\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 08, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/08\hfil Nonhomogeneous elliptic equations] {Nonhomogeneous elliptic equations involving critical Sobolev exponent and weight} \author[M. Bouchekif, A. Rimouche \hfil EJDE-2016/08\hfilneg] {Mohammed Bouchekif, Ali Rimouche} \address{Mohammed Bouchekif \newline Laboratoire Syst\`emes Dynamiques et Applications, Facult\'e des Sciences, Universit\'e de Tlemcen BP 119 Tlemcen 13000, Alg\'erie} \email{m\_bouchekif@yahoo.fr} \address{Ali Rimouche (corresponding author)\newline Laboratoire Syst\`emes Dynamiques et Applications, Facult\'e des Sciences, Universit\'e de Tlemcen BP 119 Tlemcen 13000, Alg\'erie} \email{ali.rimouche@mail.univ-tlemcen.dz} \thanks{Submitted June 30, 2015. Published January 6, 2016.} \subjclass[2010]{35J20, 35J25, 35J60} \keywords{Critical Sobolev exponent; Nehari manifold; variational principle} \begin{abstract} In this article we consider the problem \begin{gather*} -\operatorname{div}\big(p(x)\nabla u\big)=|u|^{2^{*}-2}u+\lambda f\quad \text{in }\Omega \\ u=0 \quad \text{on }\partial\Omega \end{gather*} where $\Omega$ is a bounded domain in $\mathbb{R}^N$, We study the relationship between the behavior of $p$ near its minima on the existence of solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction and statement of main results} In this article we study the existence of solutions to the problem \begin{equation} \begin{gathered} -\operatorname{div}\big(p(x)\nabla u\big)=|u|^{2^{*}-2}u+\lambda f\quad \text{in }\Omega \\ u=0 \quad \text{on } \partial\Omega, \end{gathered} \label{eq:0} \end{equation} where $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, $N\geq3$, $f$ belongs to $H^{-1}=W^{-1,2}(\Omega)\setminus\{0\}$, $p\in H^{1}(\Omega)\cap C(\bar{\Omega})$ is a positive function, $\lambda$ is a real parameter and $2^{*}=\frac{2N}{N-2}$ is the critical Sobolev exponent for the embedding of $H_0^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$. For a constant function $p$, problem \eqref{eq:0} has been studied by many authors, in particular by Tarantello \cite{Tarantello-4}. Using Ekeland's variational principle and minimax principles, she proved the existence of at least one solution of \eqref{eq:0} with $\lambda=1$ when $f\in H^{-1}$ and satisfies \begin{equation*} \int_{\Omega}{fu\,dx}\leq K_{N} \Big(\int_{\Omega}{|\nabla u|^2}\Big)^{({N+2})/{4}} \quad\text{for }\int_{\Omega} |u|^{2^{*}}=1, \end{equation*} with \[ K_{N}=\frac{4}{N-2}(\frac{N-2}{N+2})^{({N+2})/{4}}. \] Moreover when the above inequality is strict, she showed the existence of at least a second solution. These solutions are nonnegative when $f$ is nonnegative. The following problem has