\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 88, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/88\hfil Lyapunov-type inequalities] {Lyapunov-type inequalities for fractional boundary-value problems} \author[M. Jleli, B. Samet \hfil EJDE-2015/88\hfilneg] {Mohamed Jleli, Bessem Samet} \address{Mohamed Jleli \newline Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia} \email{jleli@ksu.edu.sa} \address{Bessem Samet \newline Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia} \email{bsamet@ksu.edu.sa} \thanks{Submitted January 2, 2015. Published April 10, 2015.} \subjclass[2000]{4A08, 34A40, 26D10, 33E12} \keywords{Lyapunov's inequality; Caputo's fractional derivative; \hfill\break\indent Sturm-Liouville boundary condition} \begin{abstract} In this article, we establish some Lyapunov-type inequalities for fractional boundary-value problems under Sturm-Liouville boundary conditions. As applications, we obtain intervals where linear combinations of certain Mittag-Leffler functions have no real zeros. We deduce also nonexistence results for some fractional boundary-value problems. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} The well-known Lyapunov result \cite{L} states that if a nontrivial solution to the boundary-value problem \begin{gather*} u''(t)+q(t)u(t)=0,\quad a\frac{4}{b-a}\,. $$ This result found many practical applications in differential and difference equations (oscillation theory, disconjugacy, eigenvalue problems, etc.); see \cite{C,CL,Pa,Y,Y2,Z} and references therein. The search for Lyapunov-type inequalities in which the starting differential equation is constructed via fractional differential operators has begun very recently. The first work in this direction is due to Ferreira \cite{F0}, where he derived a Lyapunov-type inequality for differential equations depending on the Riemann-Liouville fractional derivative; that is, for the boundary-value problem \begin{gather*} (_aD^\alpha u)(t)+q(t)u(t)=0,\quad a \Gamma(\alpha) \big(\frac{4}{b-a}\big)^{\alpha-1}\,. $$ Clearly, if we let $\alpha=2$ in the above inequality, one obtains Lyapunov's standard inequality. In \cite{F}, a Lyapunov-type inequality was obtained by the same author for the Caputo fractional boundary-value problem \begin{gather*} (^C_aD^\alpha u)(t)+q(t)u(t)=0,\quad a \frac{\Gamma(\alpha) \alpha^\alpha}{[(\alpha-1)(b-a)]^{\alpha-1}}\,. $$ For other works on Lyapunov-type inequalities for fractional boundary-value problems we refer the reader to \cite{J1,J2}. Motivated by the above works, we consider a Caputo fractional differential equation with Sturm-Liouville boundary conditions. More precisely, we consider the fractional boundary-value problem \begin{equation}\label{SL} (^C_aD^\alpha u)(t)+q(t)u(t)=0,\quad a0$, $r\geq 0$ and $q: [a,b]\to \mathbb{R}$ is a continuous function. We distinguish two cases: the case $\frac{r}{p}>\frac{b-a}{\alpha-1}$ and the case $0\leq \frac{r}{p}\leq \frac{b-a}{\alpha-1}$. For each case, a Lyapunov-type inequality is derived. The obtained results recover several existing inequalities from the literature. As applications, we obtain intervals where linear combinations of certain Mittag-Leffler functions have no real zeros. We deduce also nonexistence results for some fractional boundary-value problems. Before presenting our main results, let us start by recalling the concepts of the Riemann-Liouville fractional integral and the Caputo fractional derivative of order $\alpha\geq 0$. For more details, we refer to \cite{K}. Let $\alpha\geq 0$ and let $f$ be a real function defined on a certain interval $[a,b]$. The Riemann-Liouville fractional integral of order $\alpha$ is defined by $$ (_aI^0f)(t)=f(t) $$ and $$ (_aI^\alpha f)(t)=\frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1}f(s)\,ds,\quad \alpha>0,\, t\in [a,b]. $$ The Caputo fractional derivative of order $\alpha\geq 0$ is defined by $$ (^C_aD^0f)(t)=f(t) $$ and $$ (^C_aD^\alpha f)(t)=(_aI^{m-\alpha}D^mf)(t),\quad \alpha>0, $$ where $m$ is the smallest integer greater or equal to $\alpha$. \section{Main results} \subsection{Integral representation of the solution} We start by writing \eqref{SL}-\eqref{BC} in its equivalent integral form. \begin{lemma}\label{lem1} $u\in C[a,b]$ is a solution to \eqref{SL}-\eqref{BC} if and only if $u$ is a solution to the integral equation $$ u(t)=\int_a^b G(t,s)q(s)u(s)\,ds, \quad t\in [a,b], $$ where $G$, the Green function associated to \eqref{SL}-\eqref{BC}, is given by $$ G(t,s)=\frac{1}{\Gamma(\alpha)} \begin{cases} \frac{(\frac{r}{p}+t-a)(b-s)^{\alpha-1}}{\gamma}-(t-s)^{\alpha-1}, & a\leq s\leq t\leq b,\\ \frac{(\frac{r}{p}+t-a)(b-s)^{\alpha-1}}{\gamma}, & a\leq t\leq s\leq b, \end{cases} $$ where $\gamma=\frac{r}{p}+b-a$. \end{lemma} \begin{proof} The general solution to \eqref{SL} is $$ u(t)=c_0+c_1(t-a)-\frac{1}{\Gamma(\alpha)}\int_a^t (t-s)^{\alpha-1}q(s)u(s)\,ds, $$ where $c_0$ and $c_1$ are real constants. Taking the derivative of $u(t)$, we obtain $$ u'(t)=c_1-\frac{(\alpha-1)}{\Gamma(\alpha)}\int_a^t (t-s)^{\alpha-2}q(s)u(s)\,ds. $$ Using the boundary condition $pu(a)-ru'(a)=0$, we obtain \begin{equation}\label{c1} pc_0-rc_1=0. \end{equation} The boundary condition $u(b)=0$ gives us \begin{equation}\label{c2} c_0+c_1(b-a)-\frac{1}{\Gamma(\alpha)}\int_a^b (b-s)^{\alpha-1}q(s)u(s)\,ds=0. \end{equation} Then \eqref{c1} and \eqref{c2} yield $$ c_0=\frac{r}{p}c_1=\frac{r}{p\gamma\Gamma(\alpha)}\int_a^b (b-s)^{\alpha-1} q(s)u(s)\,ds\,. $$ Therefore, \begin{align*} u(t)&=\frac{r}{p\gamma\Gamma(\alpha)}\int_a^b (b-s)^{\alpha-1}q(s)u(s)\,ds +\frac{(t-a)}{\gamma\Gamma(\alpha)}\int_a^b (b-s)^{\alpha-1}q(s)u(s)\,ds\\ &\quad -\frac{1}{\Gamma(\alpha)}\int_a^t (t-s)^{\alpha-1}q(s)u(s)\,ds, \end{align*} which concludes the proof. \end{proof} \subsection{Green