mathbb{R}^N)}^2 -\frac{t^p}{p}\int_{\Omega}|u|^{p}\,dx-\frac{t^{2^*}}{2^*} \int_{\mathbb{R}^N\backslash\Omega}|u|^{2^*}\,dx,\quad \forall t\in(0,+\infty). \] Then one has \[ f'(t)t=\langle I'(tu),tu\rangle=t^2\|u\|_{D^{1,2}(\mathbb{R}^N)}^2 -t^{p}\int_{\Omega}|u|^{p}\,dx-t^{2^*}\int_{\mathbb{R}^N\backslash\Omega}|u|^{2^*}\,dx. \] Combining $20$ for $t>0$ small enough and $f'(t)t<0$ for $t>0$ large enough. Thus there exists $t_u>0$ such that $f'(t_u)t_u=\langle I'(t_uu),t_uu\rangle=0$. That is $t_uu\in\mathcal{N}$. The proof is complete. \end{proof} \begin{lemma} \label{lem3.3} Assume that $N\geq3$, $20$. \end{lemma} \begin{proof} For any $u\in\mathcal{N}$, one has \begin{align*} \|u\|_{D^{1,2}(\mathbb{R}^N)}^2 &= \int_{\Omega}|u|^{p}\,dx+\int_{\mathbb{R}^N\backslash\Omega}|u|^{2^*}\,dx\\ &\leq C\|u\|_{D^{1,2}(\mathbb{R}^N)}^p+C\|u\|_{D^{1,2}(\mathbb{R}^N)}^{2^*}, \end{align*} which implies that there exists $\alpha>0$ such that \begin{equation} \label{formula8} \|u\|_{D^{1,2}(\mathbb{R}^N)}\geq\alpha,\quad \forall u\in\mathcal{N}. \end{equation} Thus for any $u\in\mathcal{N}$, we have \begin{equation}\label{formula10} \begin{aligned} I(u)&= I(u)-\frac{1}{p}\langle I'(u),u\rangle\\ &= \big(\frac{1}{2}-\frac{1}{p}\big)\|u\|_{D^{1,2}(\mathbb{R}^N)}^2 +\big(\frac{1}{p}-\frac{1}{2^*}\big)\int_{\mathbb{R}^N\backslash\Omega}|u|^{2^*}\,dx\\ &\geq \big(\frac{1}{2}-\frac{1}{p}\big)\|u\|_{D^{1,2}(\mathbb{R}^N)}^2\\ &\geq \big(\frac{1}{2}-\frac{1}{p}\big)\alpha^2. \end{aligned} \end{equation} Hence $m>0$. The proof is complete. \end{proof} \begin{lemma} \label{lem3.4} Assume that $N\geq3$, $20$. Since $\Omega$ is bounded, there exists $R>0$ such that $\Omega\subset B_R:=\{x\in\mathbb{R}^N:|x|0$ such that $B_r(z_0):=\{x\in\mathbb{R}^N:|x-z_0|0$. This completes the proof. \end{proof} \subsection*{Acknowledgments} The authors would like to thank Professor C. O. Alves for his suggestioins. This research was supported by the National Natural Science Foundation of China (No. 11471267), by the Fundamental Research Funds for the Central Universities (No. XDJK2015D015), and by the Natural Science Foundation of Education of Guizhou Province (No. LKZS[2014]22) \begin{thebibliography}{00} \bibitem{AC} E. Acerbi, G. Mingione; \emph{Regularity results for stationary electrorheological fluids}, Arch. Ration. Mech. Anal. 164 (2002) 213--259. \bibitem{AL0} C. O. Alves; \emph{Existence of solution for a degenerate $p(x)$-Laplacian equation in $\mathbb{R}^N$}, J. Math. Anal. Appl. 345 (2008) 731--742. \bibitem{AL1} C. O. Alves, P. C. Carri\~{a}o, E. S. Medeiros; \emph{Multiplicity of solutions for a class of a quasilinear problem in exterior domains with Neumann conditions}, Abstr. Appl. Anal. (2004) 251--268. \bibitem{AL} C. O. Alves, M. A. S. Souto, M. Montenegro; \emph{Existence of solution for two classes of elliptic problems in $\mathbb{R}^N$ with zero mass}, J. Differential Equations 252 (2012) 5735--5750. \bibitem{AN} S. N. Antontsev, S. I. Shmarev; \emph{Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions}, Nonlinear Anal. 65 (2006) 722--755. \bibitem{AU} T. Aubin; \emph{Probl\'{e}mes isop\'{e}rim\'{e}triques et espaces de Sobolev}, J. Differential Geom. 11 (1976) 573--598. \bibitem{AZ1} A. Azzollini, A. Pomponio; \emph{On a ``zero mass'' nonlinear Schr\"{o}dinger equation}, Adv. Nonlinear Stud. 7 (2007) 599--628. \bibitem{AZ2} A. Azzollini, A. Pomponio; \emph{Compactness results and applications to some ``zero mass'' elliptic problems}, Nonlinear Anal. 69 (2008) 3559--3576. \bibitem{BE} H. Berestycki, P. L. Lions; \emph{Nonlinear scalar field equations, I-Existence of a ground state}, Arch. Ration. Mech. Anal. 82 (1983) 313--346. \bibitem{CA} L. A. Caffarelli, B. Gidas, J. Spruck; \emph{Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth}, Comm. Pure Appl. Math. 42 (1989) 271--297. \bibitem{CA1} L. Calota; \emph{On some quasilinear elliptic equations with critical Sobolev exponents and non-standard growth conditions}, Bull. Belg. Math. Soc. Simon Stevin 15 (2) (2008) 249--256. \bibitem{CH} A. Chambolle, P.L. Lions; \emph{Image recovery via total variation minimization and related problems}, Numer. Math. 76 (1997) 167--188. \bibitem{MA} R.A. Mashiyev, B. Cekic, M. Avci, Z. Yucedag; \emph{Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition}. Complex Var. Elliptic Equ. 57 (2012) 579--595. \bibitem{MI} M. Mihailescu, V. Radulescu; \emph{On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent}, Proc. Am. Math. Soc. 135 (2007) 2929--2937. \bibitem{MO} M. Montenegro, R. Abreu; \emph{Existence of a ground state solution for an elliptic problem with critical growth in an exterior domain}. Nonlinear Anal. 109 (2014) 341--349 \bibitem{PU} P. Pucci, Q. Zhang; \emph{Existence of entire solutions for a class of variable exponent elliptic equations}, J. Differential Equations 257 (2014) 1529--1566. \bibitem{RU} M. Ruzicka; \emph{Electrorheological fluids: modeling and mathematical theory}, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. \bibitem{TA} G. Talenti; \emph{Best constant in Sobolev inequality}, Ann. Mat. Pura Appl. 110 (1976) 353--372. \bibitem{WI} M. Willem; \emph{Minimax Theorems}, Birkh\"{a}user, 1996. \end{thebibliography} \end{document}