been considered by several authors, \begin{equation} \begin{gathered} -\operatorname{div}(p(x)\nabla u)=|u|^{2^{*}-2}u+\lambda u\quad \text{in }\Omega \\ u>0 \quad \text{in }\Omega \\ u=0 \quad \text{on }\partial\Omega\,. \end{gathered} \label{eq:hadiji} \end{equation} We quote in particular the celebrate paper by Brezis and Nirenberg \cite{Br=0000E9zis-1}, and that of Hadiji and Yazidi \cite{Hadiji-3}. In \cite{Br=0000E9zis-1}, the authors studied the case when $p$ is constant. To our knowledge, the case where $p$ is not constant has been considered in \cite{Hadiji-3} and \cite{Rimouche}. The authors in \cite{Hadiji-3} showed that the existence of solutions depending on a parameter $\lambda$, $N$, and the behavior of $p$ near its minima. More explicitly: when $p\in H^{1}(\Omega)\cap C(\bar{\Omega})$ satisfies \begin{equation} p(x)=p_0+\beta_{k}|x-a|^{k}+|x-a|^{k}\theta(x)\ \text{in }B(a,\tau), \label{eq:p(x)_1} \end{equation} where $k,\beta_{k}, \tau$ are positive constants, and $\theta$ tends to $0$ when $x$ approaches $a$, with $a\in p^{-1}(\{ p_0\} )\cap \Omega$, $p_0=\min_{x\in\overline{\Omega}} p(x)$, and $B(a,\tau)$ denotes the ball with center $0$ and radius $\tau$, when $02$ and $\lambda\in\left]0,\lambda_1(p)\right[$; \item[(ii)] $N\geq4$, $k=2$ and $\lambda\in\left]\tilde{\gamma}(N),\lambda_1(p) \right[$; \item[(iii)] $N=3$, $k\geq2$ and $\lambda\in\left]\gamma(k),\lambda_1(p)\right[$; \item[(iv)] $N\geq3$, $00$ and $\lambda\leq\delta(p)$. \item[(b)] $N\geq3$, $k>0$ and $\lambda\geq\lambda_1(p)$. \end{itemize} We denote by $\lambda_1(p)$ the first eigenvalue of $(-\operatorname{div} (p\nabla.), H)$ and \[ \delta(p)=\frac{1}{2}\underset{u\in H_0^1(\Omega)\setminus\{0\}}{\inf}\frac{\int_{\Omega}{\nabla p(x)(x-a)|\nabla u|^2dx}}{\int_{\Omega}{|u|^2dx}}. \] Then we formulate the question: What happens in \eqref{eq:0} when $p$ is not necessarily a constant function? A response to this question is given in Theorem \ref{thm:2} below. \subsection*{Notation} $S$ is the best Sobolev constant for the embedding from $H_0^1(\Omega)$ to $L^{2^*}(\Omega)$. $\| \cdot\|$ is the norm of $H_0^1(\Omega)$ induced by the product $(u,v)=\int_{\Omega}{\nabla u\nabla v\,dx}$. $\| \cdot\| _{-1}$ and $|\cdot |_{p}=(\int_{\Omega}|.|^{p}dx)^{1/p}$ are the norms in $H^{-1}$ and $L^p(\Omega)$ for $1\leq p<\infty$ respectively. We denote the space $H_0^1(\Omega)$ by $H$ and the integral $\int_{\Omega}{u\,dx}$ by $\int{u}$. $\omega_{N}$ is the area of the sphere $\mathbb{S}^{N-1}$ in $\mathbb{R}^N$. Let $E=\{ u\in H:\int_{\Omega}\tilde{f}(x)u(x)dx>0\} $ and \[ \alpha(p):=\frac{1}{2}\inf_{u\in E} \frac{\int_{\Omega}\hat{p} (x)|\nabla u(x)|^2dx}{\int_{\Omega}\tilde{f}(x)u(x)dx}, \] with \[ \tilde{f}(x):=\nabla f(x).