\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 100, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/100\hfil Robin boundary-value problems] {Robin boundary-value problems for quasilinear elliptic equations with subcritical and critical nonlinearities} \author[D. A. Kandilakis, M. Magiropoulos \hfil EJDE-2016/100\hfilneg] {Dimitrios A. Kandilakis, Manolis Magiropoulos} \address{Dimitrios A. Kandilakis \newline School of Architectural Engineering, Technical University of Crete, 73100 Chania, Greece} \email{dkandylakis@isc.tuc.gr} \address{Manolis Magiropoulos \newline Department of Electrical Engineering, Technological Educational Institute of Crete, 71410 Heraklion, Crete, Greece} \email{mageir@staff.teicrete.gr} \thanks{Submitted February 2, 2016. Published April 19, 2016.} \subjclass[2010]{35J50, 35J65, 47J10} \keywords{Quasilinear elliptic problems; Robin boundary condition; \hfill\break\indent subcritical nonlinearities; critical nonlinearities; fibering method; mountain pass theorem} \begin{abstract} By using variational methods we study the existence of positive solutions for a class of quasilinear elliptic problems with Robin boundary conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}$ with a smooth boundary $\partial \Omega$. In this article we study the nonlinear Robin problem: \begin{gather*} -\Delta_{p}u=\lambda|u|^{p-2}u+a(x)|u|^{q-2}u\quad \text{in }\Omega, \label{1a} \\ |\nabla u|^{p-2}\frac{\partial u}{\partial \eta}+b(x)|u|^{p-2}u=\mu \rho(x)|u|^{r-2}u\quad \text{on }\partial \Omega, \label{1b} \end{gather*} where $\Delta_{p}u:=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$, $10$, $a:\Omega \to \mathbb{R}$, $b,\rho:\partial \Omega \to \mathbb{R} $ are essentially bounded functions, with $b(x)\geq0$ and $mx\in \partial \Omega:b(\cdot)>0\}>0$. Restrictions on $q,r$ are given in the subsequent sections. With respect to the parameter $\mu$, we notice that its role is crucial in the critical case examined in Section 3. Quasilinear problems of the form $-\Delta_{p}u=f(x,u)$ with Dirichlet boundary conditions have received considerable attention; see \cite{Bar-Liu,Dra-Tac,M-M-NSP,Per-Sil,Tiw}. This equation with Neumann boundary conditions (i.e. $b(\cdot)\equiv 0$ and $\rho(\cdot)\equiv0$) and $a(\cdot)$ being a constant has been studied in \cite{B-D-Hu}, where existence of solutions has been provided for $\lambda \in(0,\lambda^{\ast})$, for a suitable $\lambda^{\ast}>0$. The same authors in \cite{B-D-H} provide positive solutions to the aforementioned problem but with a critical term added to the right hand side of \eqref{1a}. In \cite{Bon-Ro} the existence of solutions is proved for \eqref{1a}-\eqref{1b} when $\lambda$ appears on the boundary condition, $a(\cdot)\equiv0$, and $r$ can be subcritical, critical or supercritical. Multiplicity of solutions is examined in \cite{NSP-Rad} where the right hand side of \eqref{1a} is a real Carath\'{e}odory function $f(x,u,\lambda)$ defined on $\Omega \times \mathbb{R}\times(0,+\infty)$ and the boundary condition is Neumann. Multiplicity of solutions is also proved in \cite{NSP-Radu} for $\lambda>\lambda_2$, for $\lambda_2$ being the second eigenvalue of the $p$-Laplacian operator with Robin boundary conditions, while in \cite{NSP-Radul} existence of positive solutions is shown for $\lambda<\lambda_1$. Existence of solutions depending on the Fu\u{c}ik spectrum of the p-Laplace operator is examined in \cite{Wink}. When $\Omega$ is an exterior domain, existence and nonexistence of solutions is examined in \cite{Fil-Puc-Rad}. In case the potential is nonsmooth we refer to \cite{Gas-NSP}. The fibering method, attributed to Pohozaev, is useful when the right hand sides of the equation and the boundary condition are power-like, see \cite{Dr-Po}, \cite{Poh}. For systems of equations the interested reader may see \cite{Boz-Mit}. Our aim in this work is to provide existence results concerning positive solutions to \eqref{1a}-\eqref{1b} when $q$ is either subcritical or critical, $r$ is subcritical and $\lambda \leq \lambda_1$, where $\lambda_1$ is the first eigenvalue of the associated eigenvalue problem. When the exponents are subcritical, our proofs rely on the fibering method and the mountain pass theorem developed in Ambrosetti-Rabinowitz \cite{Ambr-Rab}, while in the case of $q$ being critical we use the concentration-compactness principle of Lions \cite{Lions1, Lions2}. A useful survey of results concerning the mountain pass theorem is provided in \cite{Puc-Rad}. As usual $X:=W^{1,p}(\Omega)$ is equipped with the norm \[ \| u\| _{1,p}=\Big( \int _{\Omega}| \nabla u| ^{p}dx+\int _{\Omega}| u| ^{p}dx\Big) ^{1/p}. \] The action functional $I(\cdot)$ corresponding to problem \eqref{1a}-\eqref{1b} is defined on $X$ by \[ I_{\lambda}(u)=\frac{1}{p}\Big[ \int _{\Omega}| \nabla u| ^{p}dx-\lambda \int _{\Omega}| u| ^{p}dx+\int _{\partial \Omega}b(x)| u| ^{p} d\sigma \Big] -\frac{1}{q}A(u)-\frac{\mu}{r}P(u), \] where $P(u):=\int _{\partial \Omega}\rho(x)| u|^{r}d\sigma$ and $A(u):=\int _{\Omega}a(x)| u|^{q}dx$. Consider the eigenvalue problem \begin{gather} -\operatorname{div}(|\nabla u|^{p-2}\nabla u)=\lambda|u|^{p-2}u\quad \text{in }\Omega, \label{ei1} \\ |\nabla u|^{p-2}\frac{\partial u}{\partial \eta}+b(x)|u|^{p-2}u=0\quad \text{on }\partial \Omega. \label{ei2} \end{gather} It is known that the smallest eigenvalue $\lambda_1$ is isolated and positive with corresponding normalized eigenvector $u_1\in C^{1}(\Omega)$ (that is, $\| u_1\| =1$) which is positive in $\Omega$, \cite[Lemma 5.3]{Le}. Furthermore, \begin{equation} \lambda_1=\inf \Big\{ \frac{\int _{\Omega}| \nabla u| ^{p}dx+\int _{\partial \Omega}b(x)| u| ^{p}d\sigma}{\int _{\Omega}| u| ^{p}dx}:u\in W^{1,p}(\Omega)\backslash \{0\} \Big\} . \label{eigen} \end{equation} \section{Subcritical exponents} In what follows we assume that $10\}>0$. \item[(H2)] $\rho(\cdot)\geq0$ on $\partial \Omega$ and $m\{x\in \partial \Omega :\rho(\cdot)>0\}>0$. \end{itemize} Let $Y$ be an Banach space and $\Sigma:=\{A\subseteq X\backslash \{0\}: A \text{ is closed and }A=-A\}$. The genus of a set $A\in \Sigma$ is defined by \[ \gamma(A):=\min \{n\in \mathbb{N} :\exists \varphi \in C(A, \mathbb{R} ^{n}\backslash \{0\})\text{ with }\varphi(x)=-\varphi(-x)\}. \] \begin{theorem} \label{Ambr-Rab} Suppose that $I:Y\to\mathbb{R} $ is an even $C^{1}(Y,\mathbb{R})$ function such that: \begin{itemize} \item[(i)] I satisfies the Palais-Smale condition. \item[(ii)] $I(u)>0$ if $0<\|u\|0$ if $\|u\|=r$, for some $r>0$. \item[(iii)] There exists a subspace $Y_{m}\subseteq E$ of dimension $m$ and a compact subset $A_{m}\subseteq Y_{m}$ with $I<0$ on $A_{m}$ such that $0$ lies in a bounded component (in $Y_{m}$) of $Y_{m}\backslash A$. \end{itemize} Let $\Gamma:=\{h\in C(Y,Y):h(0)=0, h \text{ is an odd homeomorhism, } I(h(B_1))\geq0\}$, $K_{m}:=\{K\subseteq Y: K \text{ is compact,}K=-K, \gamma(K\cap h(\partial B_1))\geq m\text{ for every }h\in \Gamma \}$, where $B_1$ denotes the unit ball of $Y$. Then \[ c_{m}:=\underset{K\in K_{m}}{\inf}\underset{u\in K}{\max}I(u) \] is a critical value of $I$ with $00$ for $\|u\|=\rho$ and $I(u)\geq c_3>0$ for $\|u\|<\rho$, provided $\rho$ is sufficiently small. Suppose that $\{ X_n\} _{n\in\mathbb{N}}$ is a sequence of subspaces of $X$ with dimension $\dim(X_n)=n$ such that $\frac{\partial u}{\partial \eta}\neq0$ if $u\in X_n\backslash \{0\}$. Then, for $u\in B_1^{n}:=\{v\in X_n:[v]=1\}$ and $\zeta$ sufficiently large \[ I(\zeta u)=\frac{\zeta^{p}}{p}[u]^{p}-\frac{\zeta^{q}}{q}A(u)-\frac{\mu \zeta^{r}}{r}P(u)<\frac{\zeta^{p}}{p}-\frac{\zeta^{q}}{q}\underset{u\in B_1^{n}}{\min}A(u)-\frac{\mu \zeta^{r}}{r}\underset{u\in B_1^{n}}{\min }P(u)<0. \] We can now apply Theorem \ref{Ambr-Rab} to complete the proof. \end{proof} \noindent\textbf{Case 2.} $10$. \end{itemize} \begin{theorem} \label{thm4} If $10\text{ or }P(u)>0\}$. \end{proof} For $u\in Z$, $t\geq0$, one forms \[ I(tu)=\frac{t^{p}}{p}H_{\lambda}(u)-\frac{t^{q}}{q}A(u)-\frac{\mu t^{r}} {r}P(u)\text{,} \] where $H_{\lambda}(u):=[ u] ^{p}$. For $t>0$, let \[ I_t(tu)=t^{p-1}H_{\lambda}(u)-t^{q-1}A(u)-\mu t^{r-1}P(u). \] For critical points, we obtain \begin{equation} t^{p}H_{\lambda}(u)-t^{q}A(u)-\mu t^{r}P(u)=0, \label{r(u)} \end{equation} that has always a unique solution $t=t(u)$. Let $S_{\lambda}=Z\cap \{u\in X:H_{\lambda}(u)=1\}$. We notice that $\{t(u):u\in S_{\lambda}\}$ is bounded. For $u\in Z$, we define $\widehat{I}(u):=I(t(u)u)$. In view of \eqref{r(u)}, \begin{equation} \widehat{I}(u)=\big( \frac{1}{p}-\frac{1}{q}\big) t(u)^{p}H_{\lambda }(u)+\big( \frac{1}{q}-\frac{1}{r}\big) \mu t(u)^{r}P(u)<0. \label{a2} \end{equation} Notice that $\widehat{I}(\cdot)$ is bounded below in $S_{\lambda}$. Let $M=\inf_{u\in S_{\lambda}} \widehat{I}(u)$. Let $\{u_n\} _{n\in\mathbb{N}}\subseteq S_{\lambda}$ be a minimizing sequence for $\widehat{I}/S_{\lambda}$. Since $\{ u_n\} _{n\in\mathbb{N}}$ is bounded in $X$, we may assume that $u_n\rightharpoonup u$ in $X$. At the same time, $t(u_n)\to \widehat{t}$ in $\mathbb{R}$. Thus $t(u_n)u_n\rightharpoonup \widehat{t}u$ in $X$. By weak lower semicontinuity of $I(\cdot)$, we have \[ I(\widehat{t}u)\leq \liminf_{n\to+\infty} I(t(u_n)u_n)=M. \] Thus $\widehat{t}u\neq0$. Because of the corresponding compact Sobolev embeddings, $A(u_n)\to A(u)$ and $P(u_n)\to P(u)$. Exploiting \eqref{r(u)} for each $n$, one has \[ t(u_n)^{p-r}=t(u_n)^{q-r}A(u_n)+\mu