\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 104, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/104\hfil Long time decay for 3D Navier-Stokes equations] {Long time decay for 3D Navier-Stokes equations in Sobolev-Gevrey spaces} \author[J. Benameur, L. Jlali \hfil EJDE-2016/104\hfilneg] {Jamel Benameur, Lotfi Jlali} \address{Jamel Benameur \newline Institut Sup\'erieur des Sciences Appliqu\'ees et de Technologie de Gab\`es, Universit\'e de Gab\`es, Tunisia} \email{jamelbenameur@gmail.com} \address{Lotfi Jlali \newline Facult\'e de Sciences Math\'ematiques, Physiques et Naturelles de Tunis, Universit\'e de Tunis El Manar, Tunisia} \email{lotfihocin@gmail.com} \thanks{Submitted February 2, 2016. Published April 21, 2016.} \subjclass[2010]{35Q30, 35D35} \keywords{Navier-Stokes Equation; critical spaces; long time decay} \begin{abstract} In this article, we study the long time decay of global solution to $3$D incompressible Navier-Stokes equations. We prove that if $u\in{\mathcal C}([0,\infty),H^1_{a,\sigma}(\mathbb{R}^3))$ is a global solution, where $H^1_{a,\sigma}(\mathbb{R}^3)$ is the Sobolev-Gevrey spaces with parameters $a>0$ and $\sigma>1$, then $\|u(t)\|_{H^1_{a,\sigma}(\mathbb{R}^3)}$ decays to zero as time approaches infinity. Our technique is based on Fourier analysis. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} The $3$D incompressible Navier-Stokes equations are \begin{equation} \begin{gathered} \partial_t u -\Delta u+ u\cdot\nabla u =-\nabla p \quad \text{in } \mathbb{R}^+\times \mathbb{R}^3\\ \operatorname{div} u = 0 \quad \text{in } \mathbb{R}^+\times \mathbb{R}^3\\ u(0,x) =u^0(x) \quad \text{in }\mathbb{R}^3, \end{gathered}\label{NSE} \end{equation} where, we assume that the fluid viscosity $\nu=1$, and $u=u(t,x)=(u_1,u_2,u_3)$ and $p=p(t,x)$ denote respectively the unknown velocity and the unknown pressure of the fluid at the point $(t,x)\in \mathbb{R}^+\times \mathbb{R}^3$, $(u\cdot\nabla u):=u_1\partial_1 u+u_2\partial_2 u+u_3\partial_3u$, and $u^0=(u_1^o(x),u_2^o(x),u_3^o(x))$ is a given initial velocity. If $u^0$ is quite regular, the divergence free condition determines the pressure $p$. We define the Sobolev-Gevrey spaces as follows; for $a, s\geq0$, $\sigma>1$ and $|D|=(-\Delta)^{1/2}$, $$ H^s_{a,\sigma}(\mathbb{R}^3)=\{f\in L^2(\mathbb{R}^3) : e^{a|D|^{1/\sigma}}f\in H^s(\mathbb{R}^3)\} $$ which is equipped with the norm $$ \|f\|_{H^s_{a,\sigma}}=\|e^{a|D|^{1/\sigma}}f\|_{H^s} $$ and its associated inner product $$ \langle f\mid g\rangle_{{H}^s_{a,\sigma}} =\langle e^{a|D|^{1/\sigma}}f\mid e^{a|D|^{1/\sigma}}g\rangle_{H^s}. $$ There are several authors who have studied the behavior of the norm of the solution to infinity in the different Banach spaces. Wiegner \cite{MW1} proved that the $L^2$ norm of the solutions vanishes for any square integrable initial data, as time approaches infinity, and gave a decay rate that seems to be optimal for a class of initial data. Schonbek and Wiegner \cite{MS2,MWS} derived some asymptotic properties of the solution and its higher derivatives under additional assumptions on the initial data. Benameur and Selmi \cite {BS1} proved that if $u$ is a Leray solution of the 2D Navier-Stokes equation, then $\lim_{t\to\infty}\|u(t)\|_{L^2(\mathbb{R}^2)}=0$. For the critical Sobolev spaces $\dot{H}^{1/2}$, Gallagher, Iftimie and Planchon \cite{GIP} proved that $\|u(t)\|_{\dot{H}^{1/2}}$ approaches zero at infinity. Now, we state our main result. \begin{theorem}\label{thm1} Let $a>0$ and $\sigma>1$. Let $u\in{\mathcal C}([0,\infty),H^1_{a,\sigma}(\mathbb{R}^3))$ be a global solution to \eqref{NSE}. Then \begin{equation}\label{eq1} \limsup_{t\to\infty}\|u(t)\|_{H^1_{a,\sigma}}=0. \end{equation} \end{theorem} Note that the existence of local solutions to \eqref{NSE} was studied recently in \cite{BL1}. This article is organized as follows: In section $2$, we give some notations and important preliminary results. Section $3$ is devoted to prove that if $u\in{\mathcal C}(\mathbb{R}^+, H^1(\mathbb{R}^3))$ is a global solution to \eqref{NSE} then $\|u(t)\|_{H^1}$ decays to zero as time approaches infinity. The proof is based on the fact that \begin{equation}\label{eq2} \lim_{t\to\infty}\|u(t)\|_{\dot{H}^{1/2}}= 0 \end{equation} and the energy estimate \begin{equation}\label{enq1} \|u(t)\|_{L^2}^2+\int_0^t\|\nabla u(\tau)\|_{L^2}^2d\tau\leq\|u^0\|_{L^2}^2. \end{equation} In section $4$, we generalize the results of Foias-Temam \cite{FT} to $\mathbb{R}^3$ and in section $5$, we prove the main theorem. \section{Notation and preliminary results} \subsection{Notation} In this section, we collect notation and definitions that will be used later. First, the Fourier transformation is normalized as $$ \mathcal{F}(f)(\xi)=\widehat{f}(\xi) =\int_{\mathbb{R}^3}\exp(-ix\cdot\xi)f(x)dx,\quad \xi=(\xi_1,\xi_2,\xi_3)\in\mathbb{R}^3, $$ the inverse Fourier formula is $$ \mathcal{F}^{-1}(g)(x)=(2\pi)^{-3}\int_{\mathbb{R}^3} \exp(i\xi\cdot x)g(\xi)d\xi,\quad x=(x_1,x_2,x_3)\in\mathbb{R}^3, $$ and the convolution product of a suitable pair of functions $f$ and $g$ on $\mathbb{R}^3$ is $$ (f\ast g)(x):=\int_{\mathbb{R}^3}f(y)g(x-y)dy. $$ For $ s\in\mathbb{R} $, $H^s(\mathbb{R}^3)$ denotes the usual non-homogeneous Sobolev space on $\mathbb{R}^3$ and $\langle\cdot\mid\cdot\rangle_{H^s}$ denotes the usual scalar product on $H^s(\mathbb{R}^3)$. For $ s\in\mathbb{R} $, $\dot{H}^s(\mathbb{R}^3)$ denotes the usual homogeneous Sobolev space on $\mathbb{R}^3$ and $\langle\cdot\mid\cdot\rangle_{\dot{H}^s}$ denotes the usual scalar product on $\dot{H}^s(\mathbb{R}^3)$. We denote by $\mathbb{P}$ the Leray projection operator defined by the formula $$ \mathcal{F}(\mathbb{P}f)(\xi)=\widehat{f}(\xi)-\frac{(f(\xi)\cdot\xi)}{|\xi|^2}\xi. $$ The fractional Laplacian operator $(-\Delta)^{\alpha}$ for a real number $\alpha$ is defined through the Fourier transform, namely $$ \widehat{(-\Delta)^{\alpha}f(\xi)}=|\xi|^{2\alpha}\hat{f}(\xi). $$ Finally, If $f=(f_1,f_2,f_3)$ and $g=(g_1,g_2,g_3)$ are two vector fields, we set $$ f\otimes g:=(g_1f,g_2f,g_3f), $$ and $$ \operatorname{div}(f\otimes g):=(\operatorname{div}(g_1f), \operatorname{div}(g_2f),\operatorname{div}(g_3f)). $$ \subsection{Preliminary results} In this section, we recall some classical results and we give a new technical lemma. \begin{lemma}[\cite{HB}] \label{lem1} Let $(s,t)\in{\mathbb{R}^2}$ be such that $s<3/2$ and $s+t>0$. Then, there exists a constant $C :=C(s,t)>0$, such that for all $u,v\in \dot H^{s}(\mathbb{R}^3)\cap \dot H^{t}(\mathbb{R}^3)$, we have $$ \|uv\|_{\dot{H}^{{s+t-{\frac{3}{2}}}}(\mathbb{R}^3)} \leq C(\|u\|_{\dot{H}^s(\mathbb{R}^3)}\|v\|_{\dot{H}^t(\mathbb{R}^3)} +\|u\|_{\dot{H}^t(\mathbb{R}^3)}\|v\|_{\dot{H}^s(\mathbb{R}^3)}). $$ If $s<3/2$, $t<3/2$ and $s+t>0$, then there exists a constant $c :=c(s,t)>0$, such that $$ \|uv\|_{\dot{H}^{{s+t-{\frac{3}{2}}}}(\mathbb{R}^3)} \leq c \|u\|_{\dot{H}^s(\mathbb{R}^3)}\|v\|_{\dot{H}^t(\mathbb{R}^3)}. $$ \end{lemma} \begin{lemma}\label{lem3} Let $f\in \dot H^{s_1}(\mathbb{R}^3)\cap \dot H^{s_2}(\mathbb{R}^3)$, where $s_1 < \frac{3}{2} < s_2 $. Then, there is a constant $c=c(s_1,s_2)$ such that $$ \|f\|_{L^{\infty}(\mathbb{R}^3)} \leq \|\hat{f}\|_{L^{1}(\mathbb{R}^3)} \leq c\|f\|^{\frac{s_2-\frac{3}{2}}{s_2-s_1}}_{ \dot H^{s_1} (\mathbb{R}^3)}\|f\|^{\frac{\frac{3}{2}-s_1}{s_2-s_1}}_{\dot H^{s_2}(\mathbb{R}^3)}. $$ \end{lemma} \begin{proof} We have \begin{align*} \|f\|_{L^{\infty}(\mathbb{R}^3)} &\leq \|\widehat{f}\|_{L^{1}(\mathbb{R}^3)}\\ &\leq \int_{\mathbb{R}^3} |\widehat{f(\xi)}|d\xi\\ &\leq \int_{|\xi|<{\lambda}}|\widehat{f(\xi)}|d\xi +\int_{|\xi|>{\lambda}}|\widehat{f(\xi)}|d\xi. \end{align*} We take $$ I_1=\int_{|\xi|<{\lambda}}\frac{1}{|\xi|^{s_1}}|\xi|^{s_1}|\widehat{f(\xi)}|d\xi. $$ Using the Cauchy-Schwarz inequality, we obtain \begin{align*} I_1&\leq \Big(\int_{|\xi|<{\lambda}}\frac{1}{|\xi|^{2s_1}}d\xi\Big)^{1/2} \|f\|_ {\dot H^{s_1}}\\ &\leq 2\sqrt{\pi} \Big(\int^{\lambda}_{0}\frac{1}{r^{2s_{1}-2}}dr\Big)^{1/2} \|f\|_ {\dot H^{s_1}}\\ &\leq c_{s_1}\lambda^{\frac{3}{2}-s_1}\|f\|_ {\dot H^{s_1}}. \end{align*} Similarly, take $$ I_2=\int_{|\xi|>{\lambda}}\frac{1}{|\xi|^{s_2}}|\xi|^{s_2}|\widehat{f(\xi)}|d\xi. $$ Then we have \begin{align*} I_2&\leq \Big(\int_{|\xi|>{\lambda}}\frac{1}{|\xi|^{2s_2}}d\xi\Big)^{1/2} \|f\|_ {\dot H^{s_2}}\\ &\leq 2\sqrt{\pi}\Big(\int^{\infty}_{\lambda}\frac{1}{r^{2s_{2}-2}}dr\Big)^{1/2} \|f\|_ {\dot H^{s_2}}\\&\leq c_{s_2}\lambda^{\frac{3}{2}-s_2}\|f\|_{\dot H^{s_2}}. \end{align*} Therefore, $$ \|f\|_{L^{\infty}}\leq A\lambda^{\frac{3}{2}-s_1}+B\lambda^{\frac{3}{2}-s_2}, $$ with $A=c_{s_1}\|f\|_ {\dot H^{s_1}}$ and $B=c_{s_2}\|f\|_{\dot H^{s_2}}$. Since the function $$ \lambda\mapsto \varphi(\lambda)= A\lambda^{\frac{3}{2}-s_1} +B\lambda^{\frac{3}{2}-s_2} $$ attains its minimum at $\lambda=\lambda^* =c(s_1,s_2)(B/A)^{\frac{1}{{s_2}-{s_1}}}$. Then $$ \|f\|_{L^{\infty}(\mathbb{R}^3)} \leq c' A^{\frac{{s_2}-\frac{3}{2}}{{s_2}-{s_1}}} B^{\frac{{\frac{3}{2}}-{s_1}}{{s_2}-{s_1}}}. $$ \end{proof} We remark that, for $s_1=1$ and $s_2=2$, where $f\in \dot H^{1}(\mathbb{R}^3)\cap \dot H^{2}(\mathbb{R}^3)$, we obtain \begin{equation}\label{rem1} \|f\|_{L^{\infty}(\mathbb{R}^3)} \leq \|\hat{f}\|_{L^{1}(\mathbb{R}^3)} \leq c\|f\|^{1/2}_ {\dot H^{1}(\mathbb{R}^3)}\|f\|^{1/2}_ {\dot H^{2}(\mathbb{R}^3)}. \end{equation} \section{Long time decay of \eqref{NSE} in $H^1(\mathbb{R}^3)$} In this section, we prove that if $u\in{\mathcal C}(\mathbb{R}^+,H^1(\mathbb{R}^3))$ is a global solution of \eqref{NSE}, then \begin{equation}\label{eq3} \limsup_{t\to\infty}\|u(t)\|_{H^1}=0. \end{equation} This proof is done in two steps. \smallskip \noindent\textbf{Step 1:} We shall prove that \begin{equation}\label{eq4} \limsup_{t\to\infty}\|u(t)\|_{\dot H^1}=0. \end{equation} We have $$ \partial_t u-\Delta u+ u\cdot\nabla u =-\nabla p. $$ Taking the $\dot {H}^{1/2}(\mathbb{R}^3)$ inner product of the above equality with $u$, we obtain $$ \frac{1}{2}\frac{d}{dt} \|u\|_{\dot {H}^{1/2}}^2+\|\nabla u\|_{\dot {H}^{1/2}}^2 \leq |\langle (u\cdot\nabla u) \mid u \rangle_{\dot {H}^{1/2}}|. $$ Using the fundamental property $u\cdot\nabla v=\operatorname{div}(u\otimes v)$ if $\operatorname{div}v=0$, we obtain \begin{align*} \frac{1}{2}\frac{d}{dt} \|u\|_{\dot {H}^{1/2}}^2+ \|\nabla u\|_{\dot H^{1/2}}^2 &\leq |\langle (u\cdot\nabla u) \mid u \rangle_{\dot {H}^{1/2}}|\\ &\leq |\langle \operatorname{div}(u\otimes u) \mid u \rangle_{\dot {H}^{1/2}}|\\ &\leq |\langle u\otimes u \mid \nabla u \rangle_{\dot {H}^{1/2}}|\\ &\leq \|u\otimes u\|_{\dot {H}^{1/2}} \|\nabla u\|_{\dot H^{1/2}}\\ &\leq \|u\otimes u\|_{\dot {H}^{1/2}} \|u\|_{\dot H^{3/2}}. \end{align*} Hence, from Lemma \eqref{lem1} there would exist a constant $c>0$ such that $$ \frac{1}{2}\frac{d}{dt}\|u\|_{\dot H^{1/2}}^2+ \|u\|_{\dot H^{3/2}}^2 \leq c \|u\|_{\dot{H}^{1/2}} \|u\|_{\dot {H}^{3/2}}^2. $$ From the equality \eqref{eq2} there would exist $t_0>0$ such that, for all $t\geq t_0 $, $$ \|u(t)\|_{\dot H^{1/2}}<\frac{1}{2c}. $$ Then $$ \frac{1}{2}\frac{d}{dt} \|u\|_{\dot H^{1/2}}^2 +\frac{1}{2} \|u\|_{\dot H^{3/2}}^2\leq 0,\quad \forall t\geq t_0. $$ Integrating with respect to time, we obtain \begin{align*} \|u(t)\|_{\dot H^{1/2}}^2+\int_{t_0}^t \| u(\tau)\|_{\dot H^{3/2}}^2 d \tau \leq \|u(t_0)\|_{\dot H^{1/2}}^2,\quad \forall t\geq t_0. \end{align*} Let $s>0$ and $c=c_s$. There exists $T_0=T_0(s,u^0)>0$, such that $$ \|u(T_0)\|_{\dot H^{1/2}}<\frac{1}{2c_s}. $$ Then $$ \|u(t)\|_{\dot H^{1/2}}<\frac{1}{2c_s},\quad \forall t\geq T_0. $$ Now, for $s>0$ we have $$ \partial_t u-\Delta u+ u\cdot\nabla u =-\nabla p. $$ Taking the $\dot {H}^s(\mathbb{R}^3)$ inner product of the above equality with $u$, we obtain $$ \frac{1}{2}\frac{d}{dt} \|u\|_{\dot {H}^s}^2+\|\nabla u\|_{\dot {H}^s}^2 \leq|\langle (u\cdot\nabla u) \mid u \rangle_{\dot {H}^s}|. $$ Using the fundamental property $u\cdot\nabla v=\operatorname{div}(u\otimes v)$ if $\operatorname{div}v=0$, we obtain \begin{align*} \frac{1}{2}\frac{d}{dt} \|u\|_{\dot {H}^s}^2+ \|u\|_{\dot H^{s+1}}^2 &\leq |\langle (u\cdot\nabla u) \mid u \rangle_{\dot {H}^s}|\\ &\leq |\langle \operatorname{div}(u\otimes u) /u \rangle_{\dot {H}^s}|\\ &\leq |\langle u\otimes u \mid \nabla u \rangle_{\dot {H}^s}|\\ &\leq \|u\otimes u\|_{\dot {H}^s} \|\nabla u\|_{\dot H^s}\\ &\leq \|u\otimes u\|_{\dot {H}^s} \|u\|_{\dot H^{s+1}}\\ &\leq c_s \|u\|_{\dot H^{1/2}}\|u\|_{\dot H^{s+1}}^2. \end{align*} Thus $$ \frac{1}{2}\frac{d}{dt} \|u\|_{\dot {H}^s}^2+\frac{1}{2} \|u(t)\|_{\dot H^{s+1}}^2 \leq 0,\quad \forall t\geq T_0. $$ So, for $T_0\leq t'\leq t$, $$ \|u(t)\|_{\dot {H}^s}^2+\int_{t'}^t \|u(\tau)\|_{\dot H^{s+1}}^2d\tau \leq \|u(t')\|_{\dot {H}^s}^2. $$ In particular, for $s=1$, \begin{align*} \|u(t)\|_{\dot {H}^1}^2+\int_{t'}^t \|u(\tau)\|_{\dot H^{2}}^2 d\tau \leq \|u(t')\|_{\dot {H}^1}^2. \end{align*} Then, the map $t\to\|u(t)\|_{\dot H^1}$ is decreasing on $[T_0,\infty)$ and $u\in L^2([0,\infty),\dot H^2(\mathbb{R}^3))$. Now, let $\varepsilon>0$ be small enough. Then the $L^2$-energy estimate $$ \|u(t)\|_{L^2}^2+2\int_{T_0}^t\|\nabla u(\tau)\|_{L^2}^2d\tau \leq\|u(T_0)\|_{L^2}^2,\quad \forall t\geq T_0 $$ implies that $u\in L^2([T_0,\infty),\dot H^1(\mathbb{R}^3))$ and there is a time $t_{\varepsilon}\geq T_0$ such that $$ \|u(t_\varepsilon)\|_{\dot H^1}<\varepsilon. $$ Since the map $t\mapsto \|u(t)\|_{\dot H^1}$ is decreasing on $[T_0,\infty)$, it follows that $$ \|u(t)\|_{\dot H^1}<\varepsilon,\quad \forall t\geq t_\varepsilon. $$ Therefore \eqref{eq4} is proved. \smallskip \noindent\textbf{Step 2:} In this step, we prove that \begin{equation}\label{eq5} \limsup_{t\to\infty}\|u(t)\|_{L^2}= 0. \end{equation} This proof is inspired by \cite{BB1} and \cite{BS1}. For $\delta>0$ and a given distribution $f$, we define the operators $A_{\delta}(D)$ and $B_{\delta}(D)$ as follows $$ A_{\delta}(D)f=\mathcal{F}^{-1}(\mathbf{1}_{\{|\xi|<\delta\}} \mathcal{F}(f)),\quad B_{\delta}(D)f=\mathcal{F}^{-1}(\mathbf{1}_{\{|\xi|\geq\delta\}}\mathcal{F}(f)). $$ It is clear that when applying $A_{\delta}(D)$ (respectively, $B_{\delta}(D)$) to any distribution, we are dealing with its low-frequency part (respectively, high-frequency part). Let $u$ be a solution to \eqref{NSE}. Denote by $\omega_{\delta}$ and $\upsilon_{\delta}$, respectively, the low-frequency part and the high-frequency part of $u$ and so on ${\omega_{\delta}}^0$ and ${\upsilon_{\delta}}^0$ for the initial data $u^0$. We have $$ \partial_t u-\Delta u+ u\cdot\nabla u =-\nabla p. $$ Then $$ \partial_t u-\Delta u+ \mathbb{P}(u\cdot\nabla u) =0. $$ Applying the pseudo-differential operators $A_{\delta}(D)$ to the above equality, we obtain \begin{gather*} \partial_t A_{\delta}(D)u- \Delta A_{\delta}(D)u+A_{\delta} (D)\mathbb{P}(u\cdot\nabla u)=0, \\ \partial_t \omega_{\delta}-\Delta\omega_{\delta} +A_{\delta}(D)\mathbb{P}(u\cdot\nabla u)=0. \end{gather*} Taking the $L^2(\mathbb{R}^3)$ inner product of the above equality with $\omega_{\delta}(t)$, we obtain \begin{align*} \frac{1}{2}\frac{d}{dt} \|\omega_{\delta}(t)\|_{L^2}^2 +\|\nabla \omega_{\delta}(t)\|_{L^2}^2 &\leq |\langle A_{\delta}(D)\mathbb{P}(u(t)\cdot\nabla u(t)) \mid \omega_{\delta}(t) \rangle_{L^2}|\\ &\leq |\langle A_{\delta}(D)\operatorname{div}(u\otimes u)(t)\mid \omega_{\delta}(t) \rangle_{L^2}|\\ &\leq |\langle A_{\delta}(D)(u\otimes u )(t)\mid \nabla\omega_{\delta}(t) \rangle_{L^2}|\\ &\leq |\langle (u\otimes u)(t)\mid \nabla\omega_{\delta}(t) \rangle_{L^2}|\\ &\leq \|u\otimes u(t)\|_{L^2}\|\nabla\omega_{\delta}(t)\|_{L^2}\\ &\leq \|u\otimes u(t)\|_{L^2}\|\nabla\omega_{\delta}(t)\|_{L^2}. \end{align*} Lemma \ref{lem1} gives \begin{align*} \frac{1}{2}\frac{d}{dt} \|\omega_{\delta}(t)\|_{L^2}^2 +\|\nabla \omega_{\delta}(t)\|_{L^2}^2 &\leq C\|u(t)\| _{\dot H^{1/2}} \|\nabla u(t)\|_{L^2} \|\nabla\omega_{\delta}(t)\|_{L^2}\\ &\leq CM\|\nabla u(t)\|_{L^2}\|\nabla\omega_{\delta}(t)\|_{L^2}. \end{align*} with $M=\sup_{t\geq0}\|u(t)\| _{\dot H^{1/2}})$. Integrating with respect to $t$, we obtain $$ \|\omega_{\delta}(t)\|_{L^2}^2\leq \|{\omega_{\delta}}^0\|_{L^2}^2 +CM\int_0^t \|\nabla u(\tau)\|_{L^2}\|\nabla\omega_{\delta}(\tau)\|_{L^2}d\tau. $$ Hence, we have $\|\omega_{\delta}(t)\|_{L^2}^2\leq M_{\delta}$ for all $t\geq0$, where $$ M_{\delta}=\|{\omega_{\delta}}^0\|_{L^2}^2 +CM\int_0^{\infty} \|\nabla u(\tau)\|_{L^2} \|\nabla\omega_{\delta}(\tau)\|_{L^2}d\tau. $$ Using the fact that $\lim_{\delta\to0}\|{\omega_{\delta}}^0\|_{L^2(\mathbb{R}^3)}^2=0$ and thanks to the Lebesgue-dominated convergence theorem we deduce that \begin{equation}\label{eq6} \lim_{\delta\to0}\int_0^{\infty}\|\nabla u(\tau)\|_{L^2} \|\nabla \omega_{\delta}(\tau)\|_{L^2}d\tau=0. \end{equation} Hence $\lim_{\delta\to0} M_{\delta}=0$, and thus \begin{equation}\label{eq7} \lim_{\delta\to0}\sup_{t\geq0}\|\omega_{\delta}(t)\|_{L^2}= 0. \end{equation} We can take time equal to $\infty$ in the integral \eqref{eq6} because by definition of $\omega_{\delta}$ we have \begin{align*} \|\nabla \omega_{\delta}\|_{L^2} &= \|\mathcal{F}(\nabla \omega_{\delta})\|_{L^2}\\ &= \|\xi|\mathbf{1}_{\{|\xi|<\delta\}}\mathcal{F}(u)\|_{L^2}\\ &\leq \|\xi|\mathcal{F}(u)\|_{L^2}\\ &\leq \|\nabla u\|_{L^2}. \end{align*} Now, using the fact that $\lim_{\delta\to0}\|\nabla \omega_{\delta}(t)\|_{L^2}=0$ almost everywhere. Then, the sequence $$ \|\nabla u(t)\|_{L^2}\|\nabla \omega_\delta(t)\|_{L^2} $$ converges point-wise to zero. Moreover, using the above computations and the energy estimate \eqref{enq1}, we obtain $$ \|\nabla u(t)\|_{L^2}\|\nabla \omega_{\delta}(t)\|_{L^2} \leq \|\nabla u(t)\|_{L^2}^2\in L^1(\mathbb{R}^+). $$ Thus, the integral sequence is dominated. Hence, the limiting function is integrable and one can take the time $T=\infty $ in \eqref{eq6}. Now, let us investigate the high-frequency part. For this, we apply the pseudo-differential operators $B_{\delta}(D)$ to the \eqref{NSE} to obtain $$ \partial_t \upsilon_{\delta}-\Delta\upsilon_{\delta} +B_{\delta}(D)\mathbb{P}(u\cdot\nabla u)=0. $$ Taking the Fourier transform with respect to the space variable, we obtain \begin{align*} \partial_t |\widehat{\upsilon_\delta}(t,\xi)|^2 +2 |\xi|^2 |\widehat{\upsilon_\delta}(t,\xi)|^2 &\leq 2|\mathcal{F}(B_{\delta}(D)\mathbb{P}(u\cdot\nabla u))(t,\xi) \|\widehat{\upsilon_\delta}(t,\xi)|\\ &\leq 2|\mathcal{F}(B_{\delta}(D)\mathbb{P}(\operatorname{div} (u\otimes u)))(t,\xi)\|\widehat{\upsilon_\delta}(t,\xi)|\\ &\leq 2|\xi\|\mathcal{F}(B_{\delta}(D)\mathbb{P}(u\otimes u)) (t,\xi)\|\widehat{\upsilon_\delta}(t,\xi)|\\ &\leq 2|\xi\|\mathcal{F}(u\otimes u)(t,\xi)\|\widehat{\upsilon_\delta}(t,\xi)|\\ &\leq 2|\mathcal{F}(u\otimes u)(t,\xi)\|\widehat{\nabla\upsilon_\delta}(t,\xi)|. \end{align*} Multiplying the obtained equation by $\exp(2t|\xi|^2)$ and integrating with respect to time, we obtain $$ |\widehat{\upsilon_\delta}(t,\xi)|^2 \leq e^{-2 t|\xi|^2}|\widehat{\upsilon_\delta^0}(\xi)|^2 +2\int_0^t e^{-2(t-\tau)|\xi|^2} |\mathcal{F}(u\otimes u) (\tau,\xi)\|\widehat{\nabla\upsilon_\delta}(\tau,\xi)|d\tau. $$ Since $|\xi|>\delta$, we have $$ |\widehat{\upsilon_\delta}(t,\xi)|^2 \leq e^{-2 t\delta^2}|\widehat{\upsilon_\delta^0}(\xi)|^2 +2\int_0^t e^{-2(t-\tau)\delta^2} |\mathcal{F}(u\otimes u) (\tau,\xi)\|\widehat{\nabla\upsilon_\delta}(\tau,\xi)|d\tau. $$ Integrating with respect to the frequency variable $\xi$ and using Cauchy-Schwarz inequality, we obtain $$ \|\upsilon_{\delta}(t)\|_{L^2}^2\leq e^{-2 