(x-a)+\frac{N+2}{2}f(x),\quad \hat{ p}(x)=\nabla p(x).(x-a). \] Put \begin{equation} \label{eq:B,A_1} \begin{gathered} \Lambda_0:=K_{N}\frac{p_0^{1/2}}{\| f\| _{-1}} (S(p))^{N/4}, \quad A_l=(N-2)^2\int_{\mathbb{R}^N}\frac{|x|^{l+2}}{(1+|x|^2)^N}, \\ B=\int_{\mathbb{R}^N}\frac{1}{(1+|x|^2)^N}, \quad D:=w_0(a)\int_{\mathbb{R}^N}(1+|x|^2)^{(N+2)/2}, \end{gathered} \end{equation} where $l\geq0$ and \[ S(p):=\inf_{u\in H\setminus\{0\} } \frac{\int_{\Omega} p(x)|\nabla u|^2}{ |u|_{2^{*}}^2}\,. \] \begin{definition}\label{def:ground} \rm We say that $u$ is a ground state solution of \eqref{eq:0} if $J_{\lambda}(u)=\min\{J_{\lambda}(v) :v\text{ is a solution of \eqref{eq:0}}\}$. Here $J_{\lambda}$ is the energy functional associate with \eqref{eq:0}. \end{definition} \begin{remark}\label{rmq:1}\rm By the Ekeland variational principle \cite{Ekeland} we can prove that for $\lambda\in(0,\Lambda_0)$ there exists a ground state solution to \eqref{eq:0} which will be denoted by $ w_0$. The proof is similar to that in \cite{Tarantello-4}. \end{remark} \begin{remark} \rm Noting that if $u$ is a solution of the problem \eqref{eq:0}, then $-u$ is also a solution of the problem \eqref{eq:0} with $-\lambda$ instead of $\lambda$. Without loss of generality, we restrict our study to the case $\lambda\geq 0$. \end{remark} Our main results read as follows. \begin{theorem}\label{thm:3} Suppose that $\Omega$ is a star shaped domain with respect to $a$ and $p$ satisfies \eqref{eq:p(x)_1}. Then there is no solution of problem \eqref{eq:0} in $E$ for all $0\leq\lambda\leq\alpha(p)$. \end{theorem} \begin{theorem}\label{thm:2} Let $p\in H^{1}(\Omega)\cap C(\bar{\Omega})$ such that $p_0>0$ and $p$ satisfies \eqref{eq:p(x)_1} then, for $0<\lambda<\frac{\Lambda_0}{2}$, problem \eqref{eq:0} admits at least two solutions in one of the following condition: \begin{itemize} \item[(i)] $k>\frac{N-2}{2}$, \item[(ii)] $\beta_{(N-2)/2}>\frac{2D}{A_{(N-2)/2}}(\frac{A_0}{B} )^{(6-N)/4}$. \end{itemize} \end{theorem} This article is organized as follows: in the forthcoming section, we give some preliminaries. Section 3 and 4 present the proofs of our main results. \section{Preliminaries} A function $u$ in $H$ is said to be a weak solution of \eqref{eq:0} if $u$ satisfies \begin{equation*} \int(p\nabla u\nabla v-|u|^{2^{*}-2}uv-\lambda fv)=0\quad\text{for all }v\in H. \end{equation*} It is well known that the nontrivial solutions of \eqref{eq:0} are equivalent to the non zero critical points of the energy functional \begin{equation} J_{\lambda}(u)=\frac{1}{2}\int p|\nabla u|^2-\frac{1 }{2^{*}}\int|u|^{2^{*}}-\lambda\int fu\,. \label{eq:J_1} \end{equation} We know that $J_{\lambda}$ is not bounded from below on $H$, but it is on a natural manifold called Nehari