\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 94, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/94\hfil Uniform Boundedness of solutions] {Boundedness and large-time behavior of solutions for a Gierer-Meinhardt system of three equations} \author[S. Henine, S. Abdelmalek, A. Youkana \hfil EJDE-2015/94\hfilneg] {Safia Henine, Salem Abdelmalek, Amar Youkana} \address{Safia Henine \newline Department of Mathematics, University of Batna 05000, Algeria} \email{henine.safia@yahoo.fr} \address{Salem Abdelmalek \newline Department of Mathematics, College of Sciences, Yanbu Taibah University, Saudi Arabia. \newline Department of Mathematics, University of Tebessa 12002, Algeria} \email{sabdelmalek@taibahu.edu.sa} \address{Amar Youkana \newline Department of Mathematics, University of Batna 05000, Algeria} \email{youkana\_amar@yahoo.fr} \thanks{Submitted January 8, 2015. Published April 14, 2015.} \subjclass[2000]{35K57} \keywords{Gierer-Meinhardt system; Lyapunov functional; \hfill\break\indent Uniform boundedness} \begin{abstract} The aim of this work is to prove the uniform boundedness and the existence of global solutions for Gierer-Meinhardt model of three substance described by reaction-diffusion equations with Neumann boundary conditions. Based on a Lyapunov functional we establish the asymptotic behaviour of the solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In this article, we consider the Gierer-Meinhardt type system of three equations \begin{equation}\label{1.1} \begin{gathered} \frac{\partial u}{\partial t}-a_1\Delta u=-b_1u+f(u,v,w),\quad \text{in } \mathbb{R}^{+}\times\Omega,\\ \frac{\partial v}{\partial t}-a_2\Delta v=-b_2v+g(u,v,w),\quad \text{in } \mathbb{R}^{+}\times\Omega,\\ \frac{\partial w}{\partial t}-a_{3}\Delta w=-b_{3}w+h(u,v,w),\quad \text{in } \mathbb{R}^{+}\times\Omega, \end{gathered} \end{equation} where \begin{gather*} f(u,v,w)=\rho_1(x,u,v,w)\frac{u^{p_1}}{v^{q_1}(w^{r_1}+c)}+\sigma_1(x),\\ g(u,v,w)=\rho_2(x,u,v,w)\frac{u^{p_2}}{v^{q_2}w^{r_2}}+\sigma_2(x),\\ h(u,v,w)=\rho_{3}(x,u,v,w)\frac{u^{p_{3}}}{v^{q_{3}}w^{r_{3}}}+\sigma_{3}(x), \end{gather*} with homogeneous Neumann boundary conditions \begin{equation}\label{1.2} \frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta} =\frac{\partial w}{\partial \eta}=0\quad \text{on } \mathbb{R}^{+}\times\partial \Omega , \end{equation} and initial data \begin{equation}\label{1.3} u(0,x)=\varphi _1(x),\quad v(0,x)=\varphi _2(x), \quad w(0,x)=\varphi_{3}(x),\quad \text{in}\; \Omega. \end{equation} Here $\Omega$ is an open bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega$ and outer normal $\eta(x)$. The constants $c,p_{i}, q_{i}, r_{i}, a_{i}$ and $b_{i}$, $i=1,2,3$ are real numbers such that \begin{equation*} c,p_{i}, q_{i}, r_{i}\geq 0, \quad\text{and} \quad a_{i}, b_{i}>0, \end{equation*} and \begin{equation}\label{con} 0\max \{ N,2\},\\ \frac{\partial \varphi_1}{\partial\eta}=\frac{\partial \varphi_2}{\partial\eta}=0 \quad \text{on } \partial\Omega\quad \text{and}\quad\varphi_1\geq 0, \varphi_2>0 \quad \text{in }\bar{\Omega}. \end{gathered} \end{equation} Jiang \cite{6} obtained the same results as Masuda and Takahashi \cite{8} by another method such that \eqref{C1} and \eqref{cond init} are satisfied. Abdelmalek, et al \cite{ll} considered the following Gierer-Meinhardt system of three equations \begin{equation}\label{1.1.