\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 02, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/02\hfil Existence and exponential stability] {Existence and exponential stability of anti-periodic solutions in cellular neural networks with time-varying delays and \\ impulsive effects} \author[C. Xu \hfil EJDE-2016/??\hfilneg] {Changjin Xu} \address{Changjin Xu \newline Guizhou Key Laboratory of Economics System Simulation, School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550004, China} \email{xcj403@126.com} \thanks{Submitted November 4, 2014. Published January 4, 2016.} \subjclass[2010]{34C25, 34K13, 34K25} \keywords{Cellular neural network; anti-periodic solution; impulse; \hfill\break\indent exponential stability; time-varying delay} \begin{abstract} In this article we study a cellular neural network with impulsive effects. By using differential inequality techniques, we obtain verifiable criteria on the existence and exponential stability of anti-periodic solutions. An example is included to illustrate the feasibility and of our main results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Because of the wide range of applications in neurobiology, image processing, evolutionary theory, pattern recognition and optimization and so on, cellular neural networks have attracted much attention in recent years \cite{9}. It is well known that impulsive differential equations are mathematical apparatus for simulation of process and phenomena observed in control theory, physics, chemistry, population dynamics, biotechnologies, industrial robotics, economics, etc. \cite{3,18,35}. Therefore many results on the existence and stability of an equilibrium point of cellular neural networks with impulses have been reported (see \cite{14,16,17,29,39,41,42,44,52}). In applied sciences, the existence of anti-periodic solutions plays a key role in characterizing the behavior of nonlinear differential equations \cite{11,21,22,36}. For example, high-order Hopfield neural networks can be analog voltage transmission, and voltage transmission process can be described as an anti-periodic process \cite{30}, anti-periodic trigonometric polynomials play an important role in interpolation problems \cite{10}, and anti-periodic wavelets were investigated in \cite{7}, in neural networks, the global stable anti-periodic solution can reveal the characteristic and stability of signal \cite{37}. Recently, there are some papers that deal with the problem of existence and stability of anti-periodic solutions (see \cite{1,2, 8, 12,13, 15, 19, 23,24,25,26,28, 30,31,32,33,34, 38, 40,50,51}). In addition, we know that many evolutionary processes exhibit impulsive effects which are usually subject to short time perturbations whose durations may be neglected in comparison with durations of the processes \cite{38}. This motivates us to consider the existence and stability of anti-periodic solutions for cellular neural networks with impulses. To the best of our knowledge, very few authors have focused on the problems of anti-periodic solutions for such impulsive cellular neural networks. In this paper, we consider the anti-periodic solution of the following cellular neural network with delays and impulses \begin{gather} \dot{x}_i(t)=-c_i(t)x_i(t)+\sum_{j=1}^na_{ij}(t)f_j(x_j(t)) +\sum_{j=1}^nb_{ij}(t)f_j(x_j(t-\tau_{ij}(t)))+u_i(t), \nonumber\\ t\neq{t_k}, \label{e1.1}\\ {x_i}(t_k^{+})=(1+\delta_{ik})x_i(t_k),\quad k=1,2,\dots, \nonumber \end{gather} where $i=1, 2, \dots, n$,$x_i(t)$ represent the state vector of the $i$th unit at time $t$, $c_i, a_{ij}, b_{ij},f_{j} g_j, u_i, \tau_{ij}$ are continuous functions on $R$, $c_i>0$, $a_{ij}$ are the connection weights between $i$th unit and $j$th unit at time $t$, $b_{ij}$ is the connection weights between $i$th unit and $j$th unit at time $t-\tau_{ij}$, $f_j$ and $g_j$ are the activation function, $u_i$ are external input to the $i$th unit, $\tau_{ij}$ are the time varying delay and satisfy $0\leq\tau_{ij}\leq\tau$, $\tau$ is a positive constant, $t_k$ are the impulsive moments and satisfy $00$ such that \begin{gather*} c_i(t+T)=c_i(t), \quad \tau_{ij}(t+T)=\tau_{ij}(t), \quad u_i(t+T)=-u_i(t),\\ a_{ij}(t+T)f_j(u)=-a_{ij}(t)f_j(-u),\quad b_{ij}(t+T)g_j(u)=-b_{ij}(t)g_j(-u), \end{gather*} for all $t,u\in{R}$. \item[(H2)] For each $j\in\{1,2,\dots,n\}$, the activation function $f_j: R\to {R}$ is continuous and there exists an nonnegative constant $L_j^f$ such that $$ f_j(0)=0,\quad |f_j(u)-f_j(v)|\leq{L_j^f}|u-v| $$ for all $u,v\in{R}$. \item[(H3)] $\prod_{0\leq{t_k}-1$. \item[(H4)] For $i=1,2,\dots,n$, $k=1,2,\dots$, there exist positive constants $m$ and $M$ such that $m\leq\prod_{0\leq{t_k}0$, $\lambda>0$, $i=1, 2, \dots, n$, such that for all $t>0$, $$ \lambda-c_i^{-}+\frac{M}{m}\Big[\sum_{j=1}^n(a_{ij}^{+}+b_{ij}^{+})L_j^f\Big] e^{\lambda\tau}<-\eta<0. $$ Let $x=(x_1,x_2,\dots,x_n)^T\in{R^n}$, in which $``T"$ denotes the transposition. We define $|x|=(|x_1|,|x_2|,\dots,|x_n|)^T$ and $\|x\|=\max_{1\leq{i}\leq{n}}|x_i|$. Obviously, the solution $x(t)=(x_1(t),x_2(t),\dots,x_n(t))^T$ of \eqref{e1.1} has components $x_i(t)$ piece-wise continuous on $(-\tau,+\infty)$, $x(t)$ is differentiable on the open intervals $(t_{k-1},t_k)$ and $x(t_k^{+})$ exists. \end{itemize} \begin{definition} \label{def1.1} \rm Let $u(t):R\to {R}$ be piece-wise continuous function having countable number of discontinuous $\{t_k\}|_{k=1}^{+\infty}$ of the first kind. It is said to be $T$-anti-periodic on $R$ if \begin{gather*} u(t+T)=-u(t),\quad t\neq t_k,\\ u((t_k+T)^{+})=-u(t_k^{+}), \quad k=1,2,\dots. \end{gather*} \end{definition} \begin{definition} \label{def1.2} \rm Let $x^{*}(t)=\big(x^{*}_{1}(t), x^{*}_{2}(t),\dots, x^{*}_{n}(t)\big)^{T} $ be an anti-periodic solution of \eqref{e1.1} with initial value $\varphi^{*}=(\varphi^{*}_{1}(t), \varphi^{*}_{2}(t), \dots, \varphi^{*}_{n}(t))^{T} $. If there exist constants $\lambda>0$ and $M >1$ such that for every solution $x(t)=(x_{1}(t), x_{2}(t),\dots,x_{n}(t))^{T} $ of \eqref{e1.1} with an initial value $\varphi=(\varphi_{1}(t), \varphi_{2}(t), \dots, \varphi_{n}(t))^{T}$, $$ |x_{i}(t)-x^{*}_{i}(t)|\leq M \|\varphi-\varphi^{*}\|e^{-\lambda t}, \quad \text{for all } t>0,\; i=1, 2, \dots, n, $$ where $$ \|\varphi-\varphi^{*}\|=\sup_{-\tau\leq s\leq0} \max_{1\leq i\leq n}|\varphi_{i}(s)-\varphi_{i}^{*}(s)|. $$ Then $x^{*}(t)$ is said to be globally exponentially stable. \end{definition} The rest of this article is organized as follows. In the next section, we give some preliminary results. In Section 3, we derive the existence of $T$-anti-periodic solution, which is globally exponential stable. In Section 4, we present an example to illustrate the effectiveness of our main results. \section{Preliminaries} In this section, we firstly establish a fundamental theorem that enable us to reduce the existence of solution of system \eqref{e1.1} to the corresponding problem for a delayed differential equation without impulses. Consider the following non-impulsive delayed differential system \begin{equation} \begin{aligned} \dot{y}_i(t) & =-c_i(t)y_i(t)+\prod_{0\leq{t_k}0 \end{aligned} \label{e2.1} \end{equation} with initial condition $y_i(s)=\varphi_i(s)$, $s\in[-\tau,0]$, $i=1,2,\dots,n$. In this section, we present three important lemmas which are used to prove our main results in Section 3. \begin{lemma} \label{lem2.1} Assume that {\rm (H3)} holds. (i) If $y=(y_1,y_2,\dots,y_n)$ is a solution of \eqref{e2.1}, then $$ x=\Big(\prod_{0\leq{t_k}\frac{u_i^{+}} {mc_i^{-}-M\big[\sum_{j=1}^n(a_{ij}^{+}-b_{ij}^{+})L_j^f\big]}, \label{e2.4} \\ c_i^{-}>\frac{M}{m}\Big[\sum_{j=1}^n(a_{ij}^{+}-b_{ij}^{+})L_j^f\Big]. \nonumber \end{gather} \end{lemma} \begin{proof} For any given initial condition, hypotheses (H2) and (H4) guarantee the existence and unique of $y(t)$, the solution to \eqref{e2.1} in $[-\tau, +\infty)$. By way of contradiction, we assume that \eqref{e2.3} does not hold. Then there must