manifold, which is defined by \begin{equation*} \mathcal{N}_{\lambda}=\{ u\in H\setminus\{ 0\} :\langle J_{\lambda}'(u),u\rangle =0\} . \end{equation*} Therefore, for $u\in\mathcal{N}_{\lambda}$, we obtain \begin{equation} J_{\lambda}(u)=\frac{1}{N}\int p|\nabla u|^2-\lambda\frac{N+2}{ 2N}\int fu, \label{eq:J_N_f} \end{equation} or \begin{equation} J_{\lambda}(u)=-\frac{1}{2}\int p|\nabla u|^2+\frac{ N+2}{2N}\int|u|^{2^{*}}. \label{eq:J_N_u} \end{equation} It is known that the constant $S$ is achieved by the family of functions \begin{equation} U_{\varepsilon}(x)=\frac{\varepsilon^{(N-2)/2}}{ (\varepsilon^2+|x|^2)^{(N-2)/2}} \quad\varepsilon>0,\quad x\in\mathbb{R}^N, \label{eq:u.epsilon_1} \end{equation} For $a\in\Omega$, we define $U_{\varepsilon,a}(x)=U_{\varepsilon}(x-a)$ and $u_{\varepsilon,a}(x)=\xi_{a}(x)U_{\varepsilon,a}(x)$, where \begin{equation} \xi_{a}\in C_0^{\infty}(\Omega)\quad \text{with $\xi_{a}\geq0$ and $\xi_{a}=1$ in a neighborhood of $a$}. \label{eq:phi_1} \end{equation} We start with the following lemmas given without proofs and based essentially on \cite{Tarantello-4}. \begin{lemma} \label{lem:J-born=0000E9e-co=0000E9rcive} The functional $J_{\lambda}$ is coercive and bounded from below on $\mathcal{N}_{\lambda}$. \end{lemma} Set \begin{equation} \Psi_{\lambda}(u)=\langle J_{\lambda}'(u),u\rangle . \label{eq:21_1} \end{equation} For $u\in\mathcal{N}_{\lambda}$, we obtain \begin{eqnarray} \langle \Psi_{\lambda}'(u),u\rangle & = & \int p|\nabla u|^2-(2^{*}-1)\int|u|^{2^{*}} \label{eq:3_1} \\ & = & (2-2^{*})\int p|\nabla u|^2-\lambda(1-2^{*})\int fu. \label{eq:4_1} \end{eqnarray} So it is natural to split $\mathcal{N}_{\lambda}$ into three subsets corresponding to local maxima, local minima and points of inflection defined respectively by \begin{gather*} \mathcal{N}_{\lambda}^{+}=\{ u\in\mathcal{N}_{\lambda}:\langle \Psi_{\lambda}'(u),u\rangle >0\} ,\quad \mathcal{N}_{\lambda}^{-}=\{ u\in\mathcal{N}_{\lambda}:\langle \Psi_{\lambda}'(u),u\rangle <0\}, \\ \mathcal{N}_{\lambda}^{0}=\{ u\in\mathcal{N}_{\lambda}:\langle \Psi_{\lambda}'(u),u\rangle =0\} . \end{gather*} \begin{lemma}\label{lem:min-J-sol} Suppose that $u_0$ is a local minimizer of $J_{\lambda}$ on $\mathcal{N}_{\lambda}$. Then if $u_0\notin\mathcal{N}_{\lambda}^{0}$, we have $J_{\lambda}'(u_0)=0$ in $H^{-1}$. \end{lemma} \begin{lemma}\label{lem:N0-vide} For each $\lambda\in(0,\Lambda_0)$ we have $\mathcal{N}_{\lambda}^{0}=\emptyset$. \end{lemma} By Lemma \ref{lem:N0-vide}, we have $\mathcal{N}_{\lambda}=\mathcal{N} _{\lambda}^{+}\cup\mathcal{N}_{\lambda}^{-}$ for all $\lambda\in(0, \Lambda_0)$. For $u\in H\setminus\{ 0\} $, let \begin{equation*} t_m=t_{\rm max}(u):=\Big(\frac{\int p|\nabla