t{\delta}^2}\|\upsilon_{{\delta}^0}\|_{L^2}^2+2\int_0^t e^{-2(t-\tau){\delta}^2} \|u\otimes u(\tau)\|_{L^2}\|\nabla\upsilon_{\delta}(\tau) \|_{L^2}d\tau. $$ By the definition of $\upsilon_\delta$, we have $$ \|\upsilon_{\delta}(t)\|_{L^2}^2 \leq e^{-2 t{\delta}^2}\|u^0\|_{L^2}^2 +2\int_0^t e^{-2(t-\tau){\delta}^2}\|u\otimes u(\tau)\|_{L^2} \|\nabla u (\tau)\|_{L^2}d\tau. $$ Lemma \ref{lem1} and the equality \eqref{eq2} yield \begin{align*} \|\upsilon_{\delta}(t)\|_{L^2(\mathbb{R}^3)}^2 &\leq e^{-2 t{\delta}^2}\|u^0\|_{L^2(\mathbb{R}^3)}^2 +C\int_0^t e^{-2(t-\tau){\delta}^2} \|u (\tau)\|_{\dot H^{1/2}}\|\nabla u (\tau)\|_{L^2}^2d\tau \\ &\leq e^{-2t{\delta}^2}\|u^0\|_{L^2}^2+CM\int_0^t e^{-2(t-\tau){\delta}^2} \|\nabla u(\tau) \|_{L^2}^2d\tau, \end{align*} where $M=\sup_{t\geq0}\|u \|_{\dot H^{1/2}}$. Hence, $\|\upsilon_{\delta}(t)\|_{L^2}^2\leq N_{\delta}(t)$, where $$ N_{\delta}(t)= e^{-2 t{\delta}^2}\|u^0\|_{L^2}^2 +CM\int_0^t e^{-2(t-\tau){\delta}^2}\|\nabla u (\tau)\|_{L^2}^2d\tau. $$ Using the energy estimate \eqref{enq1}, we obtain $N_{\delta}\in L^1(\mathbb{R}^+)$ and $$ \int_0^{\infty}N_{\delta}(t)dt \leq \frac{\|u^0\|_{L^2}^2}{2\delta^2}+\frac{CM\|u^0\|_{L^2}^2}{4\delta^2}. $$ This leads to the fact that the function $t\to\|\upsilon_{\delta}(t)\|_{L^2}^2$ is both continuous and Lebesgue integrable over $\mathbb{R}^+$. Now, let $\varepsilon>0$. At first, the inequality \eqref{eq7} implies that there exists some $\delta_0>0$ such that \begin{align*} \|\omega_{\delta_0}(t)\|_{L^2}\leq \varepsilon/2,\,\forall\,t\geq0. \end{align*} Let us consider the set $\mathrm{R}_{\delta_0}$ defined by $\mathrm{R}_{\delta_0}:=\{t\geq0,\,\|\upsilon_{\delta}(t)\|_{L^2(\mathbb{R}^3)}>\varepsilon/2\}$. If we denote by $\lambda_1(\mathrm{R}_{\delta_0})$ the Lebesgue measure of $\mathrm{R}_{\delta_0}$, we have $$ \int_0^{\infty}\|\upsilon_{\delta_0}(t)\|_{L^2(\mathbb{R}^3)}^2dt \geq\int_{\mathrm{R}_{\delta_0}}\|\upsilon_{\delta}(t)\|_{L^2(\mathbb{R}^3)}^2dt \geq (\varepsilon/2)^2 \lambda_1(\mathrm{R}_{\delta_0}). $$ By doing this, we can deduce that $\lambda_1(\mathrm{R}_{\delta_0})= T^\varepsilon_{\delta^0}<\infty$, and there exists $t^\varepsilon_{\delta^0}>T^\varepsilon_{\delta^0}$ such that \[ \|\upsilon_{\delta_0}(t^\varepsilon_{\delta^0})\|_{L^2}^2\leq (\varepsilon/2)^2. \] So, $\|u(t^\varepsilon_{\delta^0})\|_{L^2}\leq \varepsilon$ and from the energy estimate \eqref{enq1} we have $$ \|u(t)\|_{L^2}\leq \varepsilon,\,\,\,\forall t\geq t^\varepsilon_{\delta^0}. $$ This completes the proof of \eqref{eq5}. \section{Generalization of Foias-Temam result in $H^1(\mathbb{R}^3)$} Fioas and Temam \cite{FT} proved an analytic property for the Navier-Stokes equations on the torus $\mathbb T^3=\mathbb{R}^3/\mathbb Z^3$. Here, we give a similar result on the whole space $\mathbb{R}^3$. \begin{theorem}\label{thm2} We assume that $u^0\in H^{1}(\mathbb{R}^3)$. Then, there exists a time $T$ that depends only on the $\|u^0\|_{ H^{1}(\mathbb{R}^3)}$, such that \begin{itemize} \item \eqref{NSE} possesses on $(0,T)$ a unique regular solution $u$ such that the function $t\mapsto e^{t|D|}u(t)$ is continuous from $[0,T] $ into $H^{1}(\mathbb{R}^3)$. \item If $u\in{\mathcal C}(\mathbb{R}^+,H^1(\mathbb{R}^3))$ is a global and bounded solution to \eqref{NSE}, then there are $M\geq0$ and $t_0>0$ such that $$ \|e^{t_0|D|}u(t)\|_{H^1(\mathbb{R}^3)}\leq M,\quad \forall t\geq t_0. $$ \end{itemize} \end{theorem} Before proving this Theorem, we need the following Lemmas. \begin{lemma}\label{lem5} Let $ t\mapsto e^{t|D|}u$ belong to $\dot H^{1}(\mathbb{R}^3)\cap\dot H^{2}(\mathbb{R}^3)$. Then $$ \|e^{t|D|}(u\cdot\nabla v)\|_{L^2(\mathbb{R}^3)} \leq \|e^{t|D|}u\|^{1/2}_{H^1(\mathbb{R}^3)} \|e^{t|D|} u\|^{1/2}_{H^2(\mathbb{R}^3)} \|e^{t|D|}v\|_{H^1(\mathbb{R}^3)}. $$ \end{lemma} \begin{proof} We have \begin{align*} \|e^{t|D|}(u\cdot\nabla