function estimates} Let \begin{gather*} g_1(t,s)=\frac{(\frac{r}{p}+t-a)(b-s)^{\alpha-1}}{\gamma}-(t-s)^{\alpha-1},\quad a\leq s\leq t\leq b,\\ g_2(t,s)=\frac{(\frac{r}{p}+t-a)(b-s)^{\alpha-1}}{\gamma},\quad a\leq t\leq s\leq b. \end{gather*} We distinguish two cases. \subsection*{Case $\frac{r}{p}>\frac{b-a}{\alpha-1}$} \begin{lemma}\label{G1} Suppose that $$ \frac{r}{p}>\frac{b-a}{\alpha-1}\,. $$ Then \begin{gather*} 0\leq G(t,s)\leq G(s,s), \quad (t,s)\in [a,b]\times [a,b],\\ \max_{a\leq s\leq b}G(s,s)=\frac{1}{\Gamma(\alpha)} \frac{\frac{r}{p}(b-a)^{\alpha-1}}{(\frac{r}{p}+b-a)}\,. \end{gather*} \end{lemma} \begin{proof} Obviously, the function $g_2$ satisfies the following inequalities: $$ 0\leq g_2(t,s)\leq g_2(s,s), \quad a\leq t\leq s\leq b. $$ Now, let us compute the derivative of $g_2(s,s)$ on $(a,b)$. After some simplifications, we obtain $$ (g_2(s,s))'=\frac{(b-s)^{\alpha-2}}{\gamma} \Big(-\alpha s+(1-\alpha)(\frac{r}{p}-a)+b\Big). $$ Then $(g_2(s,s))'$ has a unique zero, attained at the point $$ s^*=\frac{b+(1-\alpha)(\frac{r}{p}-a)}{\alpha}\,. $$ It is easy to see that $(g_2(s,s))'>0$ on $(-\infty,s^*)$ and $(g_2(s,s))'<0$ on $(s^*,b)$. On the other hand, from the condition $\frac{r}{p}>\frac{b-a}{\alpha-1}$, we obtain easily that $s^*\frac{b-a}{\alpha-1}$, we observe easily that $b-(\alpha-1)\gammab-(\alpha-1)\gamma$, i.e. $t^*>b$. In this case, $\partial_t g_1(t,s)<0$, i.e. $g_1(\cdot,s)$ is strictly decreasing and, since $g_1(b,s)=0$, we conclude that $$ 0\leq g_1(t,s)\leq g_1(s,s)=g_2(s,s) \leq g_2(a,a) \leq \frac{\frac{r}{p}(b-a)^{\alpha-1}}{(\frac{r}{p}+b-a)}\quad a\leq s\leq t\leq b, $$ which concludes the proof. \end{proof} \subsection*{Case $0\leq \frac{r}{p}\leq \frac{b-a}{\alpha-1}$} \begin{lemma}\label{G2} Suppose that $$ 0\leq \frac{r}{p}\leq \frac{b-a}{\alpha-1}\,. $$ Then $$ \Gamma(\alpha)|G(t,s)|\leq \max\{\mathcal{A}(\alpha,r/p), \mathcal{B}(\alpha,r/p)\}, \quad (t,s)\in [a,b]\times [a,b], $$ where \begin{gather*} \mathcal{A}(\alpha,r/p)= \frac{(b-a)^{\alpha-1}}{(\frac{r}{p}+b-a)} \bigg(\Big(\frac{(b-a)^{\alpha-1}}{(\frac{r}{p}+b-a) (\alpha-1)^{\alpha-1}}\Big)^{\frac{1}{\alpha-2}}(2-\alpha)-\frac{r}{p}\bigg),\\ \mathcal{B}(\alpha,r/p)= (\frac{r}{p}+b-a)^{\alpha-1} \frac{(\alpha-1)^{\alpha-1}}{\alpha^\alpha}\,. \end{gather*} \end{lemma} \begin{proof} Following the proof of Lemma \ref{G1}, we have $$ 0\leq g_2(t,s)\leq g_2(s,s), \quad a\leq t\leq s\leq b $$ and $(g_2(s,s))'$ has a unique zero, attained at the point $$ s^*=\frac{b+(1-\alpha)(\frac{r}{p}-a)}{\alpha}\,. $$ Under the condition $0\leq \frac{r}{p}\leq \frac{b-a}{\alpha-1}$, it is easy to observe that $s^*\in [a,b]$. Moreover, $(g_2(s,s))'>0$ on $(-\infty,s^*)$ and $(g_2(s,s))'<0$ on $(s^*,b)$. Then $$ \max_{a\leq s\leq b} g_2(s,s)=g_2(s^*,s^*)=\mathcal{B}(\alpha,r/p). $$ Thus we have $$ 0\leq g_2(t,s)\leq \mathcal{B}(\alpha,r/p),\quad a\leq