\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 10, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/10\hfil Sign-changing potential] {Multiple solutions for quasilinear elliptic equations with sign-changing potential} \author[R. Wang, K. Wang, K. Teng \hfil EJDE-2016/10\hfilneg] {Ruimeng Wang, Kun Wang, Kaimin Teng} \address{Ruimeng Wang \newline Department of Mathematics, Taiyuan University of Technology, Taiyuan, \newline Shanxi 030024, China} \email{wangruimeng112779@163.com} \address{Kun Wang \newline Department of Mathematics, Taiyuan University of Technology, Taiyuan, \newline Shanxi 030024, China} \email{windwk0608@163.com} \address{Kaimin Teng (Corresponding Author)\newline Department of Mathematics, Taiyuan University of Technology, Taiyuan, \newline Shanxi 030024, China} \email{tengkaimin2013@163.com} \thanks{Submitted July 8, 2015. Published January 6, 2016.} \subjclass[2010]{35B38, 35D05, 35J20} \keywords{Quasilinear Schr\"odinger equation; symmetric mountain pass theorem; \hfill\break\indent Cerami condition} \begin{abstract} In this article, we study the quasilinear elliptic equation \[ -\Delta_{p} u-(\Delta_{p}u^{2})u+ V (x)|u|^{p-2}u=g(x,u), \quad x\in \mathbb{R}^N, \] where the potential $V(x)$ and the nonlinearity $g(x,u)$ are allowed to be sign-changing. Under some suitable assumptions on $V$ and $g$, we obtain the multiplicity of solutions by using minimax methods. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction}\label{00} In this article, we are concerned with the multiplicity of nontrivial solutions for the quasilinear elliptic equation \begin{equation}\label{equ1-1} -\Delta_{p} u-(\Delta_{p}u^{2})u+ V(x)|u|^{p-2}u=g(x,u),\quad x\in \mathbb{R}^N, \end{equation} where $\Delta_{p} u:={\rm div}(|\nabla u|^{p-2} \nabla u)$ is the $p$-Laplacian operator with $2\leq p0$ arise in various branches of mathematical physics and have been derived as models of several physical phenomena, such as superfluid film equations in plasma physics \cite{Kuri} and the fluid mechanics in condensed matter theory \cite{Bass, Kose, Quis, Take, Makh} and so on. The related Schr\"{o}dinger equations for $\kappa=0$ have been extensively studied (see e.g. \cite{Bere, Jean, Floe} and their references therein) in the last few decades. For $\kappa>0$, the existence of a positive ground state solution has been proved in \cite{Pop} by using a constrained minimization argument, which gives a solution of \eqref{equ1-2} with an unknown Lagrange multiplier $\lambda$ in front of nonlinear term. In \cite{Liu1}, the authors establish the existence of ground states of soliton type solutions by a minimization argument. In \cite{Liu2}, by a change of variables the quasilinear problem was transformed to a semilinear one and Orlicz space framework was used as the working space, and they were able to prove the existence of positive solutions of \eqref{equ1-2} by the mountain-pass theorem. The same method of change of variables was used recently also in \cite{Coli}, but the usual Sobolev space $H^{1}(\mathbb{R}^N)$ framework was used as the working space and they studied different class of nonlinearities. In \cite{LWW}, it was established the existence of both one-sign and nodal ground states of soliton type solutions by the Nehari method. In \cite{ZTZ}, where the potential $V(x)$ and $g$ is allowed to be sign-changing, $g$ is of superlinear growth at infinity in $u$, the author obtain the existence of infinitely many nontrivial solutions by using dual approach and symmetric mountain pass theorem. Recently, there has been a lot of results on existence and multiplicity for problem \eqref{equ1-1}. The existence of nontrivial weak solutions of \eqref{equ1-1} has been proved in \cite{Seve} by using minimax methods and method of Changes of variable, where $V$ is a positive continuous potential bounded away from zero. In \cite{Alves}, the authors use variational method together with the Lusternick-Schnirelmann category theory to get the existence and multiplicity of nontrivial weak solutions, where $V$ is also a positive continuous potential bounded away from zero. In \cite{AF}, the authors established the multiplicity of positive weak solutions through using minimax methods, where the potential $V$ is of form $V(x)=\lambda A(x)+1$ and $A(x)$ is a nonnegative continuous function. The other related results can be seen in \cite{AFS} and the references therein. In the above mentioned paper, the potential $V$ is always assumed to be positive or vanish at infinity except \cite{ZTZ}. In the present paper we shall consider problem \eqref{equ1-1} with non-constant and sign-changing potential. We will investigate the existence of at least two solutions and the existence of infinitely many nontrivial solutions of \eqref{equ1-1} through using the Ekeland's variational principle, variant mountain pass theorem and symmetric mountain pass theorem. Our main results improve the corresponding theorems in \cite{ZTZ} in some sense. For stating our main result, we make the following assumptions on the potential function $V(x)$ \begin{itemize} \item[(A1)] $V \in C(\mathbb{R}^N)$ and $\inf_{x \in \mathbb{R}^N} V(x)>-\infty$, and there exists a constant $d_{0}>0$ such that \[ \lim_{|y|\to\infty}\operatorname{meas} (\{x \in \mathbb{R}^N: |x-y|\leq d_{0},\;V(x)\leq M\})=0,\quad \forall M>0. \] \end{itemize} Inspired by \cite{LCY,ZTZ}, we can find a constant $V_{0}>0$ such that $\overline{V}(x)=V(x)+V_{0}\geq1$ for all $x\in\mathbb{R}^N$, and let $\overline{g}(x,u)=g(x,u)+V_{0}|u|^{p-2}u$, for all $(x,u)\in\mathbb{R}^N\times\mathbb{R}$. Then it is easy to show the following Lemma. \begin{lemma}\label{lem1-1} Equation \eqref{equ1-1} is equivalent to the problem \begin{equation}\label{equ1-4} -\Delta_{p} u-(\Delta_{p}u^{2})u+ \overline{V}(x)|u|^{p-2}u=\overline{g}(x,u),\quad x\in \mathbb{R}^N. \end{equation} \end{lemma} In what follows, we impose some assumptions on $\overline{g}$ and its primitive $\overline{G}(x,t)=\int_0^t\overline{g}(x,s){\rm d}s$ as follows: \begin{itemize} \item[(A2)] $\overline{g}\in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ and there exist constant $C> 0$ and $2p< q <2p^{\ast}$ such that \[ |\overline{g}(x,u)| \leq C( |u|^{p-1} + |u|^{q-1}),\quad \forall (x,u) \in \mathbb{R}^N \times \mathbb{R}; \] \item[(A3)] $\lim_{|u| \to \infty} \overline{G}(x,u)/|u|^{2p}= +\infty$ uniformly in $x\in\mathbb{R}^N$, and there exists $r_{0}>0$, $\tau< p$ and $C_{0}$ such that $\inf\overline{G}(x,u)\geq C_{0}|u|^{\tau}>0$, for all $(x,u)\in\mathbb{R}^N\times\mathbb{R}$, $|u|\geq r_{0}$; \item[(A4)] $\widetilde{\overline{G}}(x,u) =\frac{1}{2p} u \overline{g}(x,u)-\overline{G}(x,u)\geq0$, There exist $C_{1}$ and $\sigma >\frac{2N}{N+p}$ such that \[ \Big(\overline{G}(x,u)\Big)^{\sigma} \leq C_{1} |u|^{p\sigma} \widetilde{\overline{G}}(x,u)\quad \text{for all } (x,u)\in\mathbb{R}^N\times\mathbb{R}, \; |u|\geq r_{0}; \] \item[(A5)] There exist $\mu>2p$ and $C_{2}>0$ such that $\mu \overline{G}(x,u)\leq u\overline{g}(x,u)+C_{2}|u|^{p}$, for all $(x,u)\in\mathbb{R}^N\times\mathbb{R}$; \item[(A6)] There exist $\mu>2p$ and $r_{1}>0$ such that $\mu \overline{G}(x,u)\leq u\overline{g}(x,u)$, for all $(x,u)\in\mathbb{R}^N\times\mathbb{R}$ with $|u|\geq r_{1}$; \item[(A7)] $\lim_{|u| \to 0} \frac{\overline{G}(x,u)}{|u|^{p}}= 0$ uniformly in $x\in\mathbb{R}^N$; \item[(A8)] $\overline{g}(x,-u) =-\overline{g}(x,u)$ for all $(x,u) \in \mathbb{R}^N \times \mathbb{R}$. \end{itemize} \begin{remark}\label{rem1-1} \rm It follows from (A3) and (A4) that \begin{equation}\label{equ1-5} \widetilde{\overline{G}}(x,u)\geq \frac{1}{C_{1}} \Big(\frac{\overline{G}(x,u)}{|u|^p}\Big)^{\sigma} \to \infty \end{equation} uniformly for $x\in\mathbb{R}^N$ as $|u|\to \infty$. \end{remark} Now, we state our main results. \begin{theorem}\label{thm1-1} Suppose that conditions {\rm (A1)--(A4)} are satisfied. Then \eqref{equ1-1} possesses at least two solutions. \end{theorem} \begin{theorem} \label{thm1-2} Suppose that conditions {\rm (A1)--(A3), (A5)} are satisfied. Then \eqref{equ1-1} possesses at least two solutions. \end{theorem} From (A2) and (A6), it is easy to verified that (A5) holds. Thus we have the following corollary. \begin{corollary}\label{cor1-1} Suppose that conditions {\rm (A1)--(A3), (A6)} are satisfied. Then \eqref{equ1-1} possesses at least two solutions. \end{corollary} If we add the hypothesis (A8), we can obtain the infinitely many solutions for problem \eqref{equ1-1}. \begin{theorem}\label{thm1-3} Assume that {\rm (A1)--(A4), (A8)} are satisfied. Then \eqref{equ1-1} possesses infinitely many nontrivial solutions. \end{theorem} \begin{theorem}\label{thm1-4} Assume that {\rm (A1)--(A3), (A5), (A7), (A8)} are satisfied. Then \eqref{equ1-1} possesses infinitely many nontrivial solutions. \end{theorem} \begin{corollary}\label{cor1-2} Assume that {\rm (A1)--(A3), (A6)--(A8)} are satisfied. Then \eqref{equ1-1} possesses infinitely many nontrivial solutions. \end{corollary} \begin{remark}\label{rem1-2} \rm If we use the following assumption instead of (A2): \begin{itemize} \item[(A2')] $\overline{g}\in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ and there exist constant $C_{3}> 0$, $p0$, and there exists a constant $d_{0}>0$ such that \[ \lim_{|y|\to\infty}\operatorname{meas} (\{x \in \mathbb{R}^N: |x-y|\leq d_{0},\;\overline{V}(x)\leq M\})=0,\quad \forall M>0. \] \end{itemize} Let \[ E:= \{u \in W^{1,p}(\mathbb{R}^N, \mathbb{R}): \int_{\mathbb{R}^N} \overline{V}(x)|u|^{p}{\rm d}x < \infty \}, \] which is endowed with the norm \[ \|u\|_{E}= \Big(\int_{\mathbb{R}^N}(|\nabla u|^p +\overline{V}(x)|u|^p)\,{\rm d}x\Big)^{1/p}. \] Under assumption (A1'), the embedding $E \hookrightarrow L^{s}(\mathbb{R}^N)$ is continuous for $s \in [p, p^{\ast})$, and $E \hookrightarrow L_{loc}^{s}(\mathbb{R}^N)$ is compact for $s \in [p, p^{\ast})$, i.e., there are constants $a_{s} > 0$ such that \[ \|u\|_{s} \leq a_{s}\|u\|_{E},\quad \forall u \in E,\; s \in [p, p^{\ast}). \] Furthermore, under assumption (A1'), we have the following compactness embedding lemma due to \cite{Bartsch, Bw, ZS}. \begin{lemma}\label{lem2-1} Under assumption {\rm (A1')}, the embedding from $E$ into $L^{s}(\mathbb{R}^N)$ is compact for $p\leq s < p^{\ast}$. \end{lemma} The energy functional $J : E \to \mathbb{R}$ formally can be given by \begin{align*} J(u)&=\frac{1}{p} \int_{\mathbb{R}^N} |\nabla u|^{p}{\rm d}x + \frac{2^{p-1}}{p} \int_{\mathbb{R}^N} |\nabla u|^{p}|u|^{p}{\rm d}x + \frac{1}{p} \int_{\mathbb{R}^N} \overline{V}(x)|u|^{p}{\rm d}x \\ &\quad - \int_{\mathbb{R}^N}\overline{G}(x,u){\rm d}x \\ &=\frac{1}{p} \int_{\mathbb{R}^N} (1+2^{p-1}|u|^{p})|\nabla u|^{p}{\rm d}x + \frac{1}{p} \int_{\mathbb{R}^N} \overline{V}(x)|u|^{p}{\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,u){\rm d}x. \end{align*} Since the integral $\int_{\mathbb{R}^N}|\nabla u|^{p}|u|^{p}{\rm d}x$ may be infinity, $J$ is not well defined in general in $E$. To overcome this difficulty, we apply an argument developed by \cite{Liu2}. We make the change of variables by $v= f^{-1}(u)$, where $f$ is defined by \[ f'(t)= \frac{1}{[1 + 2^{p-1}|f(t)|^{p} ]^{1/p}},\quad t\in[0,\infty), \] and \[ f(-t)=-f(t),\,\, \text{t}\in(-\infty,0]. \] Some properties of the function $f$ are listed as follows. \begin{lemma}\label{lem2-2} Concerning the function $f(t)$ and its derivative satisfy the following properties: \begin{enumerate} \item $f$ is uniquely defined, $C^{2}$ and invertible; \item $|f'(t)|\leq 1$ for all $t \in \mathbb{R}$; \item $|f(t)|\leq |t|$ for all $t \in \mathbb{R}$; \item $\frac{f(t)}{t}\to 1$ as $t\to 0$; \item $\frac{f(t)}{\sqrt{t}}\to a>0$ as $t\to +\infty$; \item $\frac{f(t)}{2} \leq tf'(t) \leq f(t)$ for all $t> 0$; \item $\frac{f^{2}(t)}{2} \leq tf'(t)f(t) \leq f^{2}(t)$ for all $t \in \mathbb{R}$; \item $|f(t)|\leq 2^{\frac{1}{2p}} |t|^{\frac{1}{2}}$ for all $t \in \mathbb{R}$; \item there exists a positive constant $C_{4}$ such that \[ |f(t)|\geq \begin{cases} C_{4}|t|,& |t|\leq 1,\\ C_{4}|t|^{\frac{1}{2}},& |t|\geq 1; \end{cases} \] \item \[ f^{2}(st)\leq \begin{cases} sf^{2}(t),& 0\leq s \leq 1,\\ s^{2}f^{2}(t),& s \geq 1; \end{cases} \] \item $|f(t)f'(t)|\leq \frac{1}{2^{\frac{p-1}{p}}}$. \end{enumerate} \end{lemma} \begin{proof} We only prove properties (10). Since the function $(f^{2})''> 0$, in $[0, +\infty)$, and therefore item $f^{2}$ is strictly convex, \[ f^{2}((1-s)0 +s t) \leq (1-s)f^{2}(0) + sf^{2}(t) = sf^{2}(t). \] In order to prove $f^{2}(st)\leq s^{2}f^{2}(t)$, when $s \geq 1$. We notice that, since $f''\leq 0$ in $[0, +\infty)$, we have that $f'$ is non-increasing in this interval. For any $t\geq 0$ fixed we consider the function $h(s):= f(st)- sf(t)$ defined for $s \geq 1$. We have that $h'(s):= tf'(st)- f(t)\leq tf'(t)- f(t)\leq 0$, by $(f_{6})$. Since $h(1) = 0$ we consider that $h(s)\leq 0$ for any $s\geq 1$; that is, $f(st)\leq sf(t)$ for any $t\geq 0$ and $s \geq 1$. Thus the proof is complete. \end{proof} By the change of variables, from $J(u)$ we can define the following functional \begin{equation}\label{equ2-1} \begin{split} I(v)=\frac{1}{p} \int_{\mathbb{R}^N}(|\nabla v|^{p} + \overline{V}(x)|f(v)|^{p}){\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,f(v)){\rm d}x, \end{split} \end{equation} which is well defined on the space $E$. From (A2), we have \[ \overline{G}(x,u)\leq C(|u|^p+|u|^q),\quad \text{for all } (x,u)\in\mathbb{R}^N\times\mathbb{R}. \] By standard arguments, it is easy to show that $I\in C^1(E,\mathbb{R})$, and \begin{equation}\label{equ2-2} \begin{split} \langle I'(v),w \rangle &= \int_{\mathbb{R}^N}|\nabla v|^{p-2} \nabla v \nabla w{\rm d}x + \int_{\mathbb{R}^N} \overline{V}(x)|f(v)|^{p-2}f(v)f'(v) w {\rm d}x \\ &\quad -\int_{\mathbb{R}^N} \overline{g}(x,f(v))f'(v) w {\rm d}x, \end{split} \end{equation} for any $w\in E$. Moreover, the critical points of $I$ are the weak solutions