} \begin{gathered} \frac{\partial u}{\partial t}-a_1\Delta u=-b_1u+\frac{u^{p_1}}{v^{q_1}(w^{r_1}+c)} +\sigma,\quad \text{in }\mathbb{R}^{+}\times\Omega,\\ \frac{\partial v}{\partial t}-a_2\Delta v=-b_2v+\frac{u^{p_2}}{v^{q_2}w^{r_2}}, \quad \text{in } \mathbb{R}^{+}\times\Omega,\\ \frac{\partial w}{\partial t}-a_{3}\Delta w=-b_{3}w +\frac{u^{p_{3}}}{v^{q_{3}}w^{r_{3}}},\quad \text{in } \mathbb{R}^{+}\times\Omega, \end{gathered} \end{equation} with homogeneous Neumann boundary conditions \begin{equation}\label{1.2.} \frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta} =\frac{\partial w}{\partial \eta}=0\quad \text{on } \mathbb{R}^{+}\times\partial \Omega , \end{equation} and the initial data \begin{equation}\label{1.3.} \begin{gathered} u(0,x)=\varphi _1(x)>0,\\ v(0,x)=\varphi _2(x)>0,\\ w(0,x)=\varphi_{3}(x) >0 \end{gathered} \end{equation} in $\Omega$, and $\varphi_{i}\in C(\bar{\Omega})$ for all $i=1,2,3$. Under the condition \eqref{con} and by using a suitable Lyapunov functional, they studied the global existence of solutions for the system \eqref{1.1.}--\eqref{1.3.}. Their method gave only the existence of global solutions, and they did not obtain results about the uniform boundedness of solutions on $ (0,+\infty) $. For the asymptotic behavior of the solutions, Wu and Li \cite{7} considered the system \begin{equation} \begin{gathered} \frac{\partial u_1}{\partial t}=a_1\Delta u_1-u_1 +\frac{u_1^{p}}{u_2^{q}}+\sigma _1( x) ,\quad \text{in }\mathbb{R}^{+}\times \Omega , \\ \tau \frac{\partial u_2}{\partial t}=a_2\Delta u_2-u_2+\frac{ u_1^{r}}{u_2^{s}}+\sigma _2( x) ,\quad \text{in }\mathbb{R}^{+}\times \Omega , \end{gathered} \label{Wu} \end{equation} with the constant of relaxation time $\tau>0$, and they proved that if $\sigma_1\equiv\sigma_2\equiv 0$ and $\tau >\frac{q}{p-1}$, then $( u(t,x),v(t,x)) \to (0,0)$ uniformly on $\bar{\Omega}$ as $t\to +\infty$. Under suitable conditions on $\tau$ and on the initial data, Suzuki and Takagi \cite{14.,14..} also studied the behavior of the solutions for \eqref{Wu} with the constant of relaxation time $\tau$. We first treat the uniform boundedness of the solutions for Gierer-Meinhardt system of three equations by proving that the Lyapunov function argument proposed in \cite{ll} can be adapted to our situation. Interestingly, we show that the same Lyapunov function satisfies a differential inequality from which the uniform boundedness of the solutions is deduced for any positive time. Then under reasonable conditions on the coefficients $b_1, b_2$ and $b_{3}$, and by using the uniform boundedness of the solutions and the Lyapunov function which is non-increasing function, we deal with the long-time behavior of solutions as the time goes to $+\infty$. In particular we are concerned with $\sigma_1\equiv 0$, $\sigma_2$ and $ \sigma_{3}$ are non-negative constants to assure that \[ {\lim_{t\to +\infty}}\| u(t,.)\| _{\infty} ={\lim_{t\to +\infty}}\| v(t,.)-\frac{\sigma_2}{b_2}\| _{\infty} ={\lim_{t\to +\infty}}\| w(t,.)-\frac{\sigma_{3}}{b_{3}}\| _{\infty}=0\,. \] \section{Notation and preliminary results} \subsection{Existence of local solutions} For $i=1, 2, 3$ we set \begin{gather*} \b{$\varphi_{i}$}={\min_{x\in \bar{\Omega}}}\varphi_{i} (x),\quad \bar{\varphi_{i}}={\max_{x\in \bar{\Omega}}}\varphi_{i}(x),\\ \b{$\rho_{i}$}={\min_{x\in \bar{\Omega},\xi\in \mathbb{R}^{3}_{+}}} \rho_{i}(x,\xi),\quad \bar{\rho_{i}}={\max_{x\in \bar{\Omega},\xi\in \mathbb{R}^{3}_{+}}} \rho_{i}(x,\xi) ,\\ \b{$\sigma_{i}$}= {\min_{x\in \bar{\Omega}}} \sigma_{i}(x),\quad \bar{\sigma_{i}}={\max_{x\in\bar{\Omega}}} \sigma_{i}(x). \end{gather*} The basic existence theory for abstract semi linear differential equations directly leads to a local existence result to system \eqref{1.1}--\eqref{1.3} (see, Henry \cite{5}). All solutions are classical on $( 0,T)\times \Omega$, $T0,\\ v(t,x)\geq e^{-b_2t}\underline{\varphi_2} >0,\\ w(t,x)\geq e^{-b_{3}t}\underline{\varphi_3} >0. \end{gather*} \item[(2)] \begin{gather*} u(t,x)\geq \min\big( \underline{\sigma_1}\,/b_1,\underline{\varphi_1}\big) =m_1,\\ v(t,x)\geq \min\big( \underline{\sigma_2}\,/b_2 ,\underline{\varphi_2}\big)=m_2,\\ w(t,x)\geq \min\big( \underline{\sigma_3}\,/b_{3} ,\underline{\varphi_3}\big)=m_{3}. \end{gather*} \end{itemize} \end{lemma} The proof of the above lemma follows immediate from the maximum principle. \section{Boundedness of solutions} For proving the existence of global solutions for \eqref{1.1}--\eqref{1.3}, it suffices to prove that the solutions remains bounded in $(0,T)\times\bar{\Omega}$. One of the main results of this paper reads as follows. \begin{theorem}\label{th1} Assume that \eqref{con} holds. Let $( u, v, w) $ be a solution to \eqref{1.1}--\eqref{1.3}, and let \begin{equation}\label{1.8} L(t)={\int_{\Omega}}\frac{u^{\alpha}(t,x)}{v^{\beta}(t,x)w^{\gamma}(t,x)}dx,\quad \text{for all } t\in (0,T), \end{equation} where $\alpha, \beta$ and $\gamma$ are positive constants satisfying the following conditions: \begin{equation}\label{c1} \quad\alpha>2\max\Big(1, \frac{3b_2+ b_{3}}{b_1}\Big), \quad \frac{1}{\beta}>\frac{(a_1+a_2)^2}{2a_1a_2}, \end{equation} and \begin{equation}\label{c2} \Big(\frac{1}{2\beta}-\frac{(a_1+a_2)^2}{4a_1a_2}\Big) \Big(\frac{1}{2\gamma}-\frac{(a_1+a_{3})^2}{4a_1a_{3}}\Big) >\Big(\frac{(\alpha-1)(a_2+a_{3})}{2\alpha \sqrt{a_2a_{3}}}-\frac{(a_1+a_2)(a_1+a_{3})}{4\sqrt{a_1^2a_2a_{3}}}\Big)^2. \end{equation} Then there exists a positive constant $C$ such that for all $t\in (0,T)$, \begin{equation}\label{ly} \frac{d}{dt} L(t)\leq -( \alpha b_1-3b_2\beta-\gamma b_{3}) L(t)+C. \end{equation} \end{theorem} \begin{corollary}\label{coro} Under the assumptions of Theorem \ref{th1}, all solutions of \eqref{1.1}--\eqref{1.3} with positive initial data in $C(\bar{\Omega})$ are global and uniformly bounded on $(0,+\infty)\times \bar{\Omega}$. \end{corollary} Before proving the above theorem we first need the following technical lemma. \begin{lemma}\label{l2} Suppose that $x>0$, $y>0$ and $z>0$, then for each group of indices $r, p, q, \delta, \theta, \lambda$ and $\xi$ satisfies $\lambda0$, we have \begin{equation*} \frac{x^{p}}{y^{q}z^{r}} \leq \Lambda\frac{x^{\delta}}{y^{\theta}z^{\xi}} +\Lambda^{-\frac{p-\lambda}{\delta-p}}\frac{x^{\lambda}}{y^{\eta_1}z^{\eta_2}}, \end{equation*} where \begin{gather*} \eta_1 = [q(\delta-\lambda)-\theta(p-\lambda)](\delta-p)^{-1},\\ \eta_2 = [r(\delta-\lambda)-\xi(p-\lambda)](\delta-p)^{-1}. \end{gather*} \end{lemma} \begin{proof} We can write \[ \frac{x^{p}}{y^{q}z^{r}} =\Big( x^{\frac{\delta(p-\lambda)}{\delta-\lambda}} y^{-\frac{\theta(p-\lambda)}{\delta-\lambda}} z^{-\frac{\xi(p-\lambda)}{\delta-\lambda}}\Big) \Big( x^{\frac{\lambda(\delta-p)}{\delta-\lambda}} y^{\frac{\theta(p-\lambda)}{\delta-\lambda}-q}z^{\frac{\xi(p-\lambda)} {\delta-\lambda}-r}\Big). \] By using Young's inequality we obtain \begin{equation*} \frac{x^{p}}{y^{q}z^{r}}\leq \varepsilon \frac{x^{\delta}}{y^{\theta}z^{\xi}} +\varepsilon^{-\frac{p-\lambda}{\delta-p}} \frac{x^{\lambda}}{y^{\eta_1}z^{\eta_2}}, \end{equation*} where \begin{gather*} \eta_1=[q(\delta-\lambda)-\theta(p-\lambda)](\delta-p)^{-1},\\ \eta_2=[r(\delta-\lambda)-\xi(p-\lambda)](\delta-p)^{-1}. \end{gather*} Then Lemma \ref{l2} is proved. \end{proof} \begin{proof}[Proof of Theorem \ref{th1}] Let $(u,v,w)$ be the solution of system \eqref{1.1}--\eqref{1.3} in $(0,T)$. Differentiating $L(t)$ respect to $t$, we obtain $L'(t)=I+J$, where \begin{gather*} I=a_1\alpha{\int _{\Omega}} \frac{u^{\alpha-1}}{v^{\beta}w^{\gamma}}\Delta u \,dx -a_2\beta\int _{\Omega} \frac{u^{\alpha}}{v^{\beta+1}w^{\gamma}}\Delta v \,dx-a_{3}\gamma\int _{\Omega} \frac{u^{\alpha}}{v^{\beta}w^{\gamma+1}}\Delta w \,dx, \\ \begin{aligned} J&=( -\alpha b_1+\beta b_2 +\gamma b_{3}) L(t) +\alpha {\int _{\Omega}}\rho_1(x,u,v,w) \frac{u^{\alpha -1+p_1}}{v^{\beta +q_1}w^{\gamma+r_1}} dx \\ &\quad-\beta {\int _{\Omega}}\rho_2(x,u,v,w) \frac{u^{\alpha+p_2}}{v^{\beta+1+q_2}w^{\gamma+r_2}} dx -\gamma{\int_{\Omega}}\rho_{3}(x,u,v,w) \frac{u^{\alpha+p_{3}}}{v^{\beta+q_{3}}w^{\gamma+1+r_{3}}} dx\\ &\quad +\alpha {\int _{\Omega}}\sigma_1(x) \frac{u^{\alpha-1}}{v^{\beta}w^{\gamma}}dx -\beta{\int _{\Omega}} \sigma_2(x)\frac{u^{\alpha}}{v^{\beta+1}w^{\gamma}} dx -\gamma{\int_{\Omega}} \sigma_{3}(x)\frac{u^{\alpha}}{v^{\beta}w^{\gamma+1}}dx. \end{aligned} \end{gather*} Using Green's formula, for all $t\in (0,T)$, we obtain (see \cite{ll}) \begin{equation}\label{3.5.} I\leq 0. \end{equation} Now let us estimate the term $J$. For all $t\in(0,T)$ we have \begin{equation}\label{3.5} \begin{aligned} J&\leq\big( -\alpha b_1+\beta b_2 +\gamma b_{3}\big) L(t) +\alpha\bar{\rho_1} {\int _{\Omega}} \frac{u^{\alpha -1+p_1}}{v^{\beta +q_1}w^{\gamma+r_1}} dx -\beta \underline{\rho_2} {\int _{\Omega}}\frac{u^{\alpha+p_2}}{v^{\beta+1+q_2} w^{\gamma+r_2}}dx\\ &\quad -\underline{\rho_3}\gamma{\int_{\Omega}} \frac{u^{\alpha+p_{3}}}{v^{\beta+q_{3}}w^{\gamma+1+r_{3}}} dx +\alpha\bar{\sigma_1} {\int _{\Omega}}\frac{u^{\alpha-1}}{v^{\beta}w^{\gamma}}dx. \end{aligned} \end{equation} Applying Lemma \ref{l2} with $p=\alpha-1$, $q=\theta=\beta$, $r=\gamma$, $\delta=\alpha$, $\xi=\gamma$ and $\lambda=0$, one gets \begin{equation}\label{3.6} \alpha\bar{\sigma_1}{\int_{\Omega}} \frac{u^{\alpha-1}}{v^{\beta}w^{\gamma}}dx \leq \beta b_2{\int_{\Omega}}\frac{u^{\alpha}}{v^{\beta}w^{\gamma}}dx +C_1{\int_{\Omega}}\frac{1}{v^{\beta}w^{\gamma}}dx, \end{equation} where $C_1 =\alpha \bar{\sigma_1}( \frac{\beta b_2}{\alpha\bar{\sigma_1}}) ^{1-\alpha}$.\\ Now, we choose $\epsilon_1\in (0,\alpha)$ such that \begin{gather*} \beta+\alpha\frac{q_1p_2-(p_1-1)(1+q_2)}{\epsilon_1(p_2+1-p_1)} +\alpha\frac{q_1-1-q_2}{p_2+1-p_1}\geq 0,\\ \gamma+\alpha \frac{r_1p_2-r_2(p_1-1)}{\epsilon_1(p_2-p_1+1)} +\alpha\frac{r_1-r_2}{p_2-p_1+1} \geq 0. \end{gather*} Again, applying Lemma \ref{l2} for $p=\alpha-1+p_1$, $q=\beta+q_1$, $r=\gamma+r_1$, $\delta=\alpha+p_2$, $\theta=\beta+1+q_2$, $\xi=\gamma+r_2$ and $\lambda=\alpha-\epsilon_1$, we obtain \begin{equation} \alpha\bar{\rho_1}{\int_{\Omega}} \frac{u^{\alpha-1+p_1}}{v^{q_1+\beta}w^{r_1+\gamma}}dx \leq \beta\underline{\rho_2}{\int_{\Omega}} \frac{u^{p_2+\alpha}}{v^{q_2+\beta+1} w^{r_2+\gamma}}dx +C_2{\int_{\Omega}}\frac{u^{\alpha-\epsilon_1}}{v^{\eta_1}w^{\eta_2}}dx, \end{equation} where \begin{gather*} \eta_1=\beta+[ q_1p_2-(q_2+1)(p_1-1) +\epsilon_1(q_1-q_2-1)] (p_2-p_1+1)^{-1},\\ \eta_2=\gamma+[ r_1p_2-r_2(p_1-1) +\epsilon_1(r_1-r_2)] (p_2-p_1+1)^{-1}, \end{gather*} and $C_2=\alpha\bar{\rho_1}( \frac{\beta\underline{\rho_2}}{\alpha\bar{\rho_1}} )^{-\frac{p_1-1+\epsilon_1}{p_2-p_1+1}}$. In an analoguous way, we have \begin{equation} C_2{\int_{\Omega}}\frac{u^{\alpha-\epsilon_1}}{v^{\eta_1\eta_2}}dx \leq b_2\beta{\int_{\Omega}} \frac{u^{\alpha}}{v^{\beta}w^{\gamma}}dx +C_{3}{\int_{\Omega}}\frac{1}{v^{\eta_{3}\eta_{4}}}dx, \end{equation} where \begin{gather*} \eta_{3}=\beta+\alpha[\epsilon_1^{-1} (q_1p_2-(q_2+1)(p_1-1)) +q_1-q_2-1]( p_2-p_1+1)^{-1}\geq 0,\\ \eta_{4}=\gamma+\alpha[ \epsilon_1^{-1}(r_1p_2-r_2(p_1-1)) +r_1-r_2] (p_2-p_1+1)^{-1}\geq0, \end{gather*} and $C_{3}=C_2( \frac{b_2\beta}{C_2}) ^{-\frac{\alpha-\epsilon_1}{\epsilon_1}}$. Or, we choose $\epsilon_2\in(0,\alpha)$ such that \begin{gather*} \beta+\alpha\frac{q_1p_{3}-q_{3}(p_1-1)}{\epsilon_2(p_{3}-p_1+1)} +\alpha\frac{q_1-q_{3}}{p_{3}-p_1+1} \geq 0,\\ \gamma+\alpha\frac{r_1p_{3}-(r_{3}+1)(p_1-1)}{\epsilon_2(p_{3}-p_1+1)} +\alpha\frac{r_1-r_2-1}{p_{3}-p_1+1} \geq 0. \end{gather*} Now, applying Lemma \ref{l2} with $p=p_1+\alpha-1$, $q=q_1+\beta$, $r=r_1+\gamma$, $\delta=p_{3}+\alpha$, $\theta=q_{3}+\beta$, $\xi=r_{3}+\gamma+1$ and $\lambda=\alpha-\epsilon_2$, we find that \begin{equation} \alpha\bar{\rho_1}{\int_{\Omega}}\frac{u^{\alpha-1+p_1}}{v^{\beta+q_1} w^{\gamma+r_1}}dx\leq\gamma\underline{\rho_3} {\int_{\Omega}}\frac{u^{\alpha+p_{3}}}{v^{\beta+q_{3}}w^{\gamma+1+r_{3}}}dx +C_{4}{\int_{\Omega}} \frac{u^{\alpha-\epsilon_2}}{v^{\eta_{5}}w^{\eta_{6}}}dx, \end{equation} where \begin{gather*} \eta_{5}=\beta+[q_1p_{3}-q_{3}(p_1-1)+\epsilon_2(q_1-q_{3})](p_{3}-p_1+1)^{-1},\\ \eta_{6}=\gamma+[r_1p_{3}-(r_{3}+1)(p_1-1) +\epsilon_2(r_1-r_{3}-1)](p_{3}-p_1+1)^{-1}, \end{gather*} and $C_{4}=\alpha\bar{\rho_1} ( \frac{\gamma\underline{\rho_3}}{\alpha\bar{\rho_1}}) ^{-\frac{p_1-1+\epsilon_2}{p_{3}-p_1+1}}$. In the same way, we obtain \begin{equation}\label{3.10} C_{4}{\int_{\Omega}}\frac{u^{\alpha-\epsilon_2}}{v^{\eta_{5}}w^{\eta_{6}}}dx \leq b_2\beta{\int_{\Omega}}\frac{u^{\alpha}}{v^{\beta}w^{\gamma}}dx + C_{5}{\int_{\Omega}}\frac{1}{v^{\eta_{7}}w^{\eta_{8}}}dx, \end{equation} where \begin{gather*} \eta_{7}= \beta+\alpha[ \epsilon_2^{-1} (q_1p_{3}-q_{3}(p_1-1))+q_1-q_{3}](p_{3}-p_1+1)^{-1}\geq 0,\\ \eta_{8}=\gamma+\alpha[ \epsilon_2^{-1}(r_1p_{3}-(r_{3}+1)(p_1-1))+r_1-r_{3}-1](p_{3}-p_1+1)^{-1}\geq0, \end{gather*} and $C_{5}=C_{4}( \frac{b_2\beta}{C_{4}}) ^{-\frac{\alpha-\epsilon_2}{\epsilon_2}}$. From \eqref{3.5}--\eqref{3.10} there exists a positive constant $C$ such that \begin{equation*} L'(t)\leq -(b_1\alpha-3\beta b_2-\gamma b_{3})L(t)+C,\quad \forall t\in (0,T). \end{equation*} Then the proof is complete. \end{proof} \begin{proof}[Proof of Corollary \ref{coro}] Since \begin{equation*} L(t)\leq L(0)+\frac{C}{\alpha b_1-3b_2\beta-\gamma b_{3}}\quad \text{for all } t\in (0,T), \end{equation*} then there exist non-negative constants $C_{6}$, $C_{7}$ and $C_{8}$ independent of $t$ such that \begin{gather*} \| f(u,v,w)-b_1u\|_{N} \leq C_{6},\\ \| g(u,v;w)-b_2v\|_{N} \leq C_{7},\\ \| h(u,v,w)-b_{3}w\|_{N} \leq C_{8}. \end{gather*} Since $(\varphi_1,\varphi_2,\varphi_{3})\in (C(\bar{\Omega}))^{3}$, we conclude from the $L^{p}$-$L^{q}$-estimate (see Henry \cite{5}, Haraux and Kirane \cite{4}) that \begin{equation*} u\in L^{\infty}( (0,T),L^{\infty}(\Omega)) ,\quad v\in L^{\infty}( (0,T),L^{\infty}(\Omega)),\quad w\in L^{\infty}( (0,T),L^{\infty}(\Omega)).\\ \end{equation*} Finally, we deduce that the solutions of the system \eqref{1.1}--\eqref{1.3} are global and uniformly bounded on $(0,+\infty)\times\bar{\Omega}$. \end{proof} \begin{remark} \rm It is clear that the results of this section are valid when $\sigma_1\equiv\sigma_2\equiv\sigma_{3}\equiv 0$. \end{remark} \section{Asymptotic behavior of the solutions} In this section, we study the asymptotic behavior of the solutions for the system \begin{equation}\label{4.1} \begin{gathered} \frac{\partial u}{\partial t}-a_1\Delta u=-b_1u+f(u,v,w), \quad \text{in } \mathbb{R}^{+}\times\Omega,\\ \frac{\partial v}{\partial t}-a_2\Delta v=-b_2v+g(u,v,w), \quad \text{in } \mathbb{R}^{+}\times\Omega,\\ \frac{\partial w}{\partial t}-a_{3}\Delta w=-b_{3}w+h(u,v,w), \quad \text{in } \mathbb{R}^{+}\times\Omega, \end{gathered} \end{equation} where \begin{gather*} f(u,v,w)=\rho_1(x,u,v,w)\frac{u^{p_1}}{v^{q_1}(w^{r_1}+c)}+\sigma_1,\\ g(u,v,w)=\rho_2(x,u,v,w)\frac{u^{p_2}}{v^{q_2}w^{r_2}}+\sigma_2,\\ h(u,v,w)=\rho_{3}(x,u,v,w)\frac{u^{p_{3}}}{v^{q_{3}}w^{r_{3}}}+\sigma_{3}, \end{gather*} with homogeneous Neumann boundary conditions \begin{equation} \frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta} =\frac{\partial w}{\partial \eta}=0\quad \text{on } \mathbb{R}^{+}\times\partial \Omega , \end{equation} and initial data \begin{equation}\label{4.4} u(0,x)=\varphi _1(x),\quad v(0,x)=\varphi _2(x),\quad w(0,x)=\varphi_{3}(x)\quad \text{in } \Omega. \end{equation}\\ Here $\sigma_1$, $\sigma_2$ and $\sigma_{3}$ are non negative constants. Before stating the results, let us expose some simple facts concluded from the result of the previous section. From Theorem \ref{th1}, and by using classical method of a semi group and a power fractional (see \cite{5}) we can find the positive constants $M_1, M_2$ and $M_{3}$ explicitly (see \cite{mmy}) such that \[ \| u(t,.)\|_{\infty} M_1,\quad \| v(t,.)\| _\infty \leq M_2,\quad \| w(t,.)\| _\infty \leq M_{3}. \] Let us consider the same function as in Theorem \ref{th1}, \begin{equation*} L(t)={\int _{\Omega}}\frac{u^{\alpha}(t,x)}{v^{\beta}(t,x)w^{\gamma}(t,x)}dx,\quad \forall t\in (0,+\infty), \end{equation*} where $\alpha, \beta$ and $\gamma$ are positive constants satisfying the following conditions \[% \label{c1} \quad\alpha>2\max(1, \frac{3b_2+ b_{3}}{b_1}), \quad \frac{1}{\beta}>\frac{(a_1+a_2)^2}{2a_1a_2}, \] and \[ %\label{c2} \Big(\frac{1}{2\beta}-\frac{(a_1+a_2)^2}{4a_1a_2}\Big) \Big(\frac{1}{2\gamma}-\frac{(a_1+a_{3})^2}{4a_1a_{3}}\Big) >\Big(\frac{(\alpha-1)(a_2+a_{3})}{2\alpha \sqrt{a_2a_{3}}}-\frac{(a_1+a_2)(a_1+a_{3})}{4\sqrt{a_1^2a_2a_{3}}}\Big)^2. \] The main result in this section reads as follows. \begin{theorem}\label{th2} Assume \eqref{con} holds. Let $(u,v,w)$ be the solution of \eqref{4.1}--\eqref{4.4} in $(0,+\infty) $. Suppose that $\sigma_1=0$, and \begin{equation}\label{conb} b_1>\frac{\beta b_2+\gamma b_{3}+K}{2}, \end{equation} where \[ K=\frac{\alpha \bar{\rho_1}(\frac{\beta\underline{\rho_2}} {\alpha\bar{\rho_1}})^{-\frac{p_1-1}{p_2-p_1+1}}} {m_2^{[q_1p_2-(q_2+1)(p_1-1)](p_2-p_1+1)^{-1}}m_{3}^{[r_1p_2-r_2(p_1-1)] (p_2-p_1+1)^{-1}}}, \] or \begin{equation*} K=\frac{\alpha \bar{\rho_1} (\frac{\gamma\underline{\rho_3}}{\alpha\bar{\rho_1}}) ^{-\frac{p_1-1}{p_{3}-p_1+1}}}{{m_2^{[q_1p_{3}-q_{3}(p_1-1)] (p_{3}-p_1+1)^{-1}}m_{3}^{[r_1p_{3}-(r_{3}+1)(p_1-1)](p_{3}-p_1+1)^{-1}}}}. \end{equation*} Then for all $t\in(0,+\infty)$ we have \[ L(t)\leq {\int_{\Omega}}\frac{\varphi_1^{\alpha}(x)} {\varphi_2^{\beta}(x)\varphi_{3}^{\gamma}(x)}dx. \] \end{theorem} \begin{corollary}\label{coro2} Under the assumptions of Theorem \ref{th2}, for all positive initial data in $C(\bar{\Omega})$ we have \begin{gather*} \| u(t,.)\| _{\infty}\to 0 \quad \text{as }t\to +\infty, \\ \| v(t,.)-\frac{\sigma_2}{b_2}\| _{\infty}\to 0\quad\text{as }t\to +\infty,\\ \| w(t,.)-\frac{\sigma_{3}}{b_{3}}\| _{\infty}\to 0\quad \text{as }t\to +\infty. \end{gather*} \end{corollary} \begin{proof}[Proof of Theorem \ref{th2}] From \eqref{3.5.