P(u_n). \] Letting $n\to+\infty$, we obtain \begin{equation} \widehat{t}^{p-r}=\widehat{t}^{q-r}A(u)+\mu P(u). \label{a3} \end{equation} Since $\widehat{t}>0$, either $A(u)>0$ or $P(u)>0$, thus $u\in Z$, and $t(u)$ is well defined. The weak lower semicontinuity of the norm applies to give \begin{equation} \widehat{t}^{p-r}H_{\lambda}(u)\leq \widehat{t}^{q-r}A(u)+\mu P(u) \label{a4} \end{equation} or \[ H_{\lambda}(u)\leq \widehat{t}^{q-p}A(u)+\widehat{t}^{r-p}\mu P(u)\text{.} \] At the same time, \[ H_{\lambda}(u)=t(u)^{q-p}A(u)+t(u)^{r-p}\mu P(u)\text{.} \] Since the map $f(t)=t^{q-p}A(u)+t^{r-p}\mu P(u),t>0$ is strictly decreasing, the last two relations imply $\widehat{t}\leq$ $t(u)$. Let us assume that $\widehat{t}<$ $t(u)$. We set $F(y):=I(yu),y\geq0$. For $y\in [\widehat{t}, t(u)]$, one has $F'(y)=y^{p-1}H_{\lambda} (u)-y^{q-1}A(u)-y^{r-1}\mu P(u)=y^{r-1} [ y^{p-r}H_{\lambda} (u)-y^{q-r}A(u)-\mu P(u)] $, which is negative everywhere but at $y=t(u)$, since \eqref{r(u)} has a unique solution. Thus $F(y)$ is strictly decreasing in $[\widehat{t}$, $t(u)]$, so \[ I(t(u)u)0$ such that $ku\in S_{\lambda}$ (actually, combining \eqref{a3} and \eqref{a4} one sees that $k\geq1$). We have \[ t(ku)^{p}=t(ku)^{q}A(ku)+t(ku)^{r}\mu P(ku) \] or \[ \big( kt(ku)\big) ^{p}H_{\lambda}(u)=\big( kt(ku)\big) ^{q}A(u)+\big( kt(ku)\big) ^{r}\mu P(u), \] thus $kt(ku)=t(u)$. Then \[ I(t(ku)ku)=I(t(u)u)0\}$. It is clear that \eqref{r(u)} has a unique positive solution and $M<0$. Furthermore, since the limit $u$ of a minimizing sequence satisfies \eqref{a3}, we have that $P(u)>0$. Thus $u\in \hat{Z}\ $and $| t(u)u| $ is a positive solution of \eqref{1a},\ref{1b}. \smallskip \noindent\textbf{Case 3.} $10$. \end{itemize} \begin{theorem} \label{thm6} If $10$ and $H_{\lambda}^{P}(u)=1\}$. If $u\in S_{\lambda}^{P}$, then \eqref{r(u)} has a unique solution $t(u)\ $with $\widehat{I}(u)<0$. Define $M=\inf_{u\in S_{\lambda}^{P}} \widehat{I}(u)$ and assume that $u_n\in S_{\lambda }^{P}$ is such that $\widehat{I}(u_n)\to M$. We claim that $\|u_n\|_{1,p}$, $n\in \mathbb{N}$, is bounded. Indeed, let us assume that it is not, that is, $\|u_n\|_{1,p}\to+\infty$. Define $z_n:=\frac{u_n}{d_n}$, where $d_n=\|u_n\|_{1,p}$. Then \[ d_n^{p}[z_n]^{p}-d_n^{q}A(z_n)=1. \] Consequently, \begin{equation} [ z_n]^{p}\leq \frac{1}{d_n^{p}}\to0,\quad 0\leq-A(z_n)\leq \frac{1}{d_n^{q}}\to0. \label{eigen0} \end{equation} Thus \begin{equation} \lambda_1\int _{\Omega}| z_n| ^{p} dx\to1. \label{nonzero} \end{equation} Since $\|z_n\|_{1,p}=1$, we may assume that $z_n\to z$ weakly in $X$. Therefore, \eqref{nonzero} implies that \begin{equation} \lambda_1\int _{\Omega}| z| ^{p}dx=1, \label{eigen1} \end{equation} and so $z\neq0$. By \eqref{nonzero} and \eqref{eigen1} we see that $[z]=0$, that is, $z$ is an eigenvector corresponding to $\lambda_1$. On the other hand, since $A(z_n)\to A(z)$, \eqref{nonzero} yields $A(z)=0$, contradicting the fact $z>0$ in $\Omega$. Thus, $\|u_n\|_{1,p}$, $n\in\mathbb{N}$, is indeed bounded. So we may assume that $u_n\to u$ weakly in $X$. Note that, for an infinite number of $n's$, either $[u_n]^{p}\geq \frac{1}{2}$, or $-A(u_n)\geq \frac{1}{2}$. In either case, \eqref{r(u)} implies that $r(u_n)$ is bounded. Since \eqref{r(u)} implies that $P(u)>0$, we see that $u\in S_{\lambda}^{P}$. We can now proceed as in case 1 to get a solution. \end{proof} \noindent\textbf{Case 6.