\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite,amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 97, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/97\hfil Regularity criteria] {Regularity criteria for 3D Boussinesq equations with zero thermal diffusion} \author[Z. Ye \hfil EJDE-2015/97\hfilneg] {Zhuan Ye} \address{Zhuan Ye \newline School of Mathematical Sciences, Beijing Normal University. Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875,China} \email{yezhuan815@126.com, Phone +86 10 58807735, Fax +86 10 58808208} \thanks{Submitted January 14, 2015. Published April 14, 2015.} \makeatletter \@namedef{subjclassname@2010}{\textup{2010} Mathematics Subject Classification} \makeatother \subjclass[2010]{35Q35, 35B65, 76W05} \keywords{3D Boussinesq equations; Besov spaces; regularity criterion} \begin{abstract} In this article, we consider the three-dimensional (3D) incompressible Boussinesq equations with zero thermal diffusion. We establish a regularity criterion for the local smooth solution in the framework of Besov spaces in terms of the velocity only. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{intro} In this article, we consider the 3D Boussinesq equations with zero thermal diffusion, \begin{equation}\label{Bouss} \begin{gathered} \partial_{t}u+(u \cdot \nabla) u-\mu\Delta u+\nabla P=\theta e_{3}, \quad x\in \mathbb{R}^{3},\; t>0, \\ \partial_{t}\theta+(u \cdot \nabla) \theta=0, \quad x\in \mathbb{R}^{3},\; t>0,\\ \nabla\cdot u=0, \quad x\in \mathbb{R}^{3},\; t>0,\\ u(x, 0)=u_{0}(x), \quad \theta(x,0)=\theta_{0}(x), \quad x\in \mathbb{R}^{3}, \end{gathered} \end{equation} where $\mu\geq 0$ is the viscosity, $u=u(x,t)\in \mathbb{R}^{3}$ is the velocity, $P=P(x,t)\in \mathbb{R}$ is the scalar pressure, $\theta=\theta(x,t)\in \mathbb{R}^{3}$ is the temperature, and $e_{3}=(0,0,1)^{\mathrm{T}}$. The Boussinesq equations are of relevance to study a number of models coming from atmospheric or oceanographic turbulence (see \cite{MB,PG}). It is easy to check that in the case $\theta=0$, the system \eqref{Bouss} reduces to the 3D classical Navier-Stokes equations. Although the local existence and uniqueness of smooth solutions for the system \eqref{Bouss} with large initial data were easily obtained (see \cite{CKN,MB}), whether the unique local smooth solution can exist globally is an outstanding challenging open problem. Therefore, it is important to study the mechanism of blowup and structure of possible singularities of smooth solutions to the system \eqref{Bouss}. For this reason, many researchers were devoted to finding sufficient conditions to ensure the smoothness of the solutions; see \cite{FZ,FO,GGRM,QDY1,QYWL,Xiang,XZZ,YZ1,Zhang2014} and so forth. For many interesting results on the high dimensional Boussinesq equations with axisymmetric data, we refer the readers to \cite{AHS,HR1,HR2,MZ,MZ1}. We remark that the 2D Boussinesq equations also has recently attracted considerable attention, just name a few (see \cite{CW,CW1,Chae,DP,HKR1,HKR2,HL,LLT,JMWZ}). The aim of this paper is to improve the previous regularity criterion results on the system \eqref{Bouss}. Since the concrete value of $\mu$ does not play a special role in our discussion, for simplicity, we set $\mu=1$. Now we state the main results as follows \begin{theorem}\label{Th1} Assume that $(u_{0}, \theta_{0})\in H^{3}(\mathbb{R}^{3})\times H^{3}(\mathbb{R}^{3})$. Let $(u, \theta)$ be a local smooth solution of the system \eqref{Bouss}. If the following condition holds \begin{equation}\label{R1} \int_{0}^{T}{\|u(t)\|_{\dot{B}_{p, \infty}^{\frac{3}{p}+\frac{2}{q}-1}}^{q} \,dt}<\infty, \end{equation} with $\frac{3}{p}+\frac{2}{q}\leq2$ and $(p, q)\neq (\infty, \infty)$ for $1