u|^2}{(2^{*}-1) \int|u|^{2^{*}}}\Big)^{(N-2)/4}. \end{equation*} \begin{lemma}\label{lem:tu} Suppose that $\lambda\in(0,\Lambda_0)$ and $u\in H\setminus\{ 0\} $, then (i) If $\int fu\leq0$, then there exists an unique $t^{+}=t^{+}(u)>t_m$ such that $t^{+}u\in\mathcal{N}_{\lambda}^{-}$ and \begin{equation*} J_{\lambda}(t^{+}u)=\sup_{t\geq t_m} J_{\lambda}(tu). \end{equation*} (ii) If $\int fu>0$, then there exist unique $t^{-}=t^{-}(u),\; t^{+}=t^{+}(u)$ such that $00$. \end{lemma} \section{Nonexistence result} \subsection*{Some properties of $\alpha(p)$} \begin{proposition} (1) Assume that $p\in C^{1}(\Omega)$ and there exists $b\in\Omega$ such that $\nabla p(b)(b-a)<0$ and $f\in C^{1}$ in a neighborhood of $b$. Then $\alpha(p)=-\infty$. (2) If $p\in C^{1}(\Omega)$ satisfying \eqref{eq:p(x)_1} with $k>2$ and $\nabla p(x)(x-a)\geq0$ for all $x\in\Omega$ and $f\in C^{1}$ in a neighborhood of $a$ and $f(a)\neq0$, then $\alpha(p)=0$ for all $N\geq3$. (3) If $p\in H^{1}(\Omega)\cap C(\bar{\Omega})$ and $\nabla p(x)(x-a)\geq0$ a.e $x\in\Omega$, then $\alpha(p)\geq0$. \end{proposition} \begin{proof} (1) Set $\varphi\in C_0^{\infty}(\mathbb{R}^N)$ such that \begin{equation} 0\leq\varphi\leq1,\quad\varphi(x)= \begin{cases} 1 & \text{if }x\in B(0;r) \\ 0 & \text{if }x\notin B(0;2r), \end{cases}\label{eq:1.5} \end{equation} where $02$ we deduce that $\alpha(p)=0$, which completes the proof. \end{proof} \subsection*{Proof of Theorem \ref{thm:3}} Suppose that $u$ is a solution of \eqref{eq:0}. We multiply \eqref{eq:0} by $\nabla u(x).(x-a)$ and integrate over $\Omega$, we obtain \begin{gather} \int|u|^{2^{*}-1}\nabla u(x).(x-a)=-\frac{N-2}{2} \int|u(x)|^{2^{*}}, \label{eq:1.7-1} \\ \lambda\int f(x)\nabla u(x).(x-a)=-\lambda\int(\nabla f(x).(x-a)+Nf(x))u(x), \label{eq:1.8-1} \\ \begin{aligned} &-\int\operatorname{div}(p(x)\nabla u(x))\nabla u(x).(x-a)\\ &= -\frac{N-2}{2}\int p(x)|\nabla u(x)|^2 -\frac{1}{2}\int\nabla p(x).(x-a)|\nabla u(x)|^2\\ &\quad -\frac{1}{2}\int_{\partial \Omega}p(x)(x-a).\nu| \frac{\partial u}{\partial\nu}|^2. \end{aligned} \label{eq:1.9-1} \end{gather} Combining \eqref{eq:1.7-1}, \eqref{eq:1.8-1} and \eqref{eq:1.9-1}, we obtain \begin{equation} \begin{aligned} &-\frac{N-2}{2}\int p(x)|\nabla u(x)|^2 -\frac{1}{2}\int\nabla p(x).(x-a)|\nabla u(x)|^2\\ & -\frac{1}{2}\int_{\partial \Omega}p(x)(x-a).\nu|\frac{\partial u}{\partial\nu}|^2\\ &=-\frac{N-2}{2}\int|u(x)|^{2^{*}}-\lambda\int(\nabla f(x).(x-a)+Nf(x))u(x). \end{aligned} \label{eq:1.11-1} \end{equation} Multiplying \eqref{eq:0} by $\frac{N-2}{2}u$ and integrating by parts, we obtain \begin{equation} \frac{N-2}{2}\int p(x)|\nabla u(x)|^2=\frac{N-2}{2} \int|u(x)|^{2^{*}}+\lambda\frac{N-2}{2}\int f(x)u(x). \label{eq:1.10-1} \end{equation} From \eqref{eq:1.11-1} and \eqref{eq:1.10-1}, we obtain \begin{equation*} -\frac{1}{2}\int\nabla p(x).