v)\|^2_{L^2} &= \int_{\mathbb{R}^3} e^{2t|\xi|}|\widehat{u\cdot\nabla v}(\xi)|^2d\xi\\ &\leq \int_{\mathbb{R}^3} e^{2t|\xi|} \Big(\int_{\mathbb{R}^3} |\hat{u}(\xi-\eta)\|\widehat{\nabla v} (\eta)|d\eta\Big)^2d\xi\\ &\leq \int_{\mathbb{R}^3} \Big(\int_{\mathbb{R}^3} e^{t|\xi|}|\hat{u}(\xi-\eta) \|\widehat{\nabla v}(\eta)|d\eta\Big)^2d\xi. \end{align*} Using the inequality $e^{|\xi|}\leq e^{|\xi-\eta|}e^{|\eta|}$, we obtain \begin{align*} \|e^{t|D|}(u\cdot\nabla v)\|^2_{L^2} &\leq \int_{\mathbb{R}^3}\Big(\int_{\mathbb{R}^3}e^{t|\xi-\eta|}|\hat{u}(\xi-\eta)| e^{t|\eta|}|\widehat{\nabla v}(\eta)|d\eta\Big)^2d\xi\\ &\leq \int_{\mathbb{R}^3}\Big(\int_{\mathbb{R}^3} \big(e^{t|\xi-\eta|}|\hat{u}(\xi-\eta)|\big) \big(e^{t|\eta|}|\eta\|\hat{v}(\eta)|\big)d\eta\Big)^2d\xi\\ &\leq \Big(\int_{\mathbb{R}^3} e^{t|\xi|}|\hat{u}(\xi)|d\xi\Big)^2 \|e^{t|D|}\nabla v\|^2_{L^2}. \end{align*} Hence, for $f={\mathcal F}^{-1}( e^{t|\xi|}|\hat{u}(\xi)|) \in \dot H^{1}(\mathbb{R}^3)\cap\dot H^{2}(\mathbb{R}^3)$, inequality \eqref{rem1} gives \begin{align*} \|e^{t|D|}(u\cdot\nabla v)\|_{L^2} &\leq \|e^{t|D|}u\|^{1/2}_{\dot H^1} \|e^{t|D|} u\|^{1/2}_{\dot H^2} \|e^{t|D|}\nabla v\|_{L^2}\\ &\leq \|e^{t|D|}u\|^{1/2}_{\dot H^1} \|e^{t|D|} u\|^{1/2}_{\dot H^2} \|e^{t|D|}v\|_{\dot H^1}\\ &\leq \|e^{t|D|}u\|^{1/2}_{ H^1} \|e^{t|D|} u\|^{1/2}_{ H^2}\|e^{t|D|}v\|_{ H^1}. \end{align*} \end{proof} \begin{lemma}\label{lem6} Let $t\mapsto e^{t|D|}u \in \dot H^{1}(\mathbb{R}^3)\cap\dot H^{2}(\mathbb{R}^3)$. Then $$ \big|\langle e^{t|D|}(u\cdot\nabla v) \mid e^{t|D|}w \rangle_{{H^1}}\big| \leq\|e^{t|D|}u\|^{1/2}_{H^1} \|e^{t|D|} u\|^{1/2}_{H^2} \|e^{t|D|}v\|_{{H^1}} \|e^{t|D|} w\|_{{H^2}}. $$ \end{lemma} \begin{proof} We have \begin{align*} \langle u\cdot\nabla v \mid w \rangle_{H^1} &= \sum_{|j|=1}\langle\partial_j ( u\cdot\nabla v)\mid \partial_j w\rangle_{L^2}\\ &= - \sum_{|j|=1}\langle u\cdot\nabla v\mid \partial^{2}_j w\rangle_{L^2}\\ &= -\langle u\cdot\nabla v \mid \Delta w\rangle_{L^2}. \end{align*} Then \begin{align*} \big|\langle e^{t|D|}(u\cdot\nabla v )\mid e^{t|D|}w \rangle_{H^1}\big| &= \big|\langle e^{t|D|}(u\cdot\nabla v) \mid e^{t|D|}\Delta w \rangle_{L^2}\big|\\ &\leq \|e^{t|D|}(u\cdot\nabla v)\|_{L^2} \|e^{t|D|}\Delta w\|_{L^2}\\ &\leq \|e^{t|D|}(u\cdot\nabla v)\|_{L^2}\|e^{t|D|} w\|_{ \dot H^2}\\ &\leq \|e^{t|D|}(u\cdot\nabla v)\|_{L^2}\|e^{t|D|} w\|_{H^2}. \end{align*} Finally, using Lemma \ref{lem5}, we obtain the desired result. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] We have \[ \partial_{t}u -\Delta u +u\cdot\nabla u =-\nabla p. \] Applying the fourier transform to the last equation and multiplying by $\overline{\widehat{u}}$, we obtain \begin{align*} \partial_{t} \widehat{u}\cdot\overline{\widehat{u}} + |\xi|^2 |\widehat{u}|^2 = -(\widehat{u\cdot\nabla u})\cdot \overline{\widehat{u}}. \end{align*} Then \begin{align*} \partial_{t}|\widehat{u}|^2+ 2 |\xi|^2 |\widehat{u}|^2 = - 2 \operatorname{Re} ((\widehat{u\cdot\nabla u})\cdot\widehat{u}). \end{align*} Multiplying the above equation by $(1+|\xi|^2) e^{2t|\xi|}$, we obtain $$ (1+|\xi|^2) e^{2t|\xi|}\partial_{t}|\widehat{u}|^2 + 2(1+|\xi|^2) |\xi|^2 e^{2t|\xi|} |\widehat{u}|^2 = - 2 \operatorname{Re} ((\widehat{u\cdot\nabla u})\cdot \widehat{u}) (1+|\xi|^2) e^{2t|\xi|}. $$ Integrating with respect to $\xi$, we obtain \begin{align*} &\int_{\mathbb{R}^3}(1+|\xi|^2) e^{2t|\xi|}\partial_{t}|\widehat{u}(\xi)|^2 d\xi + 2 \int_{\mathbb{R}^3}(1+|\xi|^2)|\xi|^2 e^{2t|\xi|} |\widehat{u}(\xi)|^2 d\xi \\ &= - 2 \operatorname{Re} \int_{\mathbb{R}^3}((\widehat{u\cdot\nabla u})\cdot\widehat{u}) (1+|\xi|^2) e^{2t|\xi|} d\xi. \end{align*} Thus \begin{equation}\label{enq2} \langle e^{t|D|}\partial_{t} u / e^{t|D|} u \rangle_{H^1} + 2 \|e^{t|D|}\nabla u\|^2_{H^1(\mathbb{R}^3)} = - 2 Re \langle e^{t|D|} (u\cdot\nabla u) \mid e^{t|D|}u \rangle_{H^1}. \end{equation} Therefore, \begin{align*} \langle e^{t|D|} u'(t)\mid