} and \eqref{3.5}, we obtain for all $t\in (0,+\infty)$ \begin{equation}\label{4.8} \begin{aligned} L'(t)&\leq -(\alpha b_1-\beta b_2-\gamma b_2)L(t) +\alpha\bar{\rho_1}{\int_{\Omega}}\frac{u^{\alpha-1+p_1}}{v^{\beta+q_1} w^{\gamma+r_1}}dx\\ &\quad -\beta \underline{\rho_2} {\int_{\Omega}} \frac{u^{\alpha+p_2}}{v^{\beta+1+q_2}w^{\gamma+r_2}}dx -\gamma \underline{\rho_3}{\int_{\Omega}}\frac{u^{\alpha+p_{3}}} {v^{\beta+q_{3}}w^{\gamma+1+r_{3}}}dx. \end{aligned} \end{equation} Now, we apply Lemma \ref{l2} for $p=\alpha-1+p_1$, $q=\beta+q_1$, $ r=\gamma+r_1$, $\delta=\alpha+p_2$, $\theta=\beta+1+q_2$, $\xi=\gamma+r_2$ and $\lambda=\alpha$ we obtain \begin{equation}\label{4.9} \alpha\bar{\rho_1}{\int_{\Omega}}\frac{u^{\alpha-1+p_1}}{v^{\beta+q_1} w^{\gamma+r_1}}dx \leq \beta\underline{\rho_2}{\int_{\Omega}} \frac{u^{\alpha+p_2}}{v^{\beta+1+q_2}w^{\gamma+r_2}}dx +A_1{\int_{\Omega}} \frac{u^{\alpha}}{v^{\eta_{9}}w^{\eta_{10}}}dx, \end{equation} where \begin{gather*} \eta_{9} = \beta +[q_1p_2-(q_2+1)(p_1-1)](p_2-p_1+1)^{-1}>0,\\ \eta_{10}= \gamma+ [ r_1p_2-r_2(p_1-1)](p_2-p_1+1)^{-1}>0, \end{gather*} and $A_1=\alpha\bar{\rho_1} ( \frac{\beta\underline{\rho_2}}{\alpha\bar{\rho_1}}) ^{-\frac{p_1-1}{p_2-p_1+1}}$. Or, applying Lemma \ref{l2} for $p=\alpha-1+p_1$, $q=\beta+q_1$, $r=\gamma+r_1$, $\delta=\alpha+p_{3}$, $\theta=\beta+q_{3}$, $\xi=\gamma+1+r_{3}$ and $\lambda=\alpha$, we obtain \begin{equation}\label{4.10} \alpha\bar{\rho_1}{\int_{\Omega}}\frac{u^{\alpha-1+p_1}} {v^{\beta+q_1}w^{\gamma+r_1}}dx \leq\gamma\underline{\rho_3}{\int_{\Omega}} \frac{u^{\alpha+p_{3}}}{v^{\beta+q_{3}}w^{\gamma+1+r_{3}}}dx + A_2{\int_{\Omega}}\frac{u^{\alpha}}{v^{\eta_{11}}w^{\eta_{12}}}dx, \end{equation} where \begin{gather*} \eta_{11} = \beta+[q_1p_{3}-q_{3}(p_1-1)](p_{3}-p_1+1)^{-1}>0,\\ \eta_{12} = \gamma+[r_1p_{3}-(r_{3}+1)(p_1-1)](p_{3}-p_1+1)^{-1}>0, \end{gather*} and $A_2=\alpha\bar{\rho_1} ( \frac{\gamma\underline{\rho_3}}{\alpha\bar{\rho_1}}) ^{-\frac{p_1-1}{p_{3}-p_1+1}}$. By combining \eqref{4.8} with \eqref{4.9} and \eqref{4.10} we obtain \begin{equation}\label{4.11} L'(t)\leq -(\alpha b_1-\beta b_2-\gamma b_{3}-K)L(t),\quad \forall t\in (0,+\infty), \end{equation} where \begin{equation*} K=\frac{\alpha \bar{\rho_1} (\frac{\beta\underline{\rho_2}}{\alpha\bar{\rho_1}} )^{-\frac{p_1-1}{p_2-p_1+1}}}{m_2^{[q_1p_2-(q_2+1) (p_1-1)](p_2-p_1+1)^{-1}}m_{3}^{[r_1p_2-r_2(p_1-1)](p_2-p_1+1)^{-1}}}, \end{equation*} or \begin{equation*} K=\frac{\alpha \bar{\rho_1}(\frac{\gamma\underline{\rho_3}} {\alpha\bar{\rho_1}})^{-\frac{p_1-1}{p_{3}-p_1+1}}} {{m_2^{[q_1p_{3}-q_{3}(p_1-1)](p_{3}-p_1+1)^{-1}}m_{3}^{[r_1p_{3}-(r_{3}+1)(p_1-1)] (p_{3}-p_1+1)^{-1}}}}. \end{equation*} Using \eqref{conb} we deduce that the function $t\longmapsto L(t)$ is a non-increasing function. This completes the proof of Theorem \ref{th2}. \end{proof} \begin{proof}[Proof of Corollary \ref{coro2}] Setting for all $(t,x)\in(0,+\infty)\times \Omega$: \begin{gather*} h_1(t,x)= u(t,x),\\ h_2(t,x)= v(t,x)-\frac{\sigma_2}{b_2},\\ h_{3}(t,x)= w(t,x)-\frac{\sigma_{3}}{b_{3}}. \end{gather*} For $i=1,2,3$ we have \begin{equation}\label{5.8} \frac{d h_{i}}{dt}-a_{i}\Delta h_{i}=-b_{i}h_{i}+\rho_{i}(x,u,v,w) \frac{u^{p_{i}}}{v^{q_{i}}w^{r_{i}}}. \end{equation} Multiplying \eqref{5.8} by $h_{i}(t,x)$, $i=1, 2, 3$ and integrating over $[0,t]\times\Omega$ we obtain \begin{align*} &\frac{1}{2}{\int_{\Omega}}h_{i}^2dx +a_{i}{\int_{0}^{t}}{\int_{\Omega}}\vert \nabla h_{i}\vert ^2\,dx\,ds +b_{i}{\int_{0}^{t}}{\int_{\Omega}}h_{i}^2\,dx\,ds\\ &= \frac{1}{2}{\int_{\Omega}}h_{i}^2(0)dx +{\int_{0}^{t}}{\int_{\Omega}}h_{i}\rho_{i}(x,u,v) \frac{u^{p_{i}}}{v^{q_{i}}w^{r_{i}}}\,dx\,ds. \end{align*} From \eqref{4.11}, for all $ t\in (0,+\infty)$, and for $i=1,2, 3$ we obtain \[ {\int_{0}^{t}}{\int_{\Omega}}h_{i}\rho_{i}(x,u,v)\frac{u^{p_{i}}}{v^{q_{i}} w^{r_{i}}}\,dx\,ds \leq \bar{\rho_{i}}M_{i}\frac{M_1^{p_{i}}M_2^{\beta}M_{3} ^{\gamma}}{m_2^{q_{i}}m_1^{\alpha}m_{3}^{r_{i}}} {\int_{0}^{t}}{\int_{\Omega}} \frac{u^{\alpha}}{v^{\beta}w^{\gamma}}\,dx\,ds<+\infty. \] One obviously deduces that for $i=1,2,3$, \begin{gather*} h_{i}(t,.)