exist $i\in \{1,2,\dots,n \}$ and $ \theta_0>0$ such that \begin{equation} \label{e2.5} |{y}_{i}(\theta_0)| =\gamma, \quad |{y}_{j}(\theta_0)| <\gamma \quad \text{for all } t\in (-\tau, \theta_0),\; j=1,2,\dots,n. \end{equation} By computing the upper left derivative of $|{y}_{i}(t)|$, together with the assumptions \eqref{e2.3}, \eqref{e2.4}, \eqref{e2.5}, (H2) and (H4), we have \begin{align} 0 & \leq D^+(|{y}_{i}(\theta_0)|) \nonumber\\ & \leq -c_i(\theta_0)|y_i(\theta_0)| +\Big|\prod_{0\leq{t_k}<\theta_0}(1+\delta_{ik})^{-1} \Big[\sum_{j=1}^na_{ij}(\theta_0)f_j \Big(\prod_{0\leq{t_k}<\theta_0}(1+\delta_{jk})y_j(\theta_0)\Big) \nonumber\\ &\quad + \sum_{j=1}^nb_{ij}(\theta_0)f_j \Big(\prod_{0\leq{t_k}<\theta_0-\tau_{ij}(\theta_0)}(1+\delta_{jk}) y_j(\theta_0-\tau_{ij}(\theta_0))\Big)\Big] \nonumber\\ &\quad +\prod_{0\leq{t_k}<\theta_0}(1+\delta_{ik})^{-1}u_i(\theta_0)\Big| \nonumber\\ & \leq -c_i^{-}|y_i(\theta_0)|+\prod_{0\leq{t_k}<\theta_0}(1+\delta_{ik})^{-1} \Big[\sum_{j=1}^n|a_{ij}(\theta_0)| \Big|f_j\Big(\prod_{0\leq{t_k}<\theta_0} (1+\delta_{jk})y_j(\theta_0)\Big)\Big| \nonumber\\ &\quad +\sum_{j=1}^n|b_{ij}(\theta_0)| \Big|f_j\Big(\prod_{0\leq{t_k}<\theta_0-\tau_{ij}(\theta_0)} (1+\delta_{jk})y_j(\theta_0-\tau_{ij}(\theta_0))\Big)\Big|\Big] \nonumber \\ &\quad +\prod_{0\leq{t_k}<\theta_0}(1+\delta_{ik})^{-1}|u_i(\theta_0)|\nonumber\\ &\leq -c_i^{-}|y_i(\theta_0)|+\prod_{0\leq{t_k}<\theta_0}(1+\delta_{ik})^{-1} \Big[\sum_{j=1}^na_{ij}^{+}L_j^f\prod_{0\leq{t_k}<\theta_0} (1+\delta_{jk})|y_j(\theta_0)| \nonumber\\ &\quad +\sum_{j=1}^nb_{ij}^{+}L_j^f\prod_{0\leq{t_k}<\theta_0-\tau_{ij} (\theta_0)} (1+\delta_{jk})|y_j(\theta_0-\tau_{ij}(\theta_0))|\Big] +\prod_{0\leq{t_k}<\theta_0}(1+\delta_{ik})^{-1}u_i^{+}\nonumber\\ &\leq -c_i^{-}\gamma+\prod_{0\leq{t_k}<\theta_0}(1+\delta_{ik})^{-1} \Big[\sum_{j=1}^na_{ij}^{+}L_j^f\prod_{0\leq{t_k}<\theta_0} (1+\delta_{jk})\gamma \nonumber\\ &\quad +\sum_{j=1}^nb_{ij}^{+}L_j^f\prod_{0\leq{t_k}<\theta_0-\tau_{ij} (\theta_0)}(1+\delta_{jk})\gamma\Big]+\prod_{0\leq{t_k}<\theta_0} (1+\delta_{ik})^{-1}u_i^{+}\nonumber\\ &\leq -\Big[c_i^{-}-\frac{M}{m}\Big(\sum_{j=1}^n(a_{ij}^{+}-b_{ij}^{+})L_j^f\Big) \Big]\gamma+\frac{1}{m}u_i^{+}<0, \label{e2.6} \end{align} which is a contradiction and implies that \eqref{e2.3} holds. This completes the proof. \end{proof} \begin{lemma} \label{lem2.3} Suppose that {\rm (H1)--(H5)} hold. Let $y^{*}(t)=(y^{*}_{1}(t), y^{*}_{2}(t),\dots, y^{*}_{n}(t))^{T} $ be the solution of \eqref{e2.1} with initial value $\varphi^{*}=(\varphi^{*}_{1}(t), \varphi^{*}_{2}(t), \dots, \varphi^{*}_{n}(t))^{T} $, and let $ y(t)=(y_{1}(t), y_{2}(t),\dots,y_{n}(t))^{T} $ be the solution of \eqref{e2.1} with initial value $ \varphi=(\varphi _{1}(t), \varphi _{2}(t), \dots, \varphi _{n}(t))^{T}$. Then there exist constants $\lambda>0$ and $M>1$ such that $$ |y_{i}(t)-y^{*}_{i}(t)|\leq M \|\varphi-\varphi^{*}\|e^{-\lambda t},\quad \text{for all } t>0,\; i=1, 2, \dots, n. $$ \end{lemma} \begin{proof} Let $u(t)=\{u_{ i}(t) \}=\{y_{ i}(t)-y^{\ast}_{i}(t) \}=y(t)-y^{*}(t)$. Then \begin{align} &u_{i}'(t) \nonumber \\ &= -c_i(t)u_i(t)+\Big(\prod_{0\leq{t_k}1$ denote an arbitrary real number and set $$ \|\varphi-\varphi^{*}\|=\sup_{-\tau\leq s\leq0}\max_{1\leq j\leq n } |\varphi_{ j}(s)-\varphi_{j}^{*}(s)|>0, \quad j=1, 2, \dots, n. $$ Then by \eqref{e2.9}, we have $$ V_{i }(t) =|u_{i }(t)|e^{\lambda t}0, i=1, 2, \dots, n. \end{equation} Otherwise, there must exist $i \in \{ 1, 2, \dots, n \}$ and $t_i>0$ such that \begin{equation} \label{e2.11} V_{i}(t_i)=M\|\varphi-\varphi^{*}\|, \quad V_{j}(t)0, $$ which contradicts (H5), then \eqref{e2.11} holds. In view of \eqref{e2.10}, we know that $$ V_i(t)=|u_i(t)|e^{\lambda t}0,\; i=1,2,\dots,n. $$ This completes the proof. \end{proof} \begin{remark} \label{rmk2.1} \rm If $y^{*}(t)=(y^{*}_{1}(t), y^{*}_{2}(t),\dots,y^{*}_{n}(t))^{T} $ is a $T$-anti-periodic solution of \eqref{e2.1}, it follows from Lemma \ref{lem2.2} and Definition \ref{def1.2} that $y^{*}(t)$ is globally exponentially stable. \end{remark} \section{Main results} In this section, we present our main result that there exists the exponentially stable anti-periodic solution of \eqref{e1.1}. \begin{theorem} \label{thm3.1} Assume that {\rm (H1)--(H5)} are satisfied. Then \eqref{e1.1} has exactly one $T$-anti-periodic solution $x^{*}(t)$. Moreover, this solution is globally exponentially stable. \end{theorem} \begin{proof} Let $v(t)= (v_{1}(t), v_{2}(t),\dots, \ v_{n}(t))^{T}$ be a solution of \eqref{e2.1} with initial conditions \begin{equation} v_{i}(s)=\varphi^{v}_{i}(s), |\varphi^{v}_{i}(s)|<\gamma, \quad s\in(-\tau, 0], \; i=1,2,\dots,n. \end{equation}%%%%\eqref{e3.1) Thus according to Lemma \ref{lem2.2}, the solution $v(t)$ is bounded and \begin{equation} |v_{i}(t)|<\gamma\quad \text{for all } t\in{R},\; i=1,2,\dots,n. \end{equation}%%%%%%\eqref{e3.2) From \eqref{e2.1}, we obtain \begin{align} &\big((-1)^{p+1}v_{i} (t + (p+1)T)\big)'\nonumber\\ &=(-1)^{p+1}\bigg\{-c_i(t+(p+1)T)v_i(t + (p+1)T)\nonumber\\ &\quad+\prod_{0\leq{t_k}1$ such that \begin{equation} \begin{aligned} &|(-1)^{p+1}v_{i} (t + (p+1)T)-(-1)^{k} v_{i}(t + pT)| \\ &\leq M e^{-\lambda (t + pT)}\sup_{-\tau\leq s\leq0}\max_{1\leq i\leq n}|v_{i} (s + T)+ v_{i} (s)| \\ &\leq 2e^{-\lambda (t + pT)} M\gamma, \end{aligned} \label{e3.4} \end{equation} where $i=1,2,\dots,n$. Thus, for any natural number $q$, we have \begin{equation} \label{e3.5} (-1)^{q+1} v_{i} (t + (q+1)T) = v_{i} (t ) +\sum_{k=0}^{q}[(-1)^{k+1} v _{i}(t + (k+1)T)-(-1)^{k} v_{i} (t + kT)]. \end{equation} Hence \begin{equation} \label{e3.6} \begin{aligned} &|(-1)^{q+1} v_{i} (t + (q+1)T)| \\ &\leq | v_{i} (t )| +\sum_{k=0}^{q}| (-1)^{k+1} v _{i}(t + (k+1)T)-(-1)^{k} v_{i} (t + kT)|, \end{aligned} \end{equation} where $i =1,2,\dots,n$. From \eqref{e3.4}, \eqref{e3.6} it follows that $(-1)^{q+1}v_i(t+(q+1)T)$ is a fundamental sequence on any compact set of $R$. Obviously, $\{(-1)^{q} v (t + qT)\}$ converges uniformly to a piece-wise continuous function $y^{*}(t)=(y^{*}_{1}(t), y^{*}_{2}(t),\dots, y^{*}_{n}(t))^{T}$ on any compact set of ${R}$. Now we show that $y^{*}(t)$ is $T$-anti-periodic solution of \eqref{e2.1}. Firstly, $y^{*}(t)$ is $T$-anti-periodic, since \begin{equation} \begin{aligned} y^{*}(t+T) &= \lim_{q\to \infty}(-1)^{q } v (t +T+ qT) \\ &= -\lim_{(q+1)\to \infty}(-1)^{q+1 } v (t +(q +1)T)=-y^{*}(t ). \end{aligned} \label{e3.7} \end{equation} In the sequel, we prove that $y^{*}(t)$ is a solution of \eqref{e2.1}. Noting that the right-hand side of \eqref{e2.1} is piece-wise continuous, \eqref{e3.3} implies that $ \{((-1)^{q+1} v (t +(q+1)T))'\}$ uniformly converges to a piece-wise continuous function on any compact subset of ${R}$. Thus, letting $q \to\infty$, we can easily obtain \begin{equation} \begin{aligned} \dot{y}_i^*(t) &=-c_i(t)y_i^*(t)+\prod_{0\leq{t_k}0, \end{aligned} \label{e3.8} \end{equation} where $i=1,2,\dots,n$. Therefore, $y^{*}(t)$ is a solution of \eqref{e2.1}. Applying Lemma \ref{lem2.1}, Definition \ref{def1.2} and Lemma \ref{lem2.3}, we can easily check that $x^{*}(t)$ is globally exponentially stable. The proof is complete. \end{proof} Shi and Dong \cite{38} investigated the following Hopfield neural networks with impulses: \begin{equation} \begin{gathered} \dot{x}_i(t)=-c_i(t)x_i(t)+\sum_{j=1}^nb_{ij}(t)f_j(x_j(t))+I_i(t),\quad t\neq t_k, \\ x_i(t_k^{+})=(1+d_{ik})x_i(t_k), \quad k=1,2,\dots, \end{gathered} \label{e3.9} \end{equation} where $i=1,2,\dots,n$. About the manning of the parameters, one can see \cite{38}. By some analytical technique and by upper left derivative of the Lyapunov functional with $t\neq t_k$ and $t=t_k,$ Shi and Dong \cite{38} obtained some sufficient conditions which ensure the existence and the global exponential stability of anti-periodic solution of system \eqref{e3.9}. In this paper, we consider a more general neural networks with delays and impulses. Moreover, the research technique is different from