0$ the functions $$ u_{\lambda}(x,t)=\lambda u(\lambda x, \lambda^{2}t), \quad \theta_{\lambda}(x,t)=\lambda^{3} \theta(\lambda x, \lambda^{2}t), \quad P_{\lambda}(x,t)=\lambda^{2}P(\lambda x, \lambda^{2}t), $$ are also solutions of \eqref{Bouss} with the corresponding initial data $u_{0, \lambda}(x)=\lambda u_{0}(\lambda x)$ and $ \theta_{0, \lambda}(x)=\lambda^{3} \theta_{0}(\lambda x)$. It is an obvious fact that the assumption \eqref{R1} does belong to the invariant spaces. \end{remark} The method may also be adapted with almost no change to the study of the following B\'enard system: \begin{equation}\label{Benard} \begin{gathered} \partial_{t}u+(u \cdot \nabla) u-\mu\Delta u+\nabla P=\theta e_{3}, \quad x\in \mathbb{R}^{3}, \; t>0, \\ \partial_{t}\theta+(u \cdot \nabla) \theta=u_{3}, \quad x\in \mathbb{R}^{3}, \; t>0,\\ \nabla\cdot u=0, \quad x\in \mathbb{R}^{3}, \; t>0,\\ u(x, 0)=u_{0}(x), \quad \theta(x,0)=\theta_{0}(x), \quad x\in \mathbb{R}^{3}, \end{gathered} \end{equation} which describes convective motions in a heated incompressible fluid (see \cite[Chap. 6]{AP}). Because of the similar structure to Boussinesq system \eqref{Bouss}, it is not difficult to show that B\'enard system \eqref{Benard} admits the same conclusion as Theorem \ref{Th1}, namely, we have the following result. \begin{theorem}\label{Th2} Assume that $(u_{0}, \theta_{0})\in H^{3}(\mathbb{R}^{3})\times H^{3}(\mathbb{R}^{3})$. Let $(u, \theta)$ be a local smooth solution of the system \eqref{Benard}. If the following condition holds \begin{equation}\label{R3} \int_{0}^{T}{\|u(t)\|_{\dot{B}_{p, \infty}^{\frac{3}{p}+\frac{2}{q}-1}}^{q} \,dt}<\infty, \end{equation} with $\frac{3}{p}+\frac{2}{q}\leq2$ and $(p, q)\neq (\infty, \infty)$ for $1
0, \; \alpha>0
$$
and Young inequality allow us to show that
\begin{equation}\label{BE06}
\begin{aligned}
&\int_{\mathbb{R}^{3}}{(u\cdot\nabla u)\cdot\Delta u\,dx}\\
&\leq \int_{\mathbb{R}^{3}}{\nabla\cdot(u\otimes u)\cdot\Delta
u\,dx} \\
&\leq C\|u\otimes u\|_{\dot{H}^{1}}\|\Delta u\|_{L^{2}} \\
&\leq C
(\|u\|_{\dot{B}_{\infty,\infty}^{-\beta}}\|u\|_{\dot{B}_{2,2}^{1+\beta}})
\|\Delta u\|_{L^{2}}\quad (0<\beta\leq 1) \\
&\leq C \|u\|_{\dot{B}_{p,\infty}^{\frac{3}{p}-\beta}}
(\|\nabla u\|_{L^{2}}^{1-\beta}\|\Delta u\|_{L^{2}}^{\beta})\|\Delta u\|_{L^{2}} \\
&\leq \frac{1}{4}\|\Delta u\|_{L^{2}}^{2}+C\|u\|_{\dot{B}_{p,\infty}
^{\frac{3}{p}-\beta}}^{\frac{2}{1-\beta}} \|\nabla u\|_{L^{2}}^{2} \\
&= \frac{1}{4}\|\Delta u\|_{L^{2}}^{2}+C\|u\|_{\dot{B}_{p, \infty}
^{\frac{3}{p}+\frac{2}{q}-1}}^{q} \|\nabla u\|_{L^{2}}^{2}
\quad \Big(q=\frac{2}{1-\beta}\in (2, \infty]\Big),
\end{aligned}
\end{equation}
where we have used
\begin{gather*}
\|u\|_{\dot{B}_{2,2}^{1+\beta}}\thickapprox \|u\|_{\dot{H}^{1+\beta}}
\leq C\|\nabla u\|_{L^{2}}^{1-\beta}\|\Delta u\|_{L^{2}}^{\beta},\quad
\text{for } 0\leq\beta\leq1; \\
\|u\|_{\dot{B}_{\infty,\infty}^{-\beta}}
\leq C\|u\|_{\dot{B}_{p,\infty}^{\frac{3}{p}-\beta}},\quad \text{for }
1\leq p\leq \infty.
\end{gather*}
\noindent\textbf{Case 2: $10$ and $2