\in L^2(\Omega),\quad {\int_{0}^{+\infty}}{\int_{\Omega}}\vert \nabla h_{i}\vert^2 dx ds<+\infty,\\ {\int_{0}^{+\infty}}{\int_{\Omega}}h_{i}^2\,dx\,ds<+\infty, \end{gather*} so that Barbalate's lemma \cite[Lemma 1.2.2]{3.} permits to conclude that \begin{equation*} {\lim_{t\to +\infty}}\| h_{i}(t,.)\| _2=0,\quad i=1,2,3. \end{equation*} On the other hand, since the orbits $\{ h_{i}(t,.)/t\geq 0, i=1,2,3\} $ are relatively compact in $C(\bar{\Omega})$ (see \cite{4}), it follows readily that \begin{equation*} {\lim_{t\to +\infty}}\| h_{i}(t,.)\| _{\infty}=0,\quad i=1,2,3. \end{equation*} Then proof of Corollary \ref{coro2} is complete. \end{proof} \subsection*{Acknowledgments} The authors want to thank Prof. M. Kirane and the anonymous referee for their suggestions that improved the quality of this article. \begin{thebibliography}{00} \bibitem{ll} S. Abdelmalek, H. Louafi, A. Youkana; \emph{Global Existence of Solutions for Gierer-Meinhardt System with Three Equations.} Electronic Journal of Differential Equations, Vol. 2012 (2012), No, 55. pp. 1-8. \bibitem{3} A. Gierer, H. Meinhardt; \emph{A Theory of Biological Pattern Formation.} Kybernetik, 1972, 12:30-39. \bibitem{3.} K. Gopalsamy; \emph{Stability and Oscillations in Delay Differential Equations of Population Dynamics,} vol. 74 of Mathematics and its Applications, Kliwer Academic Publishers, Dordrecht, the Netherlands, 1992. \bibitem{4} A. Haraux, M. Kirane; \emph{Estimations $C^{1}$ pour des probl\`emes paraboliques semi-lin\' eaires.} Ann. Fac. Sci. Toulouse 5(1983), 265-280. \bibitem{5} D. Henry; \emph{Geometric Theory of Semi-linear Parabolic Equations.} Lecture Notes in Mathematics 840, Springer-Verlag,New-York, 1984. \bibitem{6} H. Jiang; \emph{Global existence of Solutions of an Activator-Inhibitor System,} Discrete and continuous Dynamical Systems. V14,N4 April 2006.p 737-751. \bibitem{10} M. Li, S. Chen, Y. Qin; \emph{Boundedness and Blow Up for the general Activator-Inhibitor Model,} Acta Mathematicae Applicarae Sinica, vol. 11 No.1. Jan, 1995. \bibitem{8} K. Masuda, K. Takahashi; \emph{Reaction-Diffusion Systems in the Gierer-Meinhardt theory of biological pattern formation.} Japan J. Appl. Math., 4(1):47-58, 1987. \bibitem{mmy} L. Melkemi, A. Z. Mokrane, A. Youkana; \emph{Boundedness and Large-Time Behavior Results for a Diffusive Epidemic Model,} Journal of Applied Mathematics, Volume 2007, Article ID 17930, 15 pages. \bibitem{q1} P. Quitner, Ph. Souplet; \emph{Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States.} Birkh\"auser Verlag AG, Basel. Boston. Berlin (2007). \bibitem{13} F. Rothe; \emph{Global Solutions of Reaction-Diffusion Equations.} Lecture Notes in Mathematics, 1072, Springer-Verlag, Berlin, (1984). \bibitem{14.} K. Suzuki, I. Takagi; \emph{Behavior of Solutions to an Activator-Inhibitor System with Basic Production Terms,} Proceeding of the Czech-Japanese Seminar in Applied Mathematics 2008. \bibitem{14..} K. Suzuki and I. Takagi; \emph{On the Role of Basic Production Terms in an Activator-Inhibitor System Modeling Biological Pattern Formation,} Funkcialaj Ekvacioj, 54 (2011) 237-274. \bibitem{15} A. Trembley; \emph{M\'emoires pour servir \`a l'histoire d'un genre de polypes d'eau douce,} abras en forme de cornes. 1744. \bibitem{16} A. M. Turing; \emph{The chemical basis of morphogenesis.} Philosophical Transactions of the Royal Society (B), 237: 37-72, 1952. \bibitem{7} J. Wu and Y. Li; \emph{Global Classical Solution for the Activator-Inhibitor Model.} Acta Mathematicae Applicatae Sinica (in Chinese), 1990, 13: 501-505. \end{thebibliography} \end{document}