(x-a)|\nabla u(x)|^2-\frac{1}{2} \int_{\partial\Omega}p(x)(x-a).\nu|\frac{\partial u}{\partial\nu} |^2+\lambda\int\tilde{f}(x)u(x)=0. \end{equation*} Then \begin{equation} \lambda>\frac{1}{2}\frac{\int\nabla p(x).(x-a)|\nabla u(x)|^2}{ \int\tilde{f}(x)u(x)}\geq\alpha(p). \label{eq:nabla_f} \end{equation} Hence the desired result is obtained. \section{Existence of solutions} We begin by proving that \begin{equation} \inf_{u\in\mathcal{N}_{\lambda}^{-}} J_{\lambda}(u)=c^{-} k, \\ p_0A_0+\frac{(N-2)^2}{2}(\beta_{N-2}+M)\omega_{N} \varepsilon^{N-2}|\ln\varepsilon|+o(\varepsilon^{N-2}| \ln\varepsilon|) & \text{if }N-2=k, \end{cases} \end{align*} where $M$ is a positive constant. \end{lemma} \begin{proof} by calculations, \begin{align*} &\varepsilon^{2-N}\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ & = \int\frac{ p(x)|\nabla\xi_{a}(x)|^2}{(\varepsilon^2+|x-a |^2)^{N-2}}+(N-2)^2\int\frac{p(x)|\xi_{a}(x) |^2|x-a|^2}{(\varepsilon^2+|x-a|^2 )^N} \\ &\quad - (N-2)\int\frac{p(x)\nabla\xi_{a}^2(x)(x-a )}{(\varepsilon^2+|x-a|^2)^{N-1}}. \end{align*} Suppose that $\xi_{a}\equiv1$ in $B(a,r)$ with $r>0$ small enough. So, we obtain \begin{align*} &\varepsilon^{2-N}\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ & = \int_{\Omega\setminus B(a,r)}\frac{p(x)|\nabla\xi_{a}(x)|^2}{ (\varepsilon^2+|x-a|^2)^{N-2}}+(N-2 )^2\int\frac{p(x)|\xi_{a}(x)|^2|x-a|^2}{ (\varepsilon^2+|x-a|^2)^N} \\ &\quad - 2(N-2)\int_{\Omega\setminus B(a,r)}\frac{p(x)\xi_{a}(x)\nabla\xi_{a}(x)(x-a)}{ (\varepsilon^2+|x-a|^2)^{N-1}}. \end{align*} Applying the dominated convergence theorem, \begin{equation*} \int p(x)|\nabla u_{\varepsilon,a}(x)|^2=(N-2)^2\varepsilon^{N-2}\int \frac{p(x)|\xi_{a}(x)|^2|x-a|^2}{ (\varepsilon^2+|x-a|^2)^N}+O( \varepsilon^{N-2}). \end{equation*} Using expression \eqref{eq:p(x)_1}, we obtain \begin{align*} &\varepsilon^{2-N}(N-2)^{-2}\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ & = \int_{B(a,\tau)}\frac{p_0|x-a|^2+\beta_{k}|x-a |^{k+2}+\theta(x)|x-a|^{k+2}}{(\varepsilon^2+ |x-a|^2)^N} \\ &\quad + \int_{\Omega\setminus B(a,\tau)}\frac{p(x)|\xi_{a}(x)|^2|x-a|^2}{ (\varepsilon^2+|x-a|^2)^N}+O(\varepsilon^{N-2}). \end{align*} Using again the definition of $\xi_{a}$, and applying the dominated convergence theorem, we obtain \begin{align*} &\varepsilon^{2-N}(N-2)^{-2}\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ & = p_0\int_{\mathbb{R}^N}\frac{|x-a|^2}{ (\varepsilon^2+|x-a|^2)^N}+\beta_{k}\int_{B(a, \tau)}\frac{|x-a|^{k+2}}{(\varepsilon^2+|x-a |^2)^N} \\ &\quad + \int_{B(a,\tau)}\frac{\theta(x)|x-a|^{k+2}}{(\varepsilon^2+|x-a|^2 )^N}+O(\varepsilon^{N-2}). \end{align*} We distinguish three cases: \smallskip \noindent\textbf{Case 1.