t\leq s\leq b. $$ Following the proof of Lemma \ref{G1}, for a fixed $s\in [a,b)$, $\partial_t g_1(t,s)=0$ if and only if $$ t=t^*=s+\big[\frac{(b-s)^{\alpha-1}}{\gamma(\alpha-1)}\big]^{\frac{1}{\alpha-2}}, $$ provided $t^*\leq b$, i.e. as long as $a\leq s\leq b-(\alpha-1)\gamma$. So, if $s>b-(\alpha-1)\gamma$ (i.e. $\partial_t g_1(t,s)$ has no zeros), then $\partial_t g_1(t,s)<0$, i.e. $g_1(\cdot,s)$ is strictly decreasing and, since $g_1(b,s)=0$, we obtain $$ \max_{s\leq t\leq b}g_1(t,s)=g_1(s,s)=g_2(s,s),\quad s\in (b-(\alpha-1)\gamma,b). $$ It is easy to check that $$ s^*\in (b-(\alpha-1)\gamma,b). $$ Thus we have $$ 0\leq g_1(t,s)\leq g_2(s^*,s^*)=\mathcal{B}(\alpha,r/p),\quad b-(\alpha-1)\gamma0$, $\frac{r}{p}>\frac{b-a}{\alpha-1}$ and $q: [a,b]\to \mathbb{R}$ is a continuous function, then \begin{equation}\label{E1} \int_a^b |q(s)|\,ds \geq \big(1+\frac{p}{r} (b-a)\big)\frac{\Gamma(\alpha)} {(b-a)^{\alpha-1}}\,. \end{equation} \end{theorem} \begin{proof} Let $X=C[a,b]$ be the Banach space endowed with the norm $$ \|y\|_\infty=\max\{|y(t)|: a\leq t\leq b\}. $$ It follows from Lemma \ref{lem1} that $$ u(t)=\int_a^b G(t,s)q(s)u(s)\,ds, \quad t\in [a,b]. $$ We obtain $$ |u(t)|\leq \|u\|_\infty \max|G(t,s)|_{a\leq t,s\leq b} \int_a^b |q(s)|\,ds. $$ Now, Lemma \ref{G1} yields $$ \|u\|_\infty\leq \|u\|_\infty \frac{1}{\Gamma(\alpha)}\frac{\frac{r}{p}(b-a)^{\alpha-1}}{(\frac{r}{p}+b-a)}\int_a^b |q(s)|\,ds, $$ from which the inequality \eqref{E1} follows. \end{proof} Similarly, using Lemma \ref{lem1} and Lemma \ref{G2}, we obtain the following result. \begin{theorem}\label{thm2} If there exists a nontrivial continuous solution of the fractional boundary-value problem \begin{gather*} (^C_aD^\alpha u)(t)+q(t)u(t)=0,\quad a0$, $0\leq \frac{r}{p}\leq \frac{b-a}{\alpha-1}$ and $q: [a,b]\to \mathbb{R}$ is a continuous function, then \begin{equation}\label{E2} \int_a^b |q(s)|\,ds \geq \frac{\Gamma(\alpha)}{\max\{\mathcal{A}(\alpha,r/p),\mathcal{B}(\alpha,r/p)\}}\,. \end{equation} \end{theorem} \subsection{Particular cases} \subsection*{Case $r=0$} In the case $r=0$, from Theorem \ref{thm2}, taking $r=0$ in \eqref{E2}, we obtain $$ \int_a^b |q(s)|\,ds \geq \frac{\Gamma(\alpha)} {\max\{\mathcal{A}(\alpha,0),\mathcal{B}(\alpha,0)\}}\,. $$ On the other hand, we have \begin{gather*} \mathcal{A}(\alpha,0) =\frac{2-\alpha}{(\alpha-1)^{\frac{\alpha-1}{\alpha-2}}}(b-a)^{\alpha-1},\\ \mathcal{B}(\alpha,0)= \frac{(\alpha-1)^{\alpha-1}}{\alpha^\alpha}(b-a)^{\alpha-1}\,. \end{gather*} Using the inequality (see \cite{F}) $$ \frac{2-\alpha}{(\alpha-1)^{\frac{\alpha-1}{\alpha-2}}}\leq \frac{(\alpha-1)^{\alpha-1}}{\alpha^\alpha},\quad 1<\alpha<2, $$ we deuce that $$ \max\{\mathcal{A}(\alpha,0),\mathcal{B}(\alpha,0)\}=\mathcal{B}(\alpha,0). $$ Thus we obtain the following result (see \cite[Theorem 1]{F}). \begin{corollary} \label{cor2.6} If there exists a nontrivial