} $10$ and take $\varphi \in C^{\infty}(\Omega)$ such that \[ \varphi \equiv1\text{ in }B(x_k,\varepsilon),\quad \varphi \equiv0\quad \text{in }X\backslash B(x_k,2\varepsilon),\quad|\nabla \varphi|\leq \frac {2}{\varepsilon}. \] Since $I'(u_n)(\varphi u_n)\to0$ an $n\to+\infty$, we obtain \begin{align*} &\lim_{n\to+\infty} \Big[ \int_{\Omega}|\nabla u_n |^{p-2}\nabla u_n\nabla \varphi u_ndx+\int_{\Omega}|\nabla u_n |^{p}\varphi dx\Big] \\ &=\lambda \int_{\Omega}|u|^{p}\varphi dx -\int_{\partial \Omega}b(x)|u|^{p}\varphi d\sigma +\lim_{n\to +\infty} \int_{\Omega}|u_n|^{p^{\ast}}\varphi dx +\mu \int_{\partial \Omega}\rho(x)|u|^{r}\varphi d\sigma \\ &=\lambda \int_{\Omega}|u|^{p}\varphi dx-\int_{\partial \Omega}|u|^{p}\varphi d\sigma+\int_{\Omega}\varphi d\nu+\mu \int_{\partial \Omega}\rho(x)|u|^{r} \varphi d\sigma. \end{align*} Note that, by the Holder inequality, \begin{align*} &\lim_{n\to+\infty} \big| \int_{\Omega}|\nabla u_n|^{p-2}\nabla u_n\nabla \varphi u_n\,dx\big| \\ & \leq \lim_{n\to+\infty} \Big( \int_{\Omega}|u_n |^{p}\varphi dx\Big) ^{\frac{p-1}{p}} \lim_{n\to+\infty} \Big( \int_{\Omega}|\nabla \varphi|^{p}|u_n|^{p}dx\Big) ^{1/p}\\ & \leq C\Big(\int_{B(x_k,2\varepsilon)\cap \Omega}|\nabla \varphi|^{p} |u|^{p}dx\Big) ^{1/p} \\ &\leq C\Big( \int_{B(x_k,2\varepsilon)\cap \Omega}|\nabla \varphi |^{N}dx\Big) ^{1/N}\Big( \int_{B(x_k,2\varepsilon)\cap \Omega }|u|^{p^{\ast}}dx\Big) ^{1/p^{\ast}} \\ &\leq C'\int_{B(x_k,2\varepsilon)\cap \Omega}|u|^{p^{\ast} }dx\to0 \quad \text{as }\varepsilon \to0, \end{align*} and so \begin{align*} &\lim_{\varepsilon \to0} \Big[ \int_{\Omega}\varphi d\mu -\lambda \int_{\Omega}|u|^{p}\varphi dx +\int_{\partial \Omega} b(x)|u|^{p}\varphi d\sigma -\int_{\Omega}\varphi d\nu -\mu \int_{\partial \Omega}\rho(x)|u|^{r}\varphi d\sigma \Big] \\ &=\mu_k-\nu_k=0. \end{align*} Consequently, $S\nu_k^{\frac{p}{p^{\ast}}}\leq \nu_k$ if $x_k\in \Omega$ or $2^{-\frac{p}{N}}S\nu_k^{\frac{p}{p^{\ast}}}\leq \nu_k$ if $x_k \in \partial \Omega$, implying that $S^{\frac{N}{p}}\leq \nu_k$ if $x_k \in \Omega$ or $\frac{1}{2}S^{\frac{N}{p}}\leq \nu_k$ if $x_k\in \partial \Omega$. On the other hand, \begin{align*} c&=\lim_{n\to+\infty} I(u_n) =\lim_{n\to+\infty } I(u_n)-\underset{n\to+\infty}{\lim}\frac{1}{p}I'(u_n)(u_n)\\ &=\big( \frac{1}{p}-\frac{1}{p^{\ast}}\big) \int_{\Omega}|u|^{p^{\ast}} +\big( \frac{1}{p}-\frac{1}{p^{\ast}}\big) \int_{\Omega} \sum _{j\in J} \nu_j\delta_{x_j} +\mu \big( \frac{1}{p}-\frac{1}{r}\big) \int_{\partial \Omega}\rho(x)|u|^{r}d\sigma \\ &\geq \big( \frac{1}{p}-\frac{1}{p^{\ast}}\big) \nu_k =\frac{1}{N} S^{N/p}. \end{align*} Thus $\nu_k=0$ for every $k\in J$, implying that $\int_{\Omega} |u_n|^{p^{\ast}}dx\to \int_{\Omega}|u|^{p^{\ast}}dx$. The result follows by exploiting the continuity of the inverse $p$-Laplace operator. \end{proof} \begin{theorem} \label{thm10} There exists $\mu_0>0$ such that for $\mu \geq \mu_0$ problem \eqref{1a}-\eqref{1b} admits a solution. \end{theorem} \begin{proof} We will first verify the requirements for the mountain pass theorem. By the Sobolev embedding and trace theorems we see that \begin{align*} I(u)&=\frac{1}{p}[u]^{p}-\frac{1}{p^{\ast}}A(u)-\frac{\mu}{r}P(u) \\ &\geq \frac{1}{p}[u]^{p}-C_1[u]^{p^{\ast}}-C_2[u]^{r}, \end{align*} for some $C_1,C_2>0,$and so for a sufficiently small positive number $\beta$ there exists $a>0$ such that $I(u)>a>0$ for $[u]=\beta$. We now take $v\in X\backslash \{0\}$. It is easy to see that $\lim_{s\to +\infty} I(sv)=-\infty$. Thus, $I(s_0v)<0$ for sufficiently large $s_0$. Let $c:=\inf_{\gamma \in \Gamma} \sup_{t\in [0,1]} I(\gamma(t))$, where $\Gamma:=\{ \gamma \in C([0,1],X):\gamma(0)=0,\gamma (1)=s_0v\}$. We will show that $c<\frac{1}{N}S^{\frac{N}{p}}$ for large enough $\mu$. Take $z\in X$ such that $\|z\|_{p^{\ast}}=1$. The maximum value of $\eta \to I(\eta z)$, $\eta>0$, is assumed at the point $\eta_{\mu}$ satisfying $\frac{d}{d\eta}I(\eta_{\mu}z)=0$, that is \begin{equation} \eta_{\mu}^{p}[z]^{p}=\eta_{\mu}^{p^{\ast}}\|z\|_{p^{\ast}}^{p^{\ast}}+\mu \eta_{\mu}^{r}P(z)=\eta_{\mu}^{p^{\ast}}+\mu \eta_{\mu}^{r}P(z). \label{infin} \end{equation} Therefore, \[ \eta_{\mu}\leq [ z]^{\frac{p}{p^{\ast}-p}}, \] which, in view of \eqref{infin}, yields $\lim_{\mu \to+\infty} \eta_{\mu}=0$. On the other hand, \[ I(\eta_{\mu}z)=\eta_{\mu}^{p}\big(\frac{1}{p}-\frac{1}{p^{\ast}}\big) [z]^{p}+\mu \eta_{\mu}^{r}\big( \frac{1}{p^{\ast}}-\frac{1}{r}\big) P(z)\leq \eta_{\mu}^{p}\big( \frac{1}{p}-\frac{1}{p^{\ast}}\big) [z]^{p}, \] implying that $\lim_{\mu \to+\infty} I(\eta_{\mu}z)=0$. Thus, for large enough $\mu$, say $\mu \geq \mu_0$, $I(\eta_{\mu}z)<\frac{1} {N}S^{\frac{N}{p}}$. By Lemma \ref{lem2}, $I(\cdot)$ satisfies the Palais-Smale condition and the mountain pass theorem provides a solution. \end{proof} \begin{thebibliography}{99} \bibitem{Ambr-Rab} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Analysis, 14(4) (1973), 349-381. \bibitem{Bar-Liu} T. Bartsch, Z. Liu; \emph{Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian}, Commun. Contemp. Math. vol. 6, No. 2 (2004), 245-258. \bibitem{B-D-H} P. A. Binding, P. Drabek, Y. X. Huang; \emph{Existence of multiple solutions of critical quasilinear elliptic Neumann problems}, Nonlinear Analysis 42 (2000), 613-629. \bibitem{B-D-Hu} P. A. Binding, P. Drabek, Y. X. Huang; \emph{On Neumann boundary value problems for some quasilinear elliptic equations}, Electronic J. Diff. Equations 1997, No. 05 (1997), 1-11. \bibitem{Bon-Ro} J. Fernandez Bonder, J. D. Rossi; \emph{Existence results for the p-Laplacian with nonlinear boundary conditions}, J. Math. Analysis Appl. 263 (2001), 195-223. \bibitem{Boz-Mit} Yu. Bozhkov, E. Mitidieri; \emph{Existence of multiple solutions for quasilinear systems via fibering method}, J. Differential Equations 190, no. 1 (2003), 239--267. \bibitem{Dr-Po} P. Drabek, S. I. Pohozaev; \emph{Positive solutions for the p-Laplacian: application of the fibering method}, Proc. Royal Soc. Edinburgh 127A (1997), 