of the following equation \[ -\Delta_p v+ \overline{V}(x)|f(v)|^{p-2}f(v)f'(v)=\overline{g}(x,f(v))f'(v). \] We also observe that if $v$ is a critical point of the functional $I$, then $u= f(v)$ is a critical point of the functional $J$, i.e. $u= f(v)$ is a solution of problem \eqref{equ1-4}. Next, we present the relationship between the norm $\|u\|_{E}$ in $E$ and $\int_{\mathbb{R}^N}(|\nabla u|^p+\overline{V}(x)|f(u)|^p){\rm d}x$. \begin{proposition}\label{pro2-1} There exist two constants $C_{5}>0$ and $\rho>0$ such that \[ \int_{\mathbb{R}^N}(|\nabla u|^p+\overline{V}(x)|f(u)|^p){\rm d}x \geq C_{5}\|u\|^{p}_{E},\quad \forall\,\, u\in\{u\in E:\|u\|_{E}\leq\rho\}. \] \end{proposition} \begin{proof} Suppose by contradiction, there exists a sequence $\{u_{n}\}\subset E$ verifying $u_{n}\neq0$, for all $n\in\mathbb{N}$ and $\|u_{n}\|_{E}\to 0$, such that \begin{equation}\label{equ2-3} \int_{\mathbb{R}^N}\Big(\frac{|\nabla u_{n}|^{p}}{\|u_{n}\|^{p}_{E}} + \overline{V}(x)\frac{|f(u_{n})|^{p}}{\|u_{n}\|^{p}_{E}}\Big){\rm d}x \to 0. \end{equation} Set $v_{n}= u_{n}/\|u_{n}\|_{E}$, then $\|v_{n}\|_{E}= 1$, passing to a subsequence, by Lemma \ref{lem2-1}, we may assume that $v_{n}\rightharpoonup v$ in $E$, $v_{n}\to v$ in $L^{s}(\mathbb{R}^N)$ for $s\in[p,p^{\ast})$, $v_{n}\to v$ a.e $\mathbb{R}^N$. Therefore, \eqref{equ2-3} implies that \begin{equation}\label{equ2-4} \int_{\mathbb{R}^N}|\nabla v_{n}|^{p}{\rm d}x \to 0,\quad \int_{\mathbb{R}^N} \overline{V}(x)\frac{|f(u_{n})|^{p}}{\|u_{n}\|^{p}_{E}}{\rm d}x \to 0, \quad \int_{\mathbb{R}^N} \overline{V}(x)|v_{n}|^{p}{\rm d}x \to 1. \end{equation} Similar to the idea in \cite{Wu}, we assert that for each $\varepsilon > 0$, there exists $C_{6}> 0$ independent of $n$ such that $\operatorname{meas}(\Omega_{n})< \varepsilon$, where $\Omega_{n}:= \{x\in \mathbb{R}^N: |u_{n}(x)|\geq C_{6}\}$. Otherwise, there is an $\varepsilon_{0} > 0$ and a subsequence $\{u_{n_{k}}\}$ of $\{u_{n}\}$ such that for any positive integer $k$, \[ \operatorname{meas}(\{x\in \mathbb{R}^N: |u_{n_{k}}(x)|\geq k\}) \geq \varepsilon_{0} > 0. \] Set $\Omega_{n_{k}}:= \{x\in \mathbb{R}^N: |u_{n_{k}}(x)|\geq k\}$. By (3) and (9) of Lemma \ref{lem2-2}, we have \begin{align*} \|u_{n_{k}}\|_E^p &\geq\int_{\mathbb{R}^N} \overline{V}(x)|u_{n_{k}}|^p{\rm d}x \geq \int_{\mathbb{R}^N} \overline{V}(x)|f(u_{n_{k}})|^{p}{\rm d}x\\ &\geq \int_{\Omega_{n_{k}}} \overline{V}(x)|f(u_{n_{k}})|^{p}{\rm d}x \geq C_{6}k^{\frac{p}{2}}\varepsilon_{0},\\ \end{align*} which implies a contradiction. Hence the assertion is true. On the one hand, by the absolutely continuity of Lebesgue integral, there exists $\delta>0$ such that when $A\subset\mathbb{R}^N$ with $\operatorname{meas}\, (A)<\delta$, we have \[ \int_{A}\overline{V}(x)|v_{n}(x)|^p{\rm d}x<\frac{1}{p}. \] Hence, we can find a constant $C_{7}>0$ such that $\operatorname{meas}\, (\Omega_n)<\delta$. Thus we infer that \begin{equation}\label{equ2-5} \int_{\Omega_n} \overline{V}(x)|v_{n}(x)|^{p}\,{\rm d}x\leq\frac{1}{p}. \end{equation} On the other hand, when $|u_{n}(x)|\leq C_{6}$, by (9) and (10) of Lemma \ref{lem2-2}, we have \begin{equation}\label{equ2-6} \int_{\mathbb{R}^N \backslash \Omega_{n}} \overline{V}(x)|v_{n}|^{p} {\rm d}x =\int_{\mathbb{R}^N \backslash \Omega_{n}} \overline{V}(x) \frac{|u_{n}|^{p}}{\|u_{n}\|^{p}_{E}} {\rm d}x \leq C_{7}\int_{\mathbb{R}^N \backslash \Omega_{n}} \overline{V}(x) \frac{|f(u_{n})|^{p}}{\|u_{n}\|^{p}_{E}}{\rm d}x \to 0. \end{equation} Combining \eqref{equ2-5} and \eqref{equ2-6}, we have \[ \int_{\mathbb{R}^N} \overline{V}(x)|v_{n}(x)|^{p} = \int_{\mathbb{R}^N\backslash \Omega_{n}} \overline{V}(x)|v_{n}(x)|^{p} + \int_{\Omega_{n}} \overline{V}(x)|v_{n}(x)|^{p}\leq \frac{1}{p}+o(1), \] which implies that $1\leq \frac{1}{p}$, a contradiction. The proof is complete. \end{proof} \begin{proposition}\label{pro2-2} For any sequence $\{u_{n}\}\subset E$ satisfying \[ \int_{\mathbb{R}^N}(|\nabla u_{n}|^{p}+\overline{V}(x)|f(u_{n})|^{p}){\rm d}x \leq C_{8}, \] there exists a constant $C_{9}>0$ such that \[ \int_{\mathbb{R}^N}(|\nabla u_{n}|^{p}+\overline{V}(x)|f(u_{n})|^{p}){\rm d}x \geq C_{9}\|u_{n}\|^{p}_{E},\quad \forall\, n\in\mathbb{N}. \] \end{proposition} \begin{proof} We argue by conradiction, so there exists a subsequence $\{u_{n_{k}}\}$ of $\{u_{n}\}$ such that \[ \int_{\mathbb{R}^N}\Big(\frac{|\nabla u_{n_{k}}|^{p}}{\|u_{n_{k}}\|^{p}_{E}} +\overline{V}(x)\frac{|f(u_{n_{k}})|^p}{\|u_{n_{k}}\|^{p}_{E}}\Big){\rm d}x\to 0 \quad \text{as }k\to\infty. \] The rest of the proof is similar to Proposition \ref{pro2-1}, we can deduce the conclusion. \end{proof} At the end of this section, we recall the variant mountain pass theorem and symmetric mountain pass theorem which are used to prove our main result. \begin{theorem}[\cite{Sun}]\label{thm2-1} Let $E$ be a real Banach space with its dual space $E^{\ast}$, and suppose that $I\in C^{1}(E,\mathbb{R})$ satisfies \[ \max\{I(0), I(e)\}\leq \mu< \eta\leq \inf_{\|u\|= \rho}I(u), \] for some $\rho> 0$ and $e\in E$ with $\|e\|> \rho$. Let $c\geq \eta$ be characterized by \[ c= \inf_{\gamma\in \Gamma}\max_{0\leq \tau\leq 1}I(\gamma(\tau)), \] where $\Gamma= \{\gamma\in C([0,1], E): \gamma(0)= 0, \gamma(1)= e\}$ is the set of continuous paths joining $0$ and $e$, then there exists a sequence $\{u_{n}\}\subset E$ such that \begin{equation}\label{equ2-7} I(u_{n})\to c\geq \eta\quad \text{and}\quad (1+ \|u_{n}\|)\|I'(u_{n})\|_{E^{\ast}}\to 0,\quad \text{as } n\to\infty. \end{equation} \end{theorem} A sequence $\{v_{n}\}\subset E$ is said to be a Cerami sequence (simply $(C)_{c}$) if $I(v_{n})\to c$ and $(1+\|v_{n}\|_{E})I'(v_{n})\to 0$, $I$ is said to satisfy the $(C)_{c}$ condition if any $(C)_{c}$ sequence has a convergent subsequence. \begin{theorem}[\cite{Rabi}]\label{thm2-2} Let $E$ be an infinite dimensional Banach space, $E= Y\oplus Z$, where $Y$ is finite dimensional. If $\varphi \in C^{1}(E,\mathbb{R})$ satisfies $(C)_{c}$-condition for all $c> 0$, and \begin{enumerate} \item $\varphi (0)= 0$, $\varphi (-u)= \varphi (u)$ for all $u\in E$; \item there exist constants $\rho$, $\alpha$ such that $\varphi|\partial B_{\rho} \cap Z \geq \alpha$; \item for any finite dimensional subspace $\widetilde{E} \subset E$, there is $R= R(\widetilde{E} )> 0$ such that $\varphi (u)\leq 0$ on $\widetilde{E}\setminus B_{R}$. \end{enumerate} Then $\varphi$ possesses an unbounded sequence of critical values. \end{theorem} \section{$(C)_c$ condition}\label{2} In this section, we will prove the bondedness of $(C)_c$ sequence and then show that bounded $(C)_c$ sequence is strongly convergence in $E$. \begin{lemma}\label{lem3-1} Any bounded $(C)_c$ sequence of $I$ possesses a convergence subsequence in $E$. \end{lemma} \begin{proof} Assume that $\{v_{n}\}\subset E$ is a bounded sequence satisfying \begin{equation}\label{equ3-1} I(v_{n})\to c\quad \text{and}\quad (1+ \|v_{n}\|_{E})I'(v_{n})\to 0. \end{equation} Going if necessary to