\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite,amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 98, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/98\hfil Exact controllability for a string equation] {Exact controllability for a string equation in domains with moving boundary in one dimension} \author[H. Sun, H. Li, L. Lu \hfil EJDE-2015/98\hfilneg] {Haicong Sun, Huifen Li, Liqing Lu} \address{Haicong Sun \newline School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China} \email{18835110799@163.com} \address{Huifen Li \newline School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China} \email{lhf1024896246@163.com} \address{Liqing Lu (corresponding author)\newline School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China} \email{lulq@sxu.edu.cn} \thanks{Submitted December 14, 2014. Published April 14, 2015.} \makeatletter \@namedef{subjclassname@2010}{\textup{2010} Mathematics Subject Classification} \makeatother \subjclass[2010]{93B05} \keywords{Exact controllability; string equation; moving boundary; \hfill\break\indent Hilbert uniqueness method; multiplier method} \begin{abstract} We consider a string equation in a domain with moving boundary. By using the multiplier method in non-cylindrical domains, we establish the exact boundary controllability in domains with moving boundary, and obtain a weaker condition on the time controllability. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction and main results} Let $T>0$. For any given $ k\in(0,1)$, set $ \alpha_k(t)=1+kt$ for $t\in[0,T]$. Denote by $\hat {Q}^k_T$ the non-cylindrical domain in $R^2$, $$ \hat{Q}^k_T=\{(x,t)\in R^2;0\bar{T}_k$, Problem \eqref{e1.1} is exactly controllable at time $T$. \end{theorem} \begin{remark} \label{rmk1.1}\rm It is easy to check that $$ \bar{T}\triangleq\lim_{k\to 0}\bar{T}_k=\lim_{k\to 0}\frac{2}{1-k}=2. $$ And we can easily find that $\bar{T}_k \frac{2(1+k)}{1-k}>\bar{T}_k\,, $$ for $00$ be given, we have the equality \begin{equation} \begin{aligned} &\frac{(1-k^2)}{\sqrt{1+k^2} }\int_{0}^{T} w_x^2(\alpha_k(t),t)dt\\ &=2TE(T)-2\int_0^1xw_t(0)w_x(0)dx+2\int_0^{1+kT}xw_t(T)w_x(T)dx. \end{aligned} \label{e2.3} \end{equation} \end{lemma} \begin{proof} (i) Multiplying \eqref{e1.3} by $2xw_x$ and integrating by parts on $\hat {Q}^k_T$, we have \begin{align*} 0&=\int_0^T\int_0^{\alpha_k(t)}(w_{tt}-w_{xx})2xw_x \,dx\,dt\\ &=\int_0^T\int_0^{\alpha_k(t)}[(2xw_xw_t)_t-(xw_t^2+xw_x^2)_x+w_t^2+w_x^2]\,dx\,dt\\ &=\int_\Sigma[(2xw_tw_x)\nu_t-(xw_t^2+xw_x^2)\nu_x]d\Sigma+2\int_0^TE(t)dt\\ &=\int_0^{1+kT}2xw_t(T)w_x(T)dx-\int_0^12xw^1w_x(x,0)\\ &\quad +\frac{k^2-1}{\sqrt{1+k^2}} \int_0^T(1+kt)w_x^2(\alpha_k(t),t)dt+2\int_0^TE(t)dt. \end{align*} This implies \begin{equation} \begin{aligned} &\frac{1-k^2}{\sqrt{1+k^2}}\int_{0}^{T}(1+kt) w_x^2(\alpha_k(t),t)dt\\ &= 2\int_0^TE(t)dt-\int_0^12xw_t(0)w_x(0,x)dx+ \int_0^{1+kT}2xw_t(T)w_x(T)dx. \end{aligned}\label{e2.4} \end{equation} (ii) Multiplying \eqref{e1.3} by $2tw_t$ and integrating by parts on $\hat{Q}^k_T$ yields \begin{equation} \frac{1-k^2}{\sqrt{1+k^2}}\int_0^T kt w_x^2(\alpha_k(t),t)dt =2\int_0^T E(t)dt-2 T E(T).\label{e2.5} \end{equation} Equality \eqref{e2.3} follows easily from \eqref{e2.4} and \eqref{e2.5}. \end{proof} Using Cauchy's inequality, we can obtain easily the following result. \begin{lemma} \label{lem2.3} Denote by $w$ the solution of \eqref{e1.3}. For $t\in(0,T)$ and $k\in(0,1)$, we have the estimate \begin{equation} |\int_0^{1+kt}2xw_tw_xdx|\leq2(1+kt)E(t). \label{e2.6} \end{equation} \end{lemma} \section{Proof of main results} In this section, we prove the exact controllability for the string equation \eqref{e1.1} in the non-cylindrical domain $\hat {Q}^k_T$ (Theorem \ref{thm1.1}) for $00$. Then we have the estimates: $$ \frac{1-k}{(1+k)(1+kT)}E(0)\leq E(T) \leq\frac{1+k}{(1-k)(1+kT)}E(0). $$ \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.1}] We apply HUM as in \cite[chapter 4]{k1}. For any $(w^0,w^1)\in H_0^1(0,1)\times L^2(0,1)$, let $w$ be the solution of \eqref{e1.3}. Consider the problem \begin{equation} \begin{gathered} u_{tt}-u_{xx}=0 \quad\text{in } \hat{Q}^k_T,\\ u(0,t)=0 ,\quad u(\alpha_k(t),t)=w_x(\alpha_k(t),t) \quad\text{on } (0,T),\\ u(T)=0 ,\quad u_t(T)=0 \quad\text{in } (0,1). \end{gathered} \label{e3.2} \end{equation} It