that of \cite{38}. By transforming the neural networks with impulses into an equivalent form without impulses and constructing the Lyapunov functional, we obtain the sufficient conditions which ensure the existence and global exponential stability of anti-periodic solution of the model. From this viewpoint, we say that the results obtained in this paper complement the previous results in \cite{38}. In \cite{13,22,23,30,33,34,36,47,48,51}, authors considered the anti-periodic solution of neural networks without impulses. In \cite{31,37,45,46,49}, authors investigated the global exponential stability of anti-periodic solution of neural networks with impulses by upper left derivative of the Lyapunov functional with $t\neq t_k$ and $t=t_k$. In \cite{21}, author studied the existence and global exponential stability anti-periodic solution of neural networks with impulses by the method of coincidence degree theory and Lyapunov functions. In this paper, we firstly transform the neural networks with impulses into an equivalent neural networks without impulses, then consider the existence and global exponential stability of anti-periodic solution of the equivalent model by constructing a suitable Lyapunov functional. To the best of our knowledge, there are very few papers that deal with this aspect. Moreover, all the results in \cite{13,22,23,30,31,33,34,36,37,45,46,47,48,49,51} and the references therein cannot applicable to system \eqref{e1.1} to obtain the existence and global exponential stability of anti-periodic solutions. Therefore the results obtained in this paper are essentially new and complement the previous publications. \section{An example} In this section, we illustrate the results obtained in previous sections. Let $n=2$, consider the cellular neural networks with time-varying delays and impulsive effects \begin{equation} \begin{gathered} \begin{aligned} \dot{x}_1(t)&=-c_1(t)x_1(t)+\sum_{j=1}^2a_{1j}(t)f_j(x_j(t))\\ &\quad +\sum_{j=1}^2b_{1j}(t)f_j(x_j(t-\tau_{1j}(t)))+u_1(t), \quad t\neq{t_k}, \end{aligned}\\ \begin{aligned} \dot{x}_2(t)&=-c_2(t)x_2(t)+\sum_{j=1}^2a_{2j}(t)f_j(x_j(t))\\ &\quad +\sum_{j=1}^2b_{2j}(t)f_j(x_j(t-\tau_{2j}(t)))+u_2(t), \quad t\neq{t_k}, \end{aligned}\\ {x_1}(t_k^{+})=(1+\delta_{1k})x_i(t_k),\quad k=1,2,\dots,\\ {x_2}(t_k^{+})=(1+\delta_{2k})x_i(t_k),\quad k=1,2,\dots, \end{gathered} \label{e4.1} \end{equation} which is equivalent to \begin{gather} \begin{aligned} \dot{y}_1(t)&=-c_1(t)y_1(t)+\prod_{0\leq{t_k}0 \end{aligned} \nonumber\\ \begin{aligned} \dot{y}_2(t)&=-c_2(t)y_2(t)+\prod_{0\leq{t_k}0, \end{aligned} \label{e4.2} \end{gather} where $f_j(u)=\frac{1}{2}(|u+1|-|u-1|)$ ($j=1,2$), $u_1(t)=0.1\sin t$, $u_2(t)=0.2\cos t$ and \begin{gather*} \begin{bmatrix} c_1(t) & c_2(t) \\ u_1(t) & u_2(t) \end{bmatrix} =\begin{bmatrix} 3+|\cos t| & 3+|\sin t| \\ 2\sin t & 3\sin t \end{bmatrix} \\ \begin{bmatrix} a_{11}(t) & a_{12}(t) \\ a_{21}(t) & a_{22}(t) \end{bmatrix} =\begin{bmatrix} \frac{1}{5}|\sin t| &\frac{1}{5}|\cos t| \\ \frac{1}{4}|\cos t| & \frac{1}{4}|\sin t| \end{bmatrix}, \\ \begin{bmatrix} b_{11}(t) & b_{12}(t) \\ b_{21}(t) & b_{22}(t) \end{bmatrix} =\begin{bmatrix} \frac{1}{4}|\sin t| & \frac{1}{4}|\cos t| \\ \frac{1}{5}|\cos t| & \frac{1}{5}|\sin t| \end{bmatrix}, \\ \begin{bmatrix} \tau_{11}(t) & \tau_{12}(t) \\ \tau_{21}(t) & \tau_{22}(t) \end{bmatrix} = \begin{bmatrix} 0.05|\sin t| & 0.05|\sin t| \\ 0.04|\cos t| & 0.04|\cos t| \\ \end{bmatrix} \end{gather*} Then $L_j^f=1, c_1^{-}=c_2^{-}=2$, $a_{1j}^{+}=0.2$, $a_{2j}^{+}=0.25$, $b_{1j}^{+}=0.25$, $b_{2j}^{+}=0.2$, $\tau=0.05$. Let $\eta=0.6$, $\lambda=0.5$, $m=1$ and $M=2$. Then $$ \lambda-c_i^{-}+\frac{M}{m}\Big[\sum_{j=1}^2(a_{ij}^{+}+b_{ij}^{+})L_j^f\Big] e^{\lambda\tau}<0.5-3+0.9\times2\times{e^{0.05\times0.5}} =-0.6544<-0.6<0, $$ which implies that system \eqref{e4.2} satisfies all the conditions in Theorem \ref{thm3.1}. Thus we can conclude that \eqref{e4.1} has exactly one $\pi$-anti-periodic solution. Moreover, this solution is globally exponentially stable. The results are verified by the numerical simulations in Figure \ref{fig1}. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig1} \end{center} \caption{Time response of state variables $x_1(t)$ (red) and $x_2(t)$ (blue).} \label{fig1} \end{figure} \subsection*{Conclusion} In this paper, we investigated the asymptotical behavior of a cellular neural networks with time-varying delays and impulsive effects. Applying the fundamental theorem, we reduce the existence of solution of system \eqref{e1.1} to the corresponding problem for a delayed differential equation without impulses and derive a series of new sufficient conditions to guarantee the existence and global exponential stability of an anti-periodic solution for the cellular neural networks with time-varying delays and impulsive effects. The obtained conditions are easily to check in practice. Finally, an example is given to illustrative the feasibility and effectiveness. To the best of our knowledge, there are only few papers that focus on the anti-periodic solution problem of cellular neural networks with impulsive effects by reducing the impulsive cellular neural networks to the cellular neural networks without impulse. Thus our work is new and an excellent complement of previously known results. \subsection*{Acknowledgments} This work was supported by the National Natural Science Foundation of China (Nos. 11261010,11201138, 11101126), by the Natural Science and Technology Foundation of Guizhou Province (J[2015]2025), by the 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011), and by the Natural Science Innovation Team Project of Guizhou Province ([2013]14). \begin{thebibliography}{00} \bibitem{1} A. R. Aftabizadeh, S. Aizicovici, N. H. Pavel; \emph{On a class of second-order anti-periodic boundary value problems}, Journal of Mathematical Analysis and Applications 171 (2) (1992), 301-320. \bibitem{2} S. Aizicovici, M. McKibben, S. Reich; \emph{Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities}, Nonlinear Analysis: Theory, Methods \& Applications 43 (2) (2001), 233-251. \bibitem{3} M. U. Akhmet; \emph{On the general problem of stability for impulsive differential equations}, Journal of Mathematical Analysis and Applications 288 (1) (2003), 182-196. \bibitem{4} J. D. Cao; \emph{New results concerning exponential stability and periodic solutions of delayed cellular neural networks}, Physics Letters A 307 (2-3) (2003), 136-147. \bibitem{5} J. D. Cao, D. W. C. Ho, X. Huang; \emph{LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay}, Nonlinear Analysis 66 (7) (2007), 1558-1572. \bibitem{6} J. D. Cao, J. Wang; \emph{Global exponential stability and periodicity of recurrent neural networks with time delays}, IEEE Transactions on Circuits and Systems. Part I: Regular Papers 52 (5) (2005), 920-931. \bibitem{7} H. L. Chen; \emph{antiperioidc wavelets}, Journal of Computational Mathematics 14 (1) (1996), 32-39. \bibitem{8} Y. Q. Chen, J. J. Nieto, D. O'Regan; \emph{Anti-periodic solutions for fully nonlinear first-order differential equations}, Mathematical and Computer Modelling 46 (9-10) (2007), 1183-1190. \bibitem{9} M. A. Cohen, S. Grossberg; \emph{Absolute stability of global pattern formation and parallel memory by competetive neural networks}, IEEE Transactions on Systems, Man, and Cybernetics 13 (5) (1983), 815-826. \bibitem{10} J. Y. Du, H. L. Han, G. X. Jin; \emph{On trigonometric and paratrigonometric Hermite interpolation}, Journal of Approximation Theory 131 (1) (2004), 74-99. \bibitem{11} Q. Y. Fan, W. T. Wang, X. J. Yi; \emph{Anti-periodic solutions for a class of nonlinear $n$th-order differential equations with delays}, Journal of Computational and Applied Mathematics 230 (2) (2009), 762-769. \bibitem{12} Q. Y. Fan, W. T. Wang, X. J. Yi, L. H. Huang; \emph{Anti-periodic solutions for a class of third-order nonlinear differential equations with deviating argument}, Electric Journal of Qualitative