a subsequence, we can assume that $v_{n}\rightharpoonup v$ in $E$. By Lemma \ref{lem2-1}, $v_{n}\to v$ in $L^{s}(\mathbb{R}^N)$ for all $p\leq s < p^{\ast}$ and $v_{n}\to v$ a.e. on $\mathbb{R}^N$. First, we claim that there exists $C_{10}> 0$ such that \begin{equation}\label{equ3-2} \begin{split} &\int_{\mathbb{R}^N} |\nabla(v_{n}-v)|^{p} + \overline{V}(x)\Big(|f(v_{n})|^{p-2} f(v_{n}) f'(v_{n}) \\ &\quad - |f(v)|^{p-2} f(v) f'(v)\Big) (v_{n}-v){\rm d}x \\ &\geq \int_{\mathbb{R}^N} (|\nabla v_{n}|^{p-1}- |\nabla v|^{p-1}) \nabla (v_{n}-v)+\overline{V}(x)\Big(|f(v_{n})|^{p-2} f(v_{n}) f'(v_{n}) \\ &\quad -|f(v)|^{p-2} f(v) f'(v)\Big) (v_{n}-v){\rm d}x \\ &\geq C_{10}\|v_{n}-v \|^{p}_{E}. \end{split} \end{equation} Indeed, we may assume that $v_{n}\neq v$. Set \[ w_{n}=\frac{v_{n}-v}{\|v_{n}-v \|_{E}},\quad h_{n}=\frac{|f(v_{n})|^{p-2} f(v_{n}) f'(v_{n}) - |f(v)|^{p-2} f(v) f'(v)}{|v_{n}-v|^{p-1}}. \] We argue by contradiction and assume that \[ \int_{\mathbb{R}^N} |\nabla w_{n}|^{p} + \overline{V}(x) h_{n}(x) w^{p}_{n}{\rm d}x \to 0. \] Since \[ \frac{d}{dt}\Big(|f(t)|^{p-2} f(t) f'(t)\Big) = |f(t)|^{p-2} |f'(t)|^{2}\Big[p- 1- \frac{2^{p-1} |f(t)|^{p}}{1+2^{p-1}|f(t)|^{p} } \Big] > 0, \] so, $|f(t)|^{p-2} f(t) f'(t)$ is strictly increasing and for each $C_{11}> 0$ there is $\delta_{1}> 0$ such that \[ \frac{d}{dt}\Big(|f(t)|^{p-2} f(t) f'(t)\Big) \geq \delta_{1}\quad \text{as } |t|\leq C_{11}. \] From this, we can see that $h_{n}(x)$ is positive. Hence \[ \int_{\mathbb{R}^N}|\nabla w_{n}|^{p}{\rm d}x \to 0,\quad \int_{\mathbb{R}^N} \overline{V}(x)h_{n}(x) w^{p}_{n}{\rm d}x \to 0, \quad \int_{\mathbb{R}^N} \overline{V}(x)|w_{n}|^{p}{\rm d}x \to 1. \] By a similar argument as Proposition \ref{pro2-1}, we can conclude a contradiction. On the other hand, by (2), (3), (8) and (11) of Lemma \ref{thm2-2}, (A2) and the definition of the $f'(t)$, we have \begin{align*} %\label{equ3-3} &\big|\int_{\mathbb{R}^N} \Big(\overline{g}(x,f(v_{n})) f'(v_{n}) - \overline{g}(x,f(v)) f'(v)\Big) (v_{n}-v){\rm d}x \big|\\ &\leq \Big(\int_{\mathbb{R}^N} |\overline{g}(x,f(v_{n})) f'(v_{n})| + \int_{\mathbb{R}^N} |\overline{g}(x,f(v)) f'(v)|\Big) |v_{n}-v|{\rm d}x \\ &\leq \int_{\mathbb{R}^N} C_{12}\big(|f(v_{n})|^{p-1}+ |f(v_{n})|^{q-1}\big) |f'(v_{n})||v_{n}-v|{\rm d}x\\ &\quad+ \int_{\mathbb{R}^N} C_{12}\Big(|f(v)|^{p-1} + |f(v)|^{q-1}\Big)|f'(v)| |v_{n}-v|{\rm d}x\\ &\leq \int_{\mathbb{R}^N} C_{12}\Big(|f(v_{n})|^{p-1}|f'(v_{n})| + |f(v_{n})|^{q-1}|f'(v_{n})|\Big)|v_{n}-v|{\rm d}x\\ &\quad +\int_{\mathbb{R}^N} C_{12}\Big(|f(v)|^{p-1}|f'(v)| +|f(v)|^{q-1}|f'(v)|\Big)|v_{n}-v|{\rm d}x\\ &\leq \int_{\mathbb{R}^N} C_{12}\Big(|f(v_{n})|^{p-1} + \frac{|f(v_{n})|^{q-1}}{[1 + 2^{p-1}|f(v_{n})|^{p} ]^{1/p}}\Big)|v_{n}-v|{\rm d}x\\ &\quad +\int_{\mathbb{R}^N} C_{12}\Big(|f(v)|^{p-1} + \frac{|f(v)|^{q-1}}{[1 + 2^{p-1}|f(v)|^{p} ]^{1/p}}\Big)|v_{n}-v|{\rm d}x\\ &\leq \int_{\mathbb{R}^N} C_{12}\Big(|f(v_{n})|^{p-1}+ |f(v_{n})|^{q-2} + |f(v)|^{p-1}+ |f(v)|^{q-2}\Big)|v_{n}-v|{\rm d}x\\ &\leq \int_{\mathbb{R}^N} C_{12}\Big(|v_{n}|^{p-1} +|v_{n}|^{\frac{q}{2}-1} + |v|^{p-1} + |v|^{\frac{q}{2}-1}\Big) |v_{n}-v|{\rm d}x \\ &\leq C_{12}\Big((\|v_{n}\|^{p-1}_{p}+ \|v\|^{p-1}_{p}) \|v_{n}- v\|_{p}\Big) + C_{12}\Big((\|v_{n}\|^{\frac{q-2}{2}}_{\frac{q}{2}} + \|v\|^{\frac{q-2}{2}}_{\frac{q}{2}}) \|v_{n}- v\|_{\frac{q}{2}}\Big)\\ &= o(1). \end{align*} Therefore, by \eqref{equ3-2} and the above inequality, we have \begin{align*} o(1)&= \langle I'(v_{n})- I'(v), v_{n}-v\rangle\\ &= \int_{\mathbb{R}^N} \Big[|\nabla(v_{n}-v)|^{p} + \overline{V}(x)\Big(|f(v_{n})|^{p-2} f(v_{n}) f'(v_{n}) \\ &\quad - |f(v)|^{p-2} f(v) f'(v)\Big) (v_{n}-v)\Big]{\rm d}x \\ &\quad - \int_{\mathbb{R}^N} \Big(\overline{g}(x,f(v_{n})) f'(v_{n}) - \overline{g}(x,f(v)) f'(v)\Big) (v_{n}-v){\rm d}x \\ &\geq C_{13}\|v_{n}-v \|^{p}_{E}+ o(1), \end{align*} which implies that $\|v_{n}-v \|_{E}\to 0$ as $n\to \infty$. The proof is complete. \end{proof} \begin{lemma}\label{lem3-2} Suppose that {\rm (A1'), (A2)-(A4)} are satisfied. Then any $(C)_{c}$ sequence of $I$ is bounded in $E$. \end{lemma} \begin{proof} Let $\{v_{n}\}\subset E$ be such that \begin{equation}\label{equ3-4} I(v_{n})\to c\quad \text{and}\quad (1+ \|v_{n}\|_{E})I'(v_{n})\to 0. \end{equation} Thus, there is a constant $C_{14}> 0$ such that \begin{equation}\label{equ3-5} I(v_{n})-\frac{1}{2p}\langle I'(v_{n}),v_{n}\rangle\leq C_{14}. \end{equation} Firstly, we prove that there exists $C_{15}> 0$ independent of $n$ such that \begin{equation}\label{equ3-6} \int_{\mathbb{R}^N}\Big(|\nabla v_{n}|^{p}+ \overline{V}(x)|f(v_{n})|^{p}\Big) {\rm d}x \leq C_{15}. \end{equation} Suppose by contradiction that \[ \|v_{n}\|^{p}_{0}:= \int_{\mathbb{R}^N}\Big(|\nabla v_{n}|^{p} + \overline{V}(x)|f(v_{n})|^{p}\Big){\rm d}x \to \infty\quad \text{as } n\to\infty. \] Setting $\widetilde{f}(v_{n}):= f(v_{n})/\|v_{n}\|_{0}$, then $\|\widetilde{f}(v_{n})\|_{E}\leq 1$. Passing to a subsequence, we may assume that $\widetilde{f}(v_{n})\rightharpoonup w$ in $E$, $\widetilde{f}(v_{n})\to w$ in $L^{s}(\mathbb{R}^N)$, $p \leq s < p^{\ast}$, and $\widetilde{f}(v_{n})\to w$ a.e. $\mathbb{R}^N$. It follows from \eqref{equ3-4} that \begin{equation}\label{equ3-7} \lim_{n\to \infty} \int_{\mathbb{R}^N} \frac{|\overline{G}(x,f(v_{n}))|}{\|v_{n}\|^{p}_{0}}{\rm d}x \geq \frac{1}{p}. \end{equation} Let $\varphi_{n}=f(v_{n})/f'(v_{n})$, by \eqref{equ3-5}, we have \begin{align*} C_{14} &\geq I(v_{n})-\frac{1}{2p}\langle I'(v_{n}),\varphi_{n}\rangle\\ &=\frac{1}{2p} \int_{\mathbb{R}^N}|\nabla v_{n}|^{p} |f'(v_{n})|^{p}{\rm d}x + \frac{1}{2p} \int_{\mathbb{R}^N} \overline{V}(x)|f(v_{n})|^{p}{\rm d}x\\ &\quad + \int_{\mathbb{R}^N}\frac{1}{2p} \overline{g}(x,f(v_{n}))f(v_{n}){\rm d}x -\int_{\mathbb{R}^N} \overline{G}(x,f(v_{n})){\rm d}x, \\ \end{align*} which implies \begin{equation}\label{equ3-8} C_{14}\geq \int_{\mathbb{R}^N} \widetilde{\overline{G}}(x,f(v_{n})){\rm d}x. \end{equation} Set \[ h(r):= \inf\{ \widetilde{\overline{G}}(x,f(v_{n})): x\in \mathbb{R}^N , |f(v_{n})|\geq r\}\quad r\geq 0. \] By \eqref{equ1-5}, $h(r)\to \infty$ as $r\to \infty$. For $0\leq a< b$, let $\Omega_{n}(a,b)= \{x\in \mathbb{R}^N:a\leq |f(v_{n}(x))|< b\}$. Hence, it follows from \eqref{equ3-8} that \begin{align*} C_{14} &\geq \int_{\Omega_{n}(0,r)} \widetilde{\overline{G}}(x,f(v_{n})) + \int_{\Omega_{n}(r, +\infty)} \widetilde{\overline{G}}(x,f(v_{n}))\\ &\geq \int_{\Omega_{n}(0,r)} \widetilde{\overline{G}}(x,f(v_{n})) + h(r) \operatorname{meas}(\Omega_{n}(r, +\infty)), \end{align*} which implies that $ \operatorname{meas}(\Omega_{n}(r, +\infty)) \to 0$ as $r\to \infty$ uniformly in $n$. Thus, for any $s\in [p,2p^{\ast})$, by (8) of Lemma \ref{lem2-2}, H\"{o}lder inequality and Sobolev embedding, we have \begin{equation}\label{equ3-9} \begin{split} &\int_{\Omega_{n}(r, +\infty)} \widetilde{f}^{s}(v_{n}){\rm d}x \\ &\leq \Big(\int_{\Omega_{n}(r, +\infty)} \widetilde{f}^{2p^{\ast}}(v_{n}){\rm d}x \Big)^{\frac{s}{2p^{\ast}}} \Big(\operatorname{meas}(\Omega_{n}(r, +\infty))\Big)^{\frac{2p^{\ast}-s}{2p^{\ast}}}\\ & \leq \frac{C_{16}}{\|v_{n}\|^{s}_{0}}\Big(\int_{\Omega_{n}(r, +\infty)} |\nabla f^{2}(v_{n})|^{p}\Big)^{\frac{s}{2p}} \Big(\operatorname{meas}(\Omega_{n}(r, +\infty))\Big)^{\frac{2p^{\ast}-s}{2p^{\ast}}}\\ &\leq \frac{C_{17}}{\|v_{n}\|^{s}_{0}} \Big(\int_{\Omega_{n}(r, +\infty)} |\nabla v_{n}|^{p}\Big)^{\frac{s}{2p}} \Big(\operatorname{meas}(\Omega_{n}(r, +\infty))\Big)^{\frac{2p^{\ast}-s}{2p^{\ast}}}\\ &\leq C_{17}\|v_{n}\|^{-\frac{s}{2}}_{0} \Big(\operatorname{meas}(\Omega_{n}(r, +\infty))\Big)^{\frac{2p^{\ast}-s}{2p^{\ast}}} \to 0, \end{split} \end{equation} as $r\to \infty$ uniformly in $n$. If $w=0$, then $\widetilde{f}(v_{n})=\frac{f(v_{n})}{\|v_{n}\|_{0}}\to 0$ in $L^{s}(\mathbb{R}^N)$, $p\leq s< p^{\ast}$. For any $0< \epsilon < \frac{1}{4p}$, there exist large $r_{1}$, $N_{0}\in\mathbb{N}$ such that \begin{equation}\label{equ3-10} \begin{split} &\int_{\Omega_{n}(0, r_{1})}\frac{|\overline{G}(x, f(v_{n}))|}{|f(v_{n})|^{p}} |\widetilde{f}(v_{n})|^{p}{\rm d}x\\ &\leq \int_{\Omega_{n}(0, r_{1})}\frac{C_{18}|f(v_{n})|^{p} + C_{19}|f(v_{n})|^{q}}{|f(v_{n})|^{p}}|\widetilde{f}(v_{n})|^{p}{\rm d}x \\ &\leq (C_{18}+ C_{19} r^{q-p}_{1}) \int_{\Omega_{n}(0, r_{1})} |\widetilde{f}(v_{n})|^{p}{\rm d}x\\ &\leq (C_{18}+ C_{19} r^{q-p}_{1}) \int_{\mathbb{R}^N} |\widetilde{f}(v_{n})|^{p}{\rm d}x< \epsilon, \end{split} \end{equation} for all $n> N_{0}$. Set $\sigma'= \frac{\sigma}{\sigma-1}$. Since $\sigma > \frac{2N}{N+p}$, so $p\sigma'\in (p,2p^{\ast})$. Hence, it follows from (A4) and \eqref{equ3-8} that \begin{equation}\label{equ3-11} \begin{split} &\int_{\Omega_{n}(r_{1}, +\infty)} \frac{|\overline{G}(x, f(v_{n}))|}{|f(v_{n})|^{p}}|\widetilde{f}(v_{n})|^{p}{\rm d}x \\ &\leq \Big(\int_{\Omega_{n}(r_{1},+\infty)} (\frac{|\overline{G}(x, f(v_{n}))|}{|f(v_{n})|^p})^{\sigma}{\rm d}x \Big)^{1/\sigma} \Big(\int_{\Omega_{n}(r_{1}, +\infty)}|\widetilde{f}(v_{n})|^{p\sigma'}{\rm d}x \Big)^{1/\sigma'}\\ & \leq C^{1/\sigma}_{20} \Big(\int_{\Omega_{n}(r_{1}, +\infty)} \widetilde{\overline{G}}(x,f(v_{n}){\rm d}x \Big)^{1/\sigma} \Big(\int_{\Omega_{n}(r_{1}, +\infty)}|\widetilde{f}(v_{n}) |^{p\sigma'}{\rm d}x \Big)^{1/\sigma'}\\ & \leq C_{21}\Big(\int_{\Omega_{n}(r_{1}, +\infty)}|\widetilde{f}(v_{n}) |^{p\sigma'}{\rm d}x \Big)^{1/\sigma'} < \epsilon, \end{split} \end{equation} for all $n$. Combining \eqref{equ3-10} with \eqref{equ3-11}, we have \[ \int_{\mathbb{R}^N}\frac{\overline{G}(x,f(v_{n}))}{\|v_{n}\|^{p}_{0}}{\rm d}x =\Big(\int_{\Omega_{n}(0,r_{1})}+ \int_{\Omega_{n}(r_{1}, +\infty)}\Big) \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{p}}|\widetilde{f}(v_{n})|^{p}{\rm d}x < 2\epsilon <\frac{1}{p}, \] for all $n> N_{0}$, which contradicts \eqref{equ3-7}. If $w\neq 0$, then $\operatorname{meas}(\Omega)> 0$, where $\Omega := \{x\in \mathbb{R}^N : w\neq 0 \}$. For $x\in \Omega$, $|f(v_{n})|\to \infty$ as $n\to \infty$. Hence $\Omega \subset \Omega_{n}(r_{0},\infty)$ for large $n\in N$, where $r_{0}$ is given in $(A3)$. By $(A3)$, we have \[ \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{2p}}\to +\infty\quad \text{as } n\to\infty. \] Hence, using Fatou's lemma, we have \begin{equation}\label{equ3-12} \int_{\mathbb{R}^N} \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{2p}}\to +\infty\quad \text{as }\ n\to\infty. \end{equation} It follows from \eqref{equ3-4} and \eqref{equ3-12} that \begin{align*} 0&=\lim_{n\to \infty} \frac{c+o(1)}{\|v_{n}\|_{0}^{p}} = \lim_{n\to \infty} \frac{I(v_{n})}{\|v_{n}\|_{0}^{p}}\\ &=\lim_{n\to \infty} \frac{1}{\|v_{n}\|_{0}^{p}} \Big(\frac{1}{p} \int_{\mathbb{R}^N}(|\nabla v_{n}|^{p} + \overline{V}(x)|f(v_{n})|^{p}){\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,f(v_{n})){\rm d}x \Big)\\ &=\lim_{n\to \infty} \Big(\frac{1}{p} - \int_{\Omega_{n}(0,r_{0})}\frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{p}} |\widetilde{f}(v_{n})|^{p}{\rm d}x \\ &\quad - \int_{\Omega_{n}(r_{0}, +\infty)} \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{p}} |\widetilde{f}(v_{n})|^{p}{\rm d}x \Big)\\ &\leq \frac{1}{p}+ \limsup_{n\to \infty}(C_{22} + C_{23}r^{q-p}_{0})\int_{\mathbb{R}^N} |\widetilde{f}(v_{n})|^{p}{\rm d}x\\ &\quad -\int_{\Omega_{n}(r_{0}, +\infty)} \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{p}}|\widetilde{f}(v_{n})|^{p}{\rm d}x\\ &\leq C_{24}- \liminf_{n\to \infty} \int_{\mathbb{R}^N} \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{2p}} |f(v_{n}) \widetilde{f}(v_{n})|^{p}{\rm d}x = -\infty, \end{align*} which is a contradiction. Thus, there exists $C_{15}> 0$ such that \[ \int_{\mathbb{R}^N}(|\nabla v_{n}|^{p}+ \overline{V}(x) |f(v_{n})|^{p}){\rm d}x \leq C_{15}. \] Hence, from Proposition \ref{pro2-2}, we have that $\{v_{n}\}$ is bounded in $E$. \end{proof} \begin{lemma}\label{lem3-3} Suppose that {\rm (A1'), (A2), (A3), (A5)} are satisfied. Then any $(C)_{c}$ sequence of $I$ is bounded. \end{lemma} \begin{proof} Let $\{v_{n}\}\subset E$ be such that \begin{equation}\label{equ3-13} I(v_{n})\to c\quad \text{and}\quad (1+ \|v_{n}\|_{E})I'(v_{n})\to 0. \end{equation} Thus, there is a constant $C_{25}> 0$ such that \begin{equation}\label{equ3-14} I(v_{n})-\frac{1}{\mu}\langle I'(v_{n}), v_{n}\rangle\leq C_{25}. \end{equation} Firstly, we prove that there exists $C_{26}> 0$ independent of $n$ such that \[ \int_{\mathbb{R}^N}\Big(|\nabla v_{n}|^{p} + \overline{V}(x)|f(v_{n})|^{p}\Big){\rm d}x \leq C_{26}. \] Suppose by contradiction, we assume that \[ \|v_{n}\|^{p}_{0}:= \int_{\mathbb{R}^N}\Big(|\nabla v_{n}|^{p} + \overline{V}(x)|f(v_{n})|^{p}\Big){\rm d}x \to \infty\quad \text{as } n\to\infty. \] As \[ \nabla (\frac{f(v_{n})}{f'(v_{n})}) = \nabla \Big[f(v_{n})\cdot(1+2^{p-1}|f(v_{n})|^{p})^{1/p}\Big] =\nabla v_{n}[1+\frac{2^{p-1}|f(v_{n})|^{p}}{1+2^{p-1}|f(v_{n})|^{p}}]. \] By (A5) and $\mu> 2p$ we can obtain \begin{equation}\label{equ3-15} \begin{split} C_{25} &\geq I(v_{n})- \frac{1}{\mu}\langle I'(v_{n}),\frac{f(v_{n})}{f'(v_{n})}\rangle\\ &= \frac{1}{p}\int_{\mathbb{R}^N}(|\nabla v_{n}|^{p} + \overline{V}(x)|f(v_{n})|^{p}){\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,f(v_{n})){\rm d}x\\ &\quad -\frac{1}{\mu}\int_{\mathbb{R}^N}\Big(|\nabla v_{n}|^{p-2} \nabla(v_{n})\nabla(\frac{f(v_{n})}{f'(v_{n})})\Big){\rm d}x\\ &\quad +\frac{1}{\mu}\int_{\mathbb{R}^N} \Big(\overline{g}(x,f(v_{n}))f'(v_{n})\frac{f(v_{n})}{f'(v_{n})}\Big){\rm d}x\\ &\quad -\frac{1}{\mu}\int_{\mathbb{R}^N} \Big( \overline{V}(x)|f(v_{n})|^{p-2}f(v_{n})f'(v_{n})\frac{f(v_{n})}{f'(v_{n})} \Big){\rm d}x\\ &=\int_{\mathbb{R}^N}\Big[\frac{1}{p}- \frac{1}{\mu} \Big(1+ \frac{2^{p-1}|f(v_{n})|^{p}}{1+2^{p-1}|f(v_{n})|^{p}}\Big)\Big] |\nabla v_{n}|^{p}{\rm d}x\\ &\quad + \int_{\mathbb{R}^N}(\frac{1}{p} - \frac{1}{\mu})(\overline{V}(x)|f(v_{n})|^{p}){\rm d}x \\ &\quad + \frac{1}{\mu}\int_{\mathbb{R}^N}\Big[\overline{g}(x,f(v_{n}))f(v_{n}) - \mu \overline{G}(x,f(v_{n}))\Big]{\rm d}x \\ &\geq \int_{\mathbb{R}^N}(\frac{1}{p}- \frac{2}{\mu})|\nabla v_{n}|^{p}{\rm d}x + \int_{\mathbb{R}^N}(\frac{1}{p} - \frac{1}{\mu})(\overline{V}(x)|f(v_{n})|^{p}){\rm d}x \\ &\quad - \frac{1}{\mu}\int_{\mathbb{R}^N}|f(v_{n})|^{p}{\rm d}x\\ &\geq (\frac{1}{p}- \frac{2}{\mu})\int_{\mathbb{R}^N} \Big(|\nabla v_{n}|^{p}+ \overline{V}(x)|f(v_{n})|^{p}\Big){\rm d}x - \frac{1}{\mu}\int_{\mathbb{R}^N}|f(v_{n})|^{p}{\rm d}x\\ &\geq (\frac{1}{p}- \frac{2}{\mu})\|v_{n}\|_{0}^{p} - \frac{1}{\mu}\int_{\mathbb{R}^N}|f(v_{n})|^{p}{\rm d}x. \end{split} \end{equation} Setting $\widetilde{f}(v_{n}):= f(v_{n})/\|v_{n}\|_{0}$, we have $\|\widetilde{f}(v_{n})\|_{E}\leq 1$. Passing to a subsequence, we may assume that $\widetilde{f}(v_{n})\rightharpoonup w$ in $E$, $\widetilde{f}(v_{n})\to w$ in $L^{s}(\mathbb{R}^N)$, $p \leq s < p^{\ast}$, and $\widetilde{f}(v_{n})\to w$ a.e. $\mathbb{R}^N$. From \eqref{equ3-15}, \[ \frac{C_{25}}{\|v_{n}\|^{p}_{0}}\geq (\frac{1}{p}- \frac{2}{\mu}) - \frac{1}{\mu}\int_{\mathbb{R}^N}|\widetilde{f}(v_{n})|^{p}{\rm d}x. \] Hence, we obtain \[ \frac{1}{\mu}\int_{\mathbb{R}^N}|\widetilde{f}(v_{n})|^{p}{\rm d}x \geq (\frac{1}{p}- \frac{2}{\mu})\mu + o(1). \] Then $\widetilde{f}(v_{n})\to w$ and $w\neq 0$, so $|f(v_{n})|\to \infty$ as $n\to \infty$. Also by (A3), we have \[ \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{2p}}\to +\infty. \] So \begin{equation}\label{equ3-16} \int_{\mathbb{R}^N}\frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{2p}}\to +\infty, \end{equation} From \eqref{equ3-13} and \eqref{equ3-16} it follows that \begin{equation}\label{equ3-17} \begin{split} 0&=\lim_{n\to \infty} \frac{c+o(1)}{\|v_{n}\|_{0}^{p}} = \lim_{n\to \infty} \frac{I(v_{n})}{\|v_{n}\|_{0}^{p}}\\ &=\lim_{n\to \infty} \frac{1}{\|v_{n}\|_{0}^{p}} \Big(\frac{1}{p} \int_{\mathbb{R}^N}(|\nabla v_{n}|^{p} + \overline{V}(x)|f(v_{n})|^{p}){\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,f(v_{n})){\rm d}x \Big)\\ &=\lim_{n\to \infty}\Big(\frac{1}{p} - \int_{\mathbb{R}^N}\frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{p}} |\widetilde{f}(v_{n})|^{p}{\rm d}x \Big)\\ &\leq C_{27}- \liminf_{n\to \infty} \int_{\mathbb{R}^N} \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{2p}} |f(v_{n}) \widetilde{f}(v_{n})|^{p}{\rm d}x = -\infty. \end{split} \end{equation} Which is a contradiction. Thus, there exists $C_{26}> 0$ such that \[ \int_{\mathbb{R}^N}(|\nabla v_{n}|^{p}+ \overline{V}(x) |f(v_{n})|^{p}){\rm d}x \leq C_{26}. \] Hence, from Proposition \ref{pro2-2}, we obtain that $\{v_{n}\}$ is bounded in $E$. \end{proof} Since (A2) and (A6) imply $(A5)$, we have the following corollary. \begin{corollary}\label{cor3-1} Suppose that {\rm (A1'), (A2), (A3), (A6)} are satisfied. Then any $(C)_{c}$ sequence of $I$ is bounded. \end{corollary} \section{Proof of main results}\label{3} \subsection*{Proof of Theorems \ref{thm1-1} and \ref{thm1-2}} \begin{lemma}\label{lem4-1} The functional $I$ is bounded from below on a neighborhood of the origin. That is, there exist $C_{28}\in \mathbb{R}$ and $\rho> 0$, such that \[ I(u)\geq C_{28},\quad \forall u\in B_{\rho}= \{u\in E:\|u\|\leq \rho\}. \] \end{lemma} \begin{proof} If the conclusion is not true, there exists $\{u_{n}\}\subset E$, satisfying \[ \|u_{n}\|\leq \frac{1}{n},\quad I(u_{n})\to -\infty. \] So $u_{n}\to 0$ in $E$, and \[ I(u_{n})= \frac{1}{p}\int_{\mathbb{R}^N}(|\nabla u_{n}|^{p} + \overline{V}(x)|f(u_{n})|^{p}){\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,f(u_{n})){\rm d}x. \] Obviously, \[ \frac{1}{p}\int_{\mathbb{R}^N}(|\nabla u_{n}|^{p} + \overline{V}(x)|f(u_{n})|^{p}){\rm d}x\to 0. \] From (A2), and (3) and (8) of Lemma \ref{lem2-2}, we have \begin{align*} \int_{\mathbb{R}^N}\overline{G}(x,f(u_{n})){\rm d}x &\leq C_{29}\int_{\mathbb{R}^N}\big(|f(u_{n})|^{p}+ |f(u_{n})|^{q}\big){\rm d}x\\ &\leq C_{29}\int_{\mathbb{R}^N}(|u_{n}|^{p}+ |u_{n}|^{\frac{q}{2}}){\rm d}x\to 0. \end{align*} Hence, $I(u_{n})\to 0$, contradicts with $I(u_{n})\to -\infty$, as $n\to +\infty$. \end{proof} \begin{lemma}\label{lem4-2} There exists $\vartheta\in E$, such that $I(t\vartheta)< 0$, for $t$ small enough. \end{lemma} \begin{proof} Let $\vartheta\in C^{\infty}_{0}(\mathbb{R}^N, [0,1])\backslash\{0\}$, and $K= \operatorname{supp} \vartheta$. From (A3), we have \[ \overline{G}(x,u)\geq C_{30}|u|^{\tau}> 0, \] for all $(x,u)\in\mathbb{R}^N\times\mathbb{R}$, $|u|\geq r_0$. By $(A2)$, for a.e. $x\in\mathbb{R}^N$ and $0\leq |u|\leq 1$, there exists $M> 0$ such that \[ |\frac{\overline{g}(x,u)u}{|u|^{p}}| \leq \big|\frac{C( |u|^{p-1} + |u|^{q-1})\cdot|u|}{|u|^{p}}\big|\leq M, \] which implies that \[ \overline{g}(x,u)u\geq -M |u|^{p}. \] We can use the equality $\overline{G}(x,u)=\int_0^1\overline{g}(x,tu)u{\rm d}t$, for a.e. $x\in\mathbb{R}^N$ and $0\leq |u|\leq 1$, to obtain \[ \overline{G}(x,u)\geq -\frac{M}{p}|u|^{p}\,. \] Then \begin{equation}\label{equ4-1} \overline{G}(x,u)\geq -\frac{M}{p}|u|^{p}+ C_{30}|u|^{\tau}. \end{equation} So from \eqref{equ4-1}, \begin{equation}\label{equ4-2} \begin{split} &I(t\vartheta)\\ &= \frac{t^{p}}{p}\int_{\mathbb{R}^N}|\nabla \vartheta|^{p}{\rm d}x + \frac{1}{p}\int_{\mathbb{R}^N}\overline{V}(x)|f(t\vartheta)|^{p}{\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,f(t\vartheta)){\rm d}x\\ &\leq \frac{t^{p}}{p}\int_{\mathbb{R}^N}\big(|\nabla \vartheta|^{p} + \overline{V}(x)|\vartheta|^{p}\big){\rm d}x+ \frac{M}{p}\int_{\mathbb{R}^N}|f(t\vartheta)|^{p}{\rm d}x- C_{31} \int_{\mathbb{R}^N}|f(t\vartheta)|^{\tau}{\rm d}x\\ &\leq \frac{t^{p}}{p}\int_{\mathbb{R}^N}\big(|\nabla \vartheta|^{p} + \overline{V}(x)|\vartheta|^{p}+ M |\vartheta|^{p}\big){\rm d}x - C_{31} \int_{\mathbb{R}^N}|f(t\vartheta)|^{\tau}{\rm d}x. \end{split} \end{equation} Since $f(t)/t$ is decreasing and $0\leq t\vartheta \leq t$, for $t\geq 0$. We obtain $f(t\vartheta)\geq f(t)\vartheta$. By (9) of Lemma \ref{lem2-2}, we obtain $f(t\vartheta)\geq Ct\vartheta$, for $0\leq t\leq 1$. Hence \[ I(t\vartheta)\leq \frac{t^{p}}{p} \int_{\mathbb{R}^N}\big(|\nabla \vartheta|^{p} + \overline{V}(x)|\vartheta|^{p}+ M |\vartheta|^{p}\big){\rm d}x - C_{32}t^{\tau} \int_{\mathbb{R}^N}|\vartheta|^{\tau}{\rm d}x, \] and since $\tau< p$, we obtain $I(t\vartheta)< 0$, for $t$ sufficiently small and the Lemma is proved. \end{proof} Thus, we obtain that \[ c_{0}= \inf\{I(u): u\in \overline{B_{\rho}}\}< 0, \] which $\rho> 0$ is given in Lemma \ref{lem4-1}. Then we can apply the Ekeland's variational principle and \cite[corollary 2.5]{Willem}, there exists a sequence $\{u_{n}\}\subset \overline{B_{\rho}}$ such that $C_{33}\leq I(u_{n})< C_{33}+ \frac{1}{n}$. Hence \[ I(u)\geq I(u_{n})- \frac{1}{n}\|w- u_{n}\|_{E},\quad \forall w\in \overline{B_{\rho}}. \] Then, following the idea in \cite{Willem}, we can show that $\{u_n\}$ is a bounded Cerami sequence of $I$. Therefore, Lemma \ref{lem3-1} implies that there exists a function $u_0\in E$ such that $I'(u_0)=0$ and $I(u_0)=c_0 < 0$. Next, we show that