703-726. \bibitem{Dra-Tac} P. Drabek, P. Tak\'{a}\v{c}; \emph{Poincar\'{e} inequality and Palais-Smale condition for the p-Laplacian}, Calc. Var. 29 (2007), 31-58. \bibitem{F-R} J. Fernandez-Bonder, J. D. Rossi; \emph{Existence results for the p-Laplacian with nonlinear boundary conditions}, J. Math. Anal. Appl. 263 (2001), 195-223. \bibitem{Fil-Puc-Rad} R. Filippucci, P. Pucci, V. Radulescu; \emph{Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions}, Comm. Partial Differential Equations 33, No. 4-6 (2008) 706--717. \bibitem{Gas-NSP} L. Gasi\'{n}ski, N. S. Papageorgiou; \emph{Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems}, Series in Mathematical Analysis and Applications, Vol. 8, Chapman and Hall/CRC, Boca Raton, FL, 2006. \bibitem{Le} A. L\^{e}; \emph{Eigenvalue problems for the p-Laplacian}, Nonlinear Analysis 64 (2006) 1057-1099. \bibitem{Lions1} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations. The limit case, part 1}, Rev. Mat. Iberoamericana 1, No. 1 (1985), 145-201. \bibitem{Lions2} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations. The limit case, part 2}, Rev. Mat. Iberoamericana 1, No. 2 (1985), 45-121. \bibitem{Medeir} E. S. de Medeiros; \emph{Exist\^{e}ncia e concentra\c{c}ao de solu\c{c}\~{a}o para o p-Laplaciano com condi\c{c}\~{a}o de Neumann}, Doctoral Dissertation, UNICAMP 2001. \bibitem{M-M-NSP} D. Motreanu, V. V. Motreanu, N. S. Papageorgiou; \emph{Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with p-Laplacian}, Transactions AMS, 360 No5 (2008), 2527-2545. \bibitem{NSP-Radu}N. Papageorgiou, V. R\u{a}dulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256, No. 7 (2014), 2449--2479. \bibitem{NSP-Rad} N. S. Papageorgiou, V. D. R\u{a}dulescu; \emph{Nonlinear parametric Robin problems with combined nonlinearities}, Advanced Nonlinear Studies 15 (2015) 715-748. \bibitem{NSP-Radul} N. Papageorgiou, V. R\u{a}dulescu; \emph{Positive solutions for perturbations of the eigenvalue problem for the Robin p-Laplacian}, Ann. Acad. Sci. Fenn. Math. 40, No. 1 (2015) 255--277. \bibitem{Per-Sil} K. Perera, E. Silva; \emph{On singular p-Laplacian problems}, Differential Integral Equations 20, No. 1 (2007) 105-120. \bibitem{Poh} S. Pohozaev; \emph{Nonlinear variational problems via the fibering method}. Sections 5 and 6 by Yu. Bozhkov and E. Mitidieri. Handb. Differ. Equ., Handbook of differential equations: stationary partial differential equations. Vol. V, 49--209, Elsevier/North-Holland, Amsterdam, 2008. \bibitem{Puc-Rad} P. Pucci, V. R\u{a}dulescu; \emph{The impact of the mountain pass theory in nonlinear analysis: a mathematical survey}, Boll. Unione Mat. Ital. 9, No. 3 (2010) 543--584. \bibitem{Tiw} S. Tiwari; \emph{N-Laplacian critical problem with discontinuous nonlinearities}, Adv. Nonlinear Anal. 4, No. 2 (2015), 109--121. \bibitem{Wink} P. Winkert; \emph{Multiplicity results for a class of elliptic problems with nonlinear boundary condition}, Comm. Pure and Allpied Analysis, 12, No. 2 (2013), 785-802. \bibitem{Zeidl} E. Zeidler; \emph{Nonlinear Functional Analysis and its Applications}, vol. I, Springer, NY, 1986. \end{thebibliography} \end{document}