Theory of Differential Equations 8 (12) (2011), 1-12. \bibitem{13} S. H. Gong; \emph{Anti-periodic solutions for a class of Cohen-Grossberg neural networks}, Computers \& Mathematics with Applications 58 (2) (2009), 341-347. \bibitem{14} Z. J. Gui, W. G. Ge; \emph{Periodic solutions of nonautonomous cellular neural networks with impulses, Chaos}, Solitons and Fractals 32 (5) (2007), 1760-1771. \bibitem{15} Z. D. Huang, L. Q. Peng, M. Xu; \emph{Anti-periodic solutions for high-order cellular neural netowrks with time-varying delays}, Electric Journal of Differential Equations 2010 (5) (2010), 1-9. \bibitem{16} Z. T. Huang, Q. G. Yang; \emph{Exponential stability of impulsive high-order cellular neural networks with time-varying delays}, Nonlinear Analysis: Real World Applications 11 (1) (2010), 592-600. \bibitem{17} H. Y. Kang, H. Zhou, B. Li; \emph{Exponential Stability of Solution for Delayed Cellular Neural Networks with Impulses}, Procedia Engineering 15 (2011), 1626-1631. \bibitem{18} V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; \emph{Theory of Impulsive Differential Equations}, World Scientific, Singapore, 1989. \bibitem{19} Y. K. Li; \emph{Anti-periodic solutions to impulsive shunting inhibitory cellular neural networks with distributed delays on time scales}, Communications in Nonlinear Science and Numerical Simulation 16 (8) (2011), 3326-3336. \bibitem{20} Y. K. Li, W. Y. Xing, L. H. Lu; \emph{Existence and global exponential stability of periodic solution of a class of neural networks with impulses}, Chaos, Solitons and Fractals 27 (2) (2006), 437-445. \bibitem{21} Y. K. Li, E. L. Xu, T. W. Zhang; \emph{Existence and stability of anti-periodic solution for a class of generalized neural networks with impulsives and arbitrary delays on time scales}, Journal of Inequalities and Applications, Volume 2010, Article ID 132790, 19 pages. \bibitem{22} Y. K. Li, L. Yang; \emph{Anti-periodic solutions for Cohen-Grossberg neural netowrks with bounded and unbounded dealys}, Communications in Nonlinear Science and Numerical Simulation 14 (7) (2009), 3134-3140. \bibitem{23} Y. K. Li, L. Yang, W. Q. Wu; \emph{Anti-periodic solutions for a class of Cohen-Grossberg neural networks with time-varying on time scales}, International Journal of System Science 42 (7) (2011), 1127-1132. \bibitem{24} Y. Q. Li, L. H. Huang; \emph{Anti-periodic solutions for a class of Lienard-type systems with continuously distributed delays}, Nonlinear Analysis: Real World Applications 10 (4) (2009), 2127-2132. \bibitem{25} B. W. Liu; \emph{An anti-periodic LaSalle oscillation theorem for a class of functional differential equations}, Journal of Computational and Applied Mathematics 223 (2) (2009), 1081-1086. \bibitem{26} B. W. Liu; \emph{Anti-periodic solutions for forced Rayleigh-type equations}, Nonlinear Analysis: Real World Applications 10 (5) (2009), 2850-2856. \bibitem{27} X. Liu, J. D. Cao; \emph{Exponential stability of anti-periodic solutions for neural networks with multiple discrete and distributed delays, Proceedings of the Institution of Mechanical Engineers, Part I}, Journal of Systems and Control Engineering 223 (3) (2009), 299-308. \bibitem{28} X. Lv, P. Yan, D.J. Liu; \emph{Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations with delays}, Communications in Nonlinear Science and Numerical Simulation 15 (11) (2010), 3593-3598. \bibitem{29} S. Mohamad; \emph{Exponential stability in Hopfield-type neural networks with impulses}, Chaos, Solitons and Fractals 32 (2) (2007), 456-467. \bibitem{30} C. X. Ou; \emph{Anti-periodic solutions for high-order Hopfield neural networks}, Computers $\&$ Mathematics with Applications 56 (7) (2008), 1838-1844. \bibitem{31} L. J. Pan, J. D. Cao; \emph{Anti-periodic solution for delayed cellular neural networks with impulsive effects}, Nonlinear Analysis: Real World Applications 12 (6) (2011), 3014-3027. \bibitem{32} J. Y. Park, T. G. Ha; \emph{Existence of anti-periodic solutions for