continuous solution of the fractional boundary-value problem \begin{gather*} (^C_aD^\alpha u)(t)+q(t)u(t)=0,\quad a0$ such that $$ 2-\delta< \alpha<2 \Rightarrow \frac{2-\alpha}{\alpha^{\frac{1}{\alpha-2}}}>2. $$ Thus for $2-\delta< \alpha<2$, we have $$ \max\big\{\mathcal{A}\big(\alpha,\frac{b-a}{\alpha-1}\big), \mathcal{B}\big(\alpha,\frac{b-a}{\alpha-1}\big)\big\} =\mathcal{A}\big(\alpha,\frac{b-a}{\alpha-1}\big). $$ Hence we have the following result. \begin{corollary} There exists $\delta>0$ such that if there exists a nontrivial continuous solution of the fractional boundary-value problem \begin{gather*} (^C_aD^\alpha u)(t)+q(t)u(t)=0,\quad a 0$ be fixed. The complex function $$ E_{\alpha,\beta}(z)=\sum_{k=0}^\infty \frac{z^k}{\Gamma(k\alpha+\beta)},\quad \alpha>0, \beta>0, z\in \mathbb{C} $$ is analytic in the whole complex plane; it will be referred to \cite{M,P} as the Mittag-Leffler function with parameters $(\alpha,\beta)$. Next, using the above Lyapunov-type inequalities, we give intervals where linear combinations of some Mittag-Leffler functions have no real zeros. \begin{theorem} Let $1<\alpha<2$. The Mittag-Leffler function $E_{\alpha,1}(x)$ has no real zeros for $$ x\in (-\Gamma(\alpha),0]. $$ \end{theorem} \begin{proof} Let $(a,b)=(0,1)$, and consider the fractional Sturm-Liouville eigenvalue problem \begin{gather*} (^C_0D^\alpha u)(t)+\lambda u(t)=0,\quad 00\quad\text{and}\quad E_{\alpha,1}(-\lambda)=0. $$ The corresponding eigenfunctions are $$ u(t)=AE_{\alpha,1}(-\lambda t^\alpha),\quad t\in [0,1]. $$ By Corollary \ref{u}, if a real eigenvalue $\lambda$ exists; i.e., $E_{\alpha,1}(-\lambda)=0$, then $\lambda \geq \Gamma(\alpha)$, which concludes the proof. \end{proof} \begin{theorem} \label{thm3.2} Let $1<\alpha<2$, $p>0$, $\frac{r}{p}>\frac{1}{\alpha-1}$. The linear combination of Mittag-Leffler functions given by $$ pE_{\alpha,2}(x)+qrE_{\alpha,1}(x) $$ has no real zeros for $$ x\in (-(1+\frac{p}{r})\Gamma(\alpha),0]. $$ \end{theorem} \begin{proof} Let $(a,b)=(0,1)$, and consider the following fractional Sturm-Liouville eigenvalue problem \begin{gather*} (^C_0D^\alpha u)(t)+\lambda u(t)=0,\quad 00\quad\text{and}\quad pE_{\alpha,2}(-\lambda)+qrE_{\alpha,1}(-\lambda)=0. $$ The corresponding eigenfunctions are $$ u(t)=A\big(E_{\alpha,1}(-\lambda t^\alpha) +\frac{p}{r}tE_{\alpha,2}(-\lambda t^\alpha)\big), \quad t\in [0,1]. $$ By Theorem \ref{thm1}, if a real eigenvalue $\lambda$ exists, then $\lambda \geq (1+\frac{p}{r})\Gamma(\alpha)$, which concludes the proof. \end{proof} \subsection{Applications to fractional boundary-value problems} In this section, we apply the results on the Liapunov-type inequalities obtained previoulsy to study the nonexistence of solutions for certain fractional boundary-value problems. Consider the fractional boundary-value problem \begin{equation}\label{ex1} (^C_0D^\alpha u)(t)+q(t)u(t)=0,\quad 0