there exists a second solution for problem \ref{equ1-1}. \begin{lemma}\label{lem4-3} If the conditions {\rm (A1)--(A3), (A7)} are satisfied, there exist two constants $\rho_1> 0$, $\alpha> 0$, such that \[ I(u)\geq\alpha> 0,\quad \forall u\in S_{\rho_1}=\{u\in E: \|u\|_{E}=\rho_1\}. \] \end{lemma} \begin{proof} From (A2) and (A7), it follows that \[ |\overline{G}(x,u)|\leq\varepsilon|u|^p+C_{\varepsilon}|u|^q,\quad \forall (x,u)\in\mathbb{R}^N\times\mathbb{R}. \] Thus, by Proposition \ref{pro2-1}, we take $u\in E$ with $\|u\|\leq \rho$, where $\rho$ is given in Proposition \ref{pro2-1}, we can deduce that \begin{equation}\label{equ4-3} \begin{split} I(u)&= \frac{1}{p}\int_{\mathbb{R}^N}(|\nabla u|^{p} + \overline{V}(x)|f(u)|^{p}){\rm d}x - \int_{\mathbb{R}^N}\overline{G}(x,f(u)){\rm d}x\\ &\geq \frac{C_{34}}{p}\|u\|_E^{p}- C\varepsilon\|u\|^{p}_{E} - C_{\varepsilon}\|u\|_E^{q}\\ &\geq\frac{C_{35}}{2p}\|u\|_E^p-C_{36}\|u\|_E^q, \end{split} \end{equation} and since $q> 2p$, there exists $\alpha,\rho_1>0$ such that $I(u)\geq \alpha> 0$ for $\|u\|_E=\rho_1$. \end{proof} \begin{lemma}\label{lem4-4} There exist a $v\in E$ with $\|v\|_{E}>\rho_1$, such that $I(v)< 0$, which $\rho_{1}$ is defined in Lemma \ref{lem4-3}. \end{lemma} \begin{proof} Let $u_0\in E$ and $u_0>0$. From $(A3)$, (9) of Lemma \ref{lem2-2}, and Fatou's Lemma, we have \begin{align*} \lim_{t\to \infty} \frac{I(tu_{0})}{t^{p}} &= \lim_{t\to \infty}\Big(\frac{1}{pt^{p}} \int_{\mathbb{R}^N}(|\nabla tu_{0}|^{p} + \overline{V}(x)|f(tu_{0})|^{p}){\rm d}x - \int_{\mathbb{R}^N}\frac{\overline{G}(x,f(tu_{0}))}{t^{p}}{\rm d}x\Big)\\ &\leq \lim_{t\to \infty}\Big(\int_{\mathbb{R}^N}\frac{|\nabla u_{0}|^{p}}{p}{\rm d}x + \int_{\mathbb{R}^N}\frac{\overline{V}(x)|tu_{0}|^{p}}{pt^{p}}{\rm d}x\\ &- \int_{\mathbb{R}^N}\frac{\overline{G}(x,f(tu_{0}))}{(f(tu_{0}))^{2p}} \frac{(f(tu_{0}))^{2p}}{(tu_{0})^{p}}(u_{0})^{p}{\rm d}x\Big)\\ &=\frac{\|u_{0}\|^{p}_{E}}{p}-\lim_{t\to \infty}\int_{\mathbb{R}^N} \frac{\overline{G}(x,f(tu_{0}))}{(f(tu_{0}))^{2p}} \frac{(f(tu_{0}))^{2p}}{(tu_{0})^{p}}(u_{0})^{p}{\rm d}x\\ &\leq\frac{\|u_{0}\|^{p}_{E}}{p}-\int_{\mathbb{R}^N} \liminf_{t\to \infty}\frac{\overline{G}(x,f(tu_{0}))}{(f(tu_{0}))^{2p}} \frac{(f(tu_{0}))^{2p}}{(tu_{0})^{p}}(u_{0})^{p}{\rm d}x = -\infty. \end{align*} Thus, this lemma is proved by taking $v= tu_{0}$ with $t> 0$ large enough. \end{proof} Based on Lemmas \ref{lem4-3} and \ref{lem4-4}, Theorem \ref{thm2-1} implies that there is a sequence $\{u_{n}\}\subset E$ such that \[ I(u_{n})\to c\quad \text{and}\quad (1+ \|u_{n}\|_{E})I'(u_{n})\to 0. \] From Lemma \ref{lem3-2} and \ref{lem3-1}, it shows that this sequence $\{u_{n}\}$ has a convergent subsequence in $E$. Thus, there exists $u_{1}\in E$ such that $I'(u_{1})=0$ and $I(u_{1})=c_{1}>0$. Consequently, the proof of Theorem \ref{thm1-1} is complete. By the similar arguments as the proof of Theorem \ref{thm1-1}, Theorem \ref{thm1-2} and Corollary \ref{cor1-1} can be proved. \subsection*{Proof of Theorems \ref{thm1-3} and \ref{thm1-4}} Let $\{e_{i}\}_{i\in \mathbb{N}}\in E$ is a total orthonormal basis of $E$ and $\{e^{\ast}_{j}\}_{j\in \mathbb{N}}\in E^{\ast}$, so that \begin{gather*} E= \overline{\operatorname{span}\{ e_{i}: i=1,2,\cdots\}},\quad E^{\ast}= \overline{\operatorname{span}\{ e^{\ast}_{j}: j=1,2,\cdots\}}, \\ \langle e_{i}, e^{\ast}_{j}\rangle = \begin{cases} 1,& i=j,\\ 0,& i\neq j; \end{cases} \end{gather*} So we define $X_{j}= \mathbb{R}e_{j}$, \[ Y_{k}= \oplus^{k}_{j=1} X_{j},\quad Z_{k}= \overline{\oplus^{\infty}_{j=k+1} X_{j}} ,\quad k\in \mathbb{Z} \] and $Y_{k}$ is finite-dimensional. Similar to \cite[Lemma 3.8]{Willem}, we have the following lemma. \begin{lemma}\label{lem4-5} Under assumption {\rm (A1')}, for $p\leq s< p^{\ast}$, \[ \beta_{k}(s):= \sup_{v\in Z_{k},\|v\|=1} \|v\|_{s} \to 0,\quad k\to \infty . \] \end{lemma} \begin{lemma}\label{lem4-6} Suppose that {\rm (A1'), (A2)} are satisfied. Then there exist constants $\rho> 0$, $\alpha> 0$ such that $I\big|_{ S_{\rho}\bigcap Z_{m}}\geq \alpha $. \end{lemma} \begin{proof} For any $v\in Z_{m}$ with $\|v\|_{E}=\rho < 1$, by (3) and (8) of Lemma \ref{lem2-2}, and proposition \ref{pro2-1}, we have \begin{equation}\label{equ4-4} \begin{split} I(v) &= \frac{1}{p} \int_{\mathbb{R}^N} (|\nabla v|^{p} + \overline{V}(x)|f(v)|^{p}){\rm d}x - \int_{\mathbb{R}^N} \overline{G}(x,f(v)){\rm d}x \\ &\geq \frac{C_{37}}{p} \|v\|^{p}_{E} -C_{38} \int_{\mathbb{R}^N} (|f(v)|^{p} + |f(v)|^{q}) {\rm d}x \\ &\geq \frac{C_{37}}{p} \|v\|^{p}_{E} - C_{39}\int_{\mathbb{R}^N}(|v|^{p} + |v|^{\frac{q}{2}}){\rm d}x. \end{split} \end{equation} By Lemma \ref{lem4-5}, we can choose an integer $m\geq 1$ such that \[ C_{39}\|v\|^{p}_{p}\leq \frac{C_{37}}{2p}\|v\|^{p}_{E},\quad C_{39}\|v\|^{\frac{q}{2}}_{\frac{q}{2}}\leq \frac{C_{37}}{2p}\|v\|^{\frac{q}{2}}_{E}, \quad \forall v \in Z_{m}. \] Combining the above inequality with \eqref{equ4-4}, we have \[ I(v) \geq \frac{C_{37}}{p} \|v\|^{p}_{E}- \frac{C_{37}}{2p}\|v\|^{p}_{E} - \frac{C_{37}}{2p}\|v\|^{\frac{q}{2}}_{E} = \frac{C_{37}}{2p} \|v\|^{p}_{E}(1- \|v\|^{\frac{q-2p}{2}}_{E})> 0, \] since $q>2p$. This completes the proof. \end{proof} \begin{lemma}\label{lem4-7} Suppose that {\rm (A1'), (A2), (A3)} are satisfied. Then for any finite dimensional subspace $\widetilde{E}\subset E$, there is $R= R(\widetilde{E})> 0$ such that \[ I(v)\leq 0,\quad \forall v\in \widetilde{E}\backslash B_{R}. \] \end{lemma} \begin{proof} For any finite dimensional subspace $\widetilde{E}\subset E$, there exists a $m\in\mathbb{N}$ such that $\widetilde{E}\subset E_{m}$. Suppose by contradiction, we assume that there exists a sequence $\{v_{n}\}\subset \widetilde{E}$ such that $\|v_{n}\|_{E}\to \infty$ and $I(v_{n})> 0$. Hence \begin{equation}\label{equ4-5} \frac{1}{p} \int_{\mathbb{R}^N} (|\nabla v_{n}|^{p} + \overline{V}(x)|f(v_{n})|^{p}){\rm d}x > \int_{\mathbb{R}^N}\overline{ G}(x,f(v_{n})){\rm d}x. \end{equation} Set $w_{n}= \frac{v_{n}}{\|v_{n}\|_{E}}$. Then, up to a subsequence, we can assume that $w_{n}\rightharpoonup w$ in $E$, $w_{n}\to w$ in $L^{s}(\mathbb{R}^N)$ for all $p\leq s< p^{\ast}$, and $w_{n}\to w$ a.e.on $\mathbb{R}^N$. Set $\Omega_{1}:= \{x\in \mathbb{R}^N: w(x) \neq 0 \}$ and $\Omega_{2}:= \{x\in \mathbb{R}^N: w(x) = 0 \}$. If $\operatorname{meas}(\Omega_{1})> 0$, by (A3), (5) of Lemma \ref{lem2-2}, and Fatou's lemma, we have \begin{equation}\label{equ4-6} \int_{\Omega_{1}} \frac{\overline{G}(x,f(v_{n}))}{\|v_{n}\|^{p}_{E}}{\rm d}x = \int_{\Omega_{1}} \frac{\overline{G}(x,f(v_{n}))}{|f(v_{n})|^{2p}} \frac{|f(v_{n})|^{2p}}{|v_{n}|^{p}}|w_{n}|^{p} {\rm d}x \to +\infty. \end{equation} On the other hand, by (A2) and (A3), there exists $C_{40}>0$ such that \[ \overline{G}(x,t)\geq- C_{40}|t|^p,\quad \text{for all } (x,t)\in\mathbb{R}^N\times\mathbb{R}. \] Hence \[ \int_{\Omega_{2}} \frac{\overline{G}(x,f(v_{n}))}{\|v_{n}\|^{p}_{E}}{\rm d}x \geq -C_{40}\int_{\Omega_{2}}\frac{|f(v_{n})|^p}{\|v_{n}\|^{p}_{E}}{\rm