quasilinear parabolic hemivariational inequalities}, Nonlinear Analysis: Theory, Methods \& Applications 71 (7-8) (2009), 3203-3217. \bibitem{33} G. Q. Peng, L. H. Huang; \emph{Anti-periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays}, Nonlinear Analysis: Real World Applications 10 (40) (2009) 2434-2440. \bibitem{34} L. Peng, W. T. Wang; \emph{Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in leakage terms}, Neurocomputing 111 (2013), 27-33. \bibitem{35} A. M. Samoilenko, N. A. Perestyuk; \emph{Impulsive Differential Equations}, World Scientific, Singapore, 1995. \bibitem{36} J. Y. Shao; \emph{Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays}, Physics Letters A 372 (30) (2008), 5011-5016. \bibitem{37} P. L. Shi, L. Z. Dong; \emph{Anti-periodic solutions for neural networks with delays and impulses}, Mathematical and Computational Applications 18 (1) (2013), 50-61. \bibitem{38} P.L. Shi, L. Z. Dong; \emph{Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses}, Applied Mathematics and Computation 216 (2) (2010), 623-630. \bibitem{39} J. T. Sun, Q. G. Wang, H. Q. Gao; \emph{Periodic solution for nonautonomous cellular neural networks with impulses}, Chaos, Solitons and Fractals 40 (3) (2009), 1423-1427. \bibitem{40} W. Wang, J. Shen; \emph{Existence of solutions for anti-periodic boundary value problems}, Nonliear Analysis 70 (2) (2009), 598-605. \bibitem{41} Y. X. Wang, W. M. Xiong, Q. Y. Zhou, B. Xiao, Y. H. Yu; \emph{Global exponential stability of cellular neural networks with continuously distributed delays and impulses}, Physics Letters A 350 (1-2) (2006), 89-95. \bibitem{42} Y. H. Xia, J. D. Cao, Z. K. Huang; \emph{Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses}, Chaos, Solitons and Fractals 34 (5) (2007), 1599-1607. \bibitem{43} H. J. Xiang, J. D. Cao; \emph{Almost periodic solution of recurrent neural networks with continuously distributed delays}, Nonlinear Analysis 71 (12) (2009), 6097-6108. \bibitem{44} W. M. Xiong, Q. Y. Zhou, B. Xiao, Y. H. Yu; \emph{Global exponential stability of cellular neural networks with mixed delays and impulses}, Chaos, Solitons and Fractals 34 (3) (2007) 896-902. \bibitem{45} C.J. Xu, Y. S. Wu; \emph{Anti-periodic solutions for high-order cellular neural networks with mixed delays and impulses}, Advances in Difference Equations 161 (2015) doi: 10.1186/s13662-015-0497-4. \bibitem{46} C. J. Xu, Q. M. Zhang; \emph{Existence and exponential stability of anti-periodic solutions for a high-order delayed Cohen-Grossberg neural networks with impulsive effects}, Neural Processing Letters 40 (3) (2014), 227-243. \bibitem{47} C. J. Xu, Q. M. Zhang; \emph{Existence and global exponential stability of anti-periodic solutions of high-order bidirectional associative memory (BAM) networks with time-varying delays on time scales}, Journal of Computational Science 8 (2015) 48-61. \bibitem{48} C. J. Xu, Q. M. Zhang; \emph{Existence and stability of pseudo almost periodic solutions for shunting inhibitory cellular neural networks with neutral type delays and time-varying leakage delays}, Network: Computation in Neural Systems 25 (4) (2014), 168-192. \bibitem{49} C.J. Xu, Q. M. Zhang; \emph{On anti-periodic solutions for Cohen-Grossberg shunting inhibitory neural networks with time-varying delays and impulses}, Neural Computation 26 (10) (2014), 2328-2349 \bibitem{50} Y. H. Yu, J. Y. Shao, G. X. Yue; \emph{Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments}, Nonlinear Analysis: Theory, Methods \& Applications 71 (10) (2009), 4689-4695. \bibitem{51} A. P. Zhang; \emph{Existence and exponential stability of anti-periodic solutions for HCNNs with time-varying leakage delays}, Advances in Difference Equations 162 (2013) doi:10.1186/1687-1847-2013-162. \bibitem{52} Y. P. Zhang; \emph{Stationary oscillation for cellular neural networks with time delays and impulses}, Mathematics and Computers in Simulation 79 (10) (2009), 3174-3178. \end{thebibliography} \end{document}