is well known that \eqref{e3.2} admits a unique solution such that $$ (u(0),u_t(0))\in L^2(0,1)\times H^{-1}(0,1). $$ Then, we introduce a map $\Lambda:H_0^1(0,1)\times L^2(0,1)\to H^{-1}(0,1)\times L^2(0,1) $ defined by $$ \Lambda(w^0,w^1)=(u^1,-u^0), $$ where $u^0=u(0),\ u^1=u_t(0)$. Then the map $\Lambda$ is an isomorphism of $H_0^1(0,1)\times L^2(0,1)$ onto $H^{-1}(0,1)\times L^2(0,1)$. To simplify our analysis, we introduce the following notation: $$ F:=H_0^1(0,1)\times L^2(0,1) \quad F':=H^{-1}(0,1)\times L^2(0,1). $$ In fact, multiplying equation \eqref{e3.2} by $w$ and integrating on ${Q}^k_T$, we obtain that \begin{equation} \int_0^1(w^0u^1-w^1u^0)dx=\frac{1-k^2}{\sqrt{1+k^2}} \int_0^{T}w^2_x(\alpha_k(t),t)dt.\label{e3.4} \end{equation} Hence we have \begin{equation} \langle\Lambda(w^0,w^1),(w^0,w^1)\rangle_{F',F} =\frac{1-k^2}{\sqrt{1+k^2}}\int_0^{T}w^2_x (\alpha_k(t),t)dt,\label{e3.5} \end{equation} for every $(w^0,w^1)\in F$. Recalling estimate \eqref{e1.5} and equality \eqref{e2.1} , we have \begin{equation} \frac{(1-k)T-2}{(1-k)(1+kT)}E(0) \leq\langle\Lambda(w^0,w^1),(w^0,w^1)\rangle_{F',F} \leq\frac{(1+k)T+2}{(1+k)(1+kT)}E(0).\label{e3.6} \end{equation} From these inequalities, we conclude that $\Lambda$ is a coercive linear map for $T>\bar{T}_k$ and is bounded. Therefore, $\Lambda$ is a surjection by Lax-Milgram Theorem. It follows that $\Lambda$ is an isomorphism. Since $\Lambda$ is an isomorphism, for any initial value $(u^0,u^1)\in L^2(0,1)\times H^{-1}(0,1) $, there exists $(w^0,w^1)\in H_0^1(0,1)\times L^2(0,1)$ such that $$ \Lambda(w^0,w^1)=(u^1,-u^0). $$ Then $u$ is the solution of \eqref{e1.1} with $v=w_x(\alpha_k(t),t)$. Furthermore, $(u(0),u_t(0))=(u^0,u^1)$ and $(u(T),u_t(T))=(0,0)$. This completes the proof. \end{proof} \subsection*{Acknowledgments} This work is supported by the National Science Foundation of China (Nos. 11401351, 61104129, 61174082, 61374089), and by the Shanxi Scholarship Council of China (2013-013). \begin{thebibliography}{00} \bibitem{b1} C. Bardos, G. Chen; \emph{Control and stabilization for the wave equation, part III: domain with moving boundary}. SIAM J.Control Optim. 19 (1981) 123-138. \bibitem{c1} M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, R. Benabidallah; \emph{On global solvability and asymptotic behavior of a mixed problem for a nonlinear degenerate Kirchhoff model in moving domains}, Bull. Belg. Math. Soc. Simon Stevin 10(2) (2003) 179-196. \bibitem{c2} J. Cooper; \emph{Local decay of solutions of the wave equation in the exterior of a moving body}, J. Math. Anal. Appl. 49 (1975) 130-153. \bibitem{c3} J. Cooper, C. Bardos; \emph{A nonlinear wave equation in a time dependent domain}, J. Math. Anal. Appl. 42 (1973) 29-60. \bibitem{c4} J. Cooper, W. A. Strauss; \emph{Energy boundedness and decay of waves reflecting off a moving obstacle}, Indiana Univ. Math. J. 25 (1976) 671-690. \bibitem{c5} Lizhi Cui, Xu Liu, Hang Gao; \emph{Exact controllability for a one-dimensional wave equation in non-cylindrical domains}, J. Math. Anal. Appl. 402 (2013) 612-625. \bibitem{g1} Tae Gab Ha, Jong Yeoul Park; \emph{Global existence and uniform decay of a damped Klein-Gordon Equation in a noncylindrical domain}, Nonlinear Anal. 74 (2011) 577-584. \bibitem{k1} V. Komornik; \emph{Exact Controllability and Stabilization}. The multiplier method, John Wiley Sons, Chichester, UK, 1994. \bibitem{l1} J. L. Lions; \emph{Une remarque sur les probl\`{e}mes d'\'{e}volution nonlin\`{e}ares dans les domaines non cylindriques}, Rev. Roumaine Math. Pures Appl. 9 (1964) 11-18. \bibitem{l2} Liqing Lu, Shengjia Li, Goong Chen, Peng-Fei Yao; \emph{Control and stabilization for the wave equation with variable coefficients in domains with moving boundary}, preprint. \bibitem{m1} M. Milla Miranda; \emph{Exact controllability for the wave equation in domains with variable boundary}, Rev. Mat. Univ. Complut. Madrid. 9 (1996) 435-457. \bibitem{m2} M. Milla Miranda; \emph{HUM and the wave equation with variable coefficients}, Asymptot. Anal. 11 (1995) 317-341. \bibitem{y1} P. Yao; \emph{On the observability inqualities for exact controllability of wave equation with variable coefficient}, SIAM J. Control Optim. 37 (1999) 1568-1599. \end{thebibliography} \end{document}