d}x \geq-C_{41}\int_{\Omega_{2}}|w_n|^p {\rm d}x. \] Hence, by the fact that $w_{n}\to w$ in $L^{p}(\mathbb{R}^N)$, we obtain \[ \liminf_{n \to \infty} \int_{\Omega_{2}} \frac{\overline{G}(x,f(v_{n}))}{\|v_{n}\|^{p}_{E}}{\rm d}x \geq 0. \] Combining this with \eqref{equ4-6}, we have \[ \int_{\mathbb{R}^N} \frac{\overline{G}(x,f(v_{n}))}{\|v_{n}\|^{p}_{E}}{\rm d}x = +\infty, \] which implies a contradiction with \eqref{equ4-5}. Hence, $\operatorname{meas}(\Omega_{1})= 0$, i.e. $w(x)= 0$ a.e. on $\mathbb{R}^N$. By the fact that all norms are equivalent in $\widetilde{E}$, there exists $C_{42}> 0$ such that \[ \|v\|^{p}_{p} \geq C_{42}\|v\|^{p}_{E},\quad \forall v\in \widetilde{E}. \] Hence \[ 0= \lim_{n \to \infty} \|w_{n}\|^{p}_{p} \geq \lim_{n \to \infty} C_{42}\|w_{n}\|^{p}_{E}=C_{42}, \] this results in a contradiction. The proof is complete. \end{proof} \begin{proof}[Proof of theorem \ref{thm1-1}] Let $X= E$, $Y= Y_{m}$ and $Z= Z_{m}$. Obviously, $I(0)= 0$ and (A8) imply that $I$ is even. By Lemma \ref{lem3-2}, Lemma \ref{lem4-2} and Lemma \ref{lem4-3}, all conditions of Theorem \ref{thm2-2} are satisfied. Thus, problem \eqref{equ2-1} possesses infinitely many nontrivial solutions $\{v_{n}\}$ such that $I(v_{n})\to \infty$ as $n\to \infty$. Namely, problem \eqref{equ1-1} also possesses infinitely many nontrivial solutions $\{u_{n}\}$ such that $J(u_{n})\to \infty$ as $n\to \infty$. \end{proof} By the similar arguments as Theorem \ref{thm1-3}, we can give the proof of Theorem \ref{thm1-4} and Corollary \ref{cor1-2}. \subsection*{Acknowledgments} This research was supported by the National Natural Science Foundation of China (NSFC 11501403), and by the Shanxi Province Science Foundation for Youths under grant 2013021001-3. \begin{thebibliography}{00} \bibitem{AF} C. O. Alves, G. M. Figueiredo. \newblock Multiple solutions for a quasilinear Schr\"{o}dinger equation on $\mathbb{R^{N}}$. \newblock {\em Acta Appl Math}. 136:91--117, 2015. \bibitem{Alves} C. O. Alves, G. M. Figueiredo, U. B. Severo. \newblock Multiplicity of positive solutions for a class of quasilinear problems. \newblock {\em Advances in Differential Equations}. 14:911--942, 2009. \bibitem{AFS} C. O. Alves, G. M. Figueiredo, U. B. Severo. \newblock A result of multiplicity of solutions for a class of quasilinear equations. \newblock {\em Proceedings of the Edinburgh Mathematical Society}. 54:1--19, 2011. \bibitem{Bere} H.~Berestycki, P.~L. Lions. \newblock Nonlinear scalar field equations, {I}: {E}xistence of a ground state. \newblock {\em Arch. Rational Mech. Anal.}. 82:313--346, 1983. \bibitem{Bass} F.~G. Bass, N.~N. Nasanov. \newblock Nonlinear electromagnetic spin waves. \newblock {\em Physics Reports}. 189:165--223, 1990. \bibitem{Bw} T. Bartsch, Z.~Q. Wang. \newblock Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R^{N}}$. \newblock {\em Comm. Partial Differential Equations}. 20:1725--1741, 1995. \bibitem{Bartsch} T. Bartsch, Z.~Q. Wang, M. Willem. \newblock The Dirichlet probllem for superlinear elliptic equations. \newblock {\em in: M. Chipot, P. Quittner (Eds), Handbook of Differential Equations- Sationary Partial Differental Equations}. vol. 2, Elsevier, 2005. \bibitem{Coli} M.~Colin, L.~Jeanjean. \newblock Solutions for a quasilinear {S}chr\"{o}dinger equation: a dual approach. \newblock {\em Nonlinear Anal.}. 56:213--226, 2004. \bibitem{Floe} A.~Floer, A.~Weinstein. \newblock Nonspreading wave packets for the cubic {S}ch\"{o}dinger with a bounded potential. \newblock {\em J. Funct. Anal.}. 69:397--408, 1986. \bibitem{Jean} L.~Jeanjean, K.~Tanaka. \newblock A positive solution for a nonlinear {S}chr\"{o}dinger equation on $\mathbb{R}^n$. \newblock {\em Indiana Univ. Math.}. 54:443--464, 2005. \bibitem{Kuri} S.~Kurihura. \newblock Large-amplitude quasi-solitons in superfluid films. \newblock {\em J. Phys. Soc. Japan}. 50:3262--3267, 1981. \bibitem{Kose} A.~M. Kosevich, B.~A. Ivanov, A.~S. Kovalev. \newblock Magnetic solitons in superfluid films. \newblock {\em Physics Reports}. 194:117--238, 1990. \bibitem{LCY} H.~L. Liu, H.~B. Chen, X.~X. Yang. \newblock Multiple solutions for superlinear {S}chr\"{o}dinger-Poisson system with sign-changing potential and nonlinearity. \newblock {\em Computers and Mathematics with Applications}. 68:1982--1990, 2014. \bibitem{Liu1} J.~Q. Liu, Z.~Q. Wang. \newblock Soliton solutions for quasilinear {S}chr\"{o}dinger equations, {I}. \newblock {\em Proc. Amer. Math. Soc.}. 131:441--448, 2002.. \bibitem{Liu2} J.~Q. Liu, Y.~Q. Wang, Z.~Q. Wang. \newblock Soliton solutions for quasilinear {S}chr\"{o}dinger equations, {II}. \newblock {\em J. Differential Equations}. 187:473--493, 2003. \bibitem{LWW} J.~Q. Liu, Y.~Q. Wang, Z.~Q. Wang. \newblock Solutions for quasilinear {S}chr\"{o}dinger equations via the {N}ehari method. \newblock {\em Comm. Partial Differential Equations}. 29:879--901, 2004. \bibitem{Makh} V.~G. Makhankov, V.~K. Fedyanin. \newblock Non-linear effects in quasi-one-dimensional models of condensed matter theory. \newblock {\em Physics Reports}. 104:1--86, 1984. \bibitem{Pop} M.~Poppenberg, K.~Schmitt, Z.~Q. Wang. \newblock On the existence of soliton solutions to quasilinear {S}chr\"{o}dinger equations. \newblock {\em Calc. Var. Partial Differential Equations}. 14:329--344, 2002. \bibitem{Quis} G.~R.~W. Quispel, H.~W. Capel. \newblock Equation of motion for the heisenberg spin chain. \newblock {\em Physica}. 110 A:41--80, 1982. \bibitem{Rabi} P. H. Rabinowitz. \newblock Minimax Methods in Critical Point Theory with Applications to Differential Equations. \newblock {\em CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence,RI.}. 1986. \bibitem{Seve} U. Severo. \newblock Existence of weak solutions for quasilinear elliptic equations involving the p-Lapacian. \newblock {\em Electronic Journal of Differential Equations}. 56:1-16, 2008. \bibitem{Sun} J.~Sun, H.~Chen, L.~Yang. \newblock Positive solutions of asymptotically linear {S}chr\"{o}dinger-Poisson system with a radial potential vanishing at infinity. \newblock {\em Nonlinear Anal.}. 74:413-423, 2011. \bibitem{Take} S.~Takeno, S.~Homma. \newblock Classical planar heisenberg ferromagnet, complex scalar fields and nonlinear excitation. \newblock {\em Progr. Theoret. Physics}. 65:172--189, 1981. \bibitem{Willem} M.~Willem. \newblock Minimax Theorems. \newblock Birkh\"{a}user, Boston, 1996. \bibitem{Wu} X. Wu. \newblock Multiple solutions for quasilinear Schr\"{o}dinger equations with a parameter. \newblock {\em J. Differential Equations}. 256:2619--2632, 2014. \bibitem{ZS} W. M. Zou, M. Schechter. \newblock Critical Point Theory and Its Applications. \newblock {\em Springer, New York}. 2006. \bibitem{ZTZ} J.~Zhang, X.~H. Tang, W.~ Zhang. \newblock Infinitely many solutions of quasilinear Schr\"{o}dinger equation with sign-changing potential. \newblock {\em J. Math. Anal. Appl.}. 420:1762--1775, 2014. \end{thebibliography} \end{document}