} If $kN-2$, \begin{align*} \int p(x)|\nabla u_{\varepsilon,a}(x)|^2 & = p_0A_0+ (N-2)^2\varepsilon^{N-2}\Big[\int_{B(a,\tau )}\frac{(\beta_{k}+\theta(x))|x-a|^{k+2}}{ (\varepsilon^2+|x-a|^2)^N}\\ &\quad - \int_{B(a,\tau)\setminus\Omega}\frac{ (\beta_{k}+\theta(x))|x-a|^{k+2}}{( \varepsilon^2+|x-a|^2)^N}\Big] \\ &\quad + (N-2)^2\varepsilon^{N-2}\int_{B(a,\tau)}\frac{ \theta(x)|x-a|^{k+2}}{(\varepsilon^2+|x-a|^2 )^N}+O(\varepsilon^{N-2}). \end{align*} By the change of variable $y=x-a$, we obtain \begin{align*} \int p(x)|\nabla u_{\varepsilon,a}(x)|^2 & = p_0A_0+(N-2)^2\varepsilon^{N-2}\int_{B(0,\tau )}\frac{(\beta_{k}+\theta(a+y))|y|^{k+2}}{ (\varepsilon^2+|y|^2)^N}\\ &\quad + (N-2)^2\varepsilon^{N-2}\int_{B(a,\tau)}\frac{ \theta(a+y)|y|^{k+2}}{(\varepsilon+|y|^2 )^N}+O(\varepsilon^{N-2}). \end{align*} Put $M:=\underset{x\in\bar{\Omega}}{\max}\,\theta(x)$ where $\theta(x)$ is given by \eqref{eq:p(x)_1}. Then \begin{align*} &\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ & = p_0A_0+\varepsilon^{N-2}(N-2)^2(\beta_{k}+M )\int_{B(0,\tau)}\frac{|y|^{k+2}}{ (\varepsilon^2+|y|^2)^N}dy+O( \varepsilon^{N-2}). \end{align*} Applying the dominated convergence theorem, \begin{equation*} \int p(x)|\nabla u_{\varepsilon,a}(x)|^2=p_0A_0+O(\varepsilon^{N-2}). \end{equation*} \noindent\textbf{Case 3.} If $k=N-2$, following the same previous steps, we obtain \begin{align*} &\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ & = p_0A_0+(N-2)^2\varepsilon^{N-2}\int_{B(a,\tau)} \frac{\theta(x)|x-a|^{k+2}}{(\varepsilon^2+|x-a |^2)^N}\\ &\quad + (N-2)^2\varepsilon^{N-2}\Big[\int_{B(a,\tau )}\frac{\beta_{N-2}|x-a|^N}{(\varepsilon^2+ |x-a|^2)^N} - \int_{B (a,\tau)\setminus\Omega}\frac{\beta_{N-2}|x-a|^N }{(\varepsilon^2+|x-a|^2)^N}\Big]\\ &\quad +O(\varepsilon^{N-2}). \end{align*} Therefore, \begin{align*} &\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ & = p_0A_0+(N-2)^2\varepsilon^{N-2}\int_{B(a,\tau )}\frac{(\beta_{N-2}+\theta(x))|x-a|^N}{ (\varepsilon^2+|x-a|^2)^N}\\ &\quad + (N-2)^2\varepsilon^{N-2}\int_{B(a,\tau)}\frac{ \theta(x)|x-a|^{k+2}}{(\varepsilon^2+|x-a|^2 )^N}+O(\varepsilon^{N-2}). \end{align*} Then \begin{align*} &\int p(x)|\nabla u_{\varepsilon,a}(x)|^2 \\ &\leq p_0A_0+(N-2)^2\varepsilon^{N-2}(\beta_{N-2}+M) \int_{B(a,\tau)}\frac{|x-a|^N}{( \varepsilon^2+|x-a|^2)^N}+O(\varepsilon^{N-2}). \end{align*} On the other hand \begin{align*} \varepsilon^{N-2}\int_{B(a,\tau)}\frac{ |x-a|^N}{(\varepsilon^2+|x-a|^2)^N} & = \omega_{N}\varepsilon^{N-2}\int_0^{\tau}\frac{r^{2N-1}}{ (\varepsilon^2+r^2)^N}dr+O(\varepsilon^{N-2}) \\ & = \frac{1}{2N}\omega_{N}\varepsilon^{N-2}\int_0^{\tau}\frac{ ((\varepsilon^2+r^2)^N)'}{ (\varepsilon^2+r^2)^N}dr+O(\varepsilon^{N-2}), \end{align*} and \begin{equation} \varepsilon^{N-2}\int_{B(a,\tau)}\frac{ |x-a|^N}{(\varepsilon^2+|x-a|^2)^N}= \frac{1}{2}\omega_{N}\varepsilon^{N-2}|\ln\varepsilon|+o( \varepsilon^{N-2}|\ln\varepsilon|), \label{eq:9_4} \end{equation} Therefore, \begin{equation*} \int p(x)|\nabla u_{\varepsilon,a}(x)|^2\leq p_0A_0+ \frac{(N-2)^2}{2}(\beta_{N-2}+M)\omega_{N} \varepsilon^{N-2}|\ln\varepsilon|+o(\varepsilon^{N-2}| \ln\varepsilon|). \end{equation*} \end{proof} Knowing that $w_0\neq0$, we set $\Omega'\subset\Omega$ as a set of positive measure such that $w_0>0$ on $\Omega'$. Suppose that $a\in\Omega'$ (otherwise replace $w_0$ by $-w_0$ and $f$ by $-f$). \begin{lemma}\label{lem:ewist_fct_extremal} For each $R>0$ and $2k>N-2$, there exists $ \varepsilon_0=\varepsilon_0(R,a)>0$ such that \begin{equation*} J_{\lambda}(w_0+Ru_{\varepsilon,a})\frac{N-2}{2}, \\[4pt] c+\frac{R^2}{2}p_0A_0-\frac{R^{2^{*}}}{2^{*}}B+\beta_kA_{k} \varepsilon^{k}+o(\varepsilon^{k}) & \text{if }k<\frac{N-2}{2}, \\[4pt] c+\frac{R^2}{2}p_0A_0-\frac{R^{2^{*}}}{2^{*}}B-\varepsilon^{(N-2)/2} \Big(\frac{R^2}{2}\beta_{(N-2)/2}A_{(N-2)/2}\\ -DR^{2^{*}-1}\Big) +o(\varepsilon^{(N-2)/2}) & \text{if }k=\frac{N-2}{2}. \end{cases} \end{align*} Using that the function $R\mapsto\Phi(R)=\frac{R^2}{2}B-\frac{ R^{2^{*}}}{2^{*}}A_0$ attains its maximum $\frac{1}{N}(p_0S)^{N/2}$ at the point $R_1:=(\frac{A_0}{B})^{(N-2)/4}$, we obtain \begin{align*} & J_{\lambda}(w_0+Ru_{\varepsilon,a})\\ &\leq \begin{cases} c+\frac{1}{N}(p_0S)^{N/2}-\varepsilon^{(N-2)/2}DR_1^{2^{*}-1}+o (\varepsilon^{(N-2)/2}) & \text{if }k>\frac{N-2}{2}, \\[4pt] c+\frac{1}{N}(p_0S)^{N/2}+A_{k}\varepsilon^{k}+o( \varepsilon^{k}) & \text{if }k<\frac{N-2}{2}, \\[4pt] c+\frac{1}{N}(p_0S)^{N/2}-\varepsilon^{(N-2)/2}\Big(\frac{ R_1^2}{2}\beta_{(N-2)/2}A_{(N-2)/2}\\ -DR_1^{2^{*}-1}\Big) +o(\varepsilon^{(N-2)/2}) & \text{if }k=\frac{N-2}{2}. \end{cases} \end{align*} So for $\varepsilon_0=\varepsilon_0(R,a)>0$ small enough, $k> \frac{N-2}{2}$ or $k=\frac{N-2}{2}$ and \[ \beta_{(N-2)/2}>\frac{2DR_1^{2^*-3}}{B_{(N-2)/2}}, \] we conclude that \begin{equation} J_{\lambda}(w_0+Ru_{\varepsilon,a})t^{+}(\frac{u}{\|u\| })\} . \end{gather*} Then $H\setminus\mathcal{N}_{\lambda}^{-}=U_1\cup U_{2}$ and $\mathcal{N}_{\lambda}^{+}\subset U_1$. In particular $w_0\in U_1$. As in \cite{Tarantello-4}, there exists $R_0>0$ and $\varepsilon>0$ such that $w_0+R_0u_{\varepsilon,a}\in U_2$. We put \begin{equation*} \mathcal{F}=\{ h:[0,1]\to H \text{ continuous, $h(0)=w_0$ and } h(1)=w_0+R_0u_{\varepsilon,a}\} . \end{equation*} It is clear that $h:[0,1]\to H$ with $h(t)=w_0+tR_0u_{\varepsilon,a}$ belongs to $\mathcal{F}$. Thus by Lemma \ref{lem:ewist_fct_extremal}, we conclude that \begin{equation} c_0=\inf_{h\in\mathcal{F}} \max_{t\in[0,1]} J_{\lambda}(h(t))