e^{t|D|} u(t) \rangle_{H^1} &= \langle ( e^{t|D|} u(t))'-|D|e^{t|D|}u(t) \mid e^{t|D|} u(t) \rangle_{H^1}\\ &= \frac{1}{2} \frac{d}{dt} \|e^{t|D|}u\|^2_{H^1} -\langle e^{t|D|}|D| u(t) \mid e^{t|D|} u(t) \rangle_{H^1}\\ &\geq \frac{1}{2} \frac{d}{dt} \|e^{t|D|}u\|^2_{H^1} - \|e^{t|D|}u\|_{H^1} \|e^{t|D|}u\|_{H^2}. \end{align*} Using the Young inequality, we obtain \begin{equation}\label{enq3} \frac{d}{dt} \|e^{t|D|}u\|^2_{H^1} -2 \|e^{t|D|}u\|^2_{H^1} -\frac{1}{2}\|e^{t|D|}u\|^2_{H^2} \leq 2 \langle e^{t|D|} u'(t) \mid e^{t|D|} u(t) \rangle_{H^1}. \end{equation} Hence, using Lemma \ref{lem6} and Young inequality the right hand of \eqref{enq2} satisfies \begin{align*} |-2 \operatorname{Re}\langle e^{t|D|}( u\cdot\nabla u) \mid e^{t|D|} u \rangle_{H^1}| &\leq 2 \|e^{t|D|}u\|^{3/2}_{H^1} \|e^{t|D|}u\|^{3/2}_{H^2}\\ &\leq \frac{3}{4}\|e^{t|D|}u\|^2_{H^2} + \frac{c_1}{2} \|e^{t|D|}u\|^6_{H^1}, \end{align*} where $c_1$ is a positive constant. Then, \eqref{enq2} yields \begin{equation}\label{enq4} \langle e^{t|D|}u'(t) \mid e^{t|D|} u(t) \rangle_{H^1}+2 \|e^{t |D|} \nabla u\|^2_{H^1} \leq \frac{3}{4}\|e^{t|D|}u\|^2_{H^2}+\frac{c_1}{2}\|e^{t|D|}u\|^6_{H^1}. \end{equation} Hence, using \eqref{enq3}--\eqref{enq4}, we obtain \[ \frac{d}{dt} \|e^{t|D|}u\|^2_{H^1} -2\|e^{t |D|} u\|^2_{H^1} -2\|e^{t |D|} u\|^2_{H^2}+ 4 \|e^{t |D|} \nabla u\|^2_{H^1} \leq c_1\|e^{t|D|}u\|^6_{H^1}. \] The equality $\|e^{t |D|} u\|^2_{H^2} =\|e^{t |D|} u\|^2_{H^1}+\|e^{t |D|} \nabla u\|^2_{H^1}$ yields \begin{align*} \frac{d}{dt} \|e^{t|D|}u\|^2_{H^1} + 2 \|e^{t |D|} \nabla u\|^2_{H^1} &\leq 4 \|e^{t|D|}u\|^2_{H^1} +c_1\|e^{t|D|}u\|^6_{H^1}\\ &\leq c_2 + 2 c_1\|e^{t|D|}u\|^6_{H^1}. \end{align*} where $ c_2$ is a positive constant. Finally, we obtain \[ y(t)\leq y(0)+K_1 \int^t_0y^3(s)ds. \] where \begin{equation*} y(t)=1 + \|e^{t|D|} u(t) \|^2_{H^1} \quad\mbox{and}\quad K_1 = 2 c_1+c_2. \end{equation*} Let \begin{equation*} T_1=\frac{2}{K_1 y^2(0)} \end{equation*} and $0< T \leq T^*$ be such that $T =\sup \{t\in[0,T^*)\,|\,\sup_{0\leq s\leq t}y(s)\leq 2y(0)\}$. Hence for $0 \leq t \leq\min(T_1,T)$, we have \begin{align*} y(t) &\leq y(0)+K_1 \int^t_0 y^3(s)ds\\ &\leq y(0)+K_1 \int^t_0 8 y^3(0)ds\\ &\leq \left(1+K_1 8 T_1 y^2(0)\right)y(0). \end{align*} Taking $1+K_1 8 T_1 y^2(0)<2$, we obtain $ T>T_1$. Then $y(t)\leq2y(0)$ for all $t \in [0,T_1]$. This shows that $ t\mapsto e^{t|D|}u(t)\in H^1{(\mathbb{R}^3)}$ for all $t \in [0,T_1]$. In particular $$ \| e^{T_1|D|}u(T_1)\|^2_{H^1} \leq 2+2\|u_0\|^2_{H^1}. $$ Now, from the hypothesis, we assume that there exists $M_1>0$ such that \[ \|u(t)\|_{H^1}\leq M_1 \quad \text{for all } t \geq 0. \] Define the system \begin{gather*} \partial_t w -\Delta w+ w.\nabla w = -\nabla p \quad \text{in } \mathbb{R}^+\times \mathbb{R}^3\\ \operatorname{div} w = 0 \quad \text{in } \mathbb{R}^+\times \mathbb{R}^3\\ w(0) =u(T) \quad \text{in }\mathbb{R}^3, \end{gather*} where $w(t)=u(T+t)$. Using a similar technique, we can prove that there exists $T_2 =\frac{2}{K_1}(1+M^{2}_1)^{-2}$ such that $$ y(t)=1+\|e^{t|D|}w(t)\|^2_{H^1} \leq 2(1+M^{2}_1), \quad \forall t \in [0,T_2]. $$ This implies $1+\|e^{t|D|}u(T+t)\|^2_{H^1} \leq 2(1+M^{2}_1)$. Hence, for $t=T_2$ we have $$ \|e^{T_2|D|}u(T+T_2)\|^2_{H^1} \leq 2(1+M^{2}_1). $$ Since $t=T+T_2\geq T_2$ for all $T\geq 0$, we obtain $$ \|e^{T_2|D|}u(t)\|^2_{H^1} \leq 2(1+M^{2}_1),\quad \forall t\geq T_2. $$ Then $$ \|e^{T_2|D|}u(t)\|^2_{H^1} \leq 2(1+M^{2}_1),\quad \forall t\geq T_2, $$ where \begin{equation*} T_2 = T_2(M_1) =\frac{2}{K_1}(1+M^{2}_1)^{-2}. \end{equation*} \end{proof} \section{Proof of the main result} In this section, we prove Theorem \ref{thm1}. This proof uses the results of sections $3$ and $4$. Let $u\in{\mathcal C}(\mathbb{R}^+, H^1_{a,\sigma}(\mathbb{R}^3) )$. As $ H^1_{a,\sigma}(\mathbb{R}^3)\hookrightarrow H^1(\mathbb{R}^3)$, then $u\in{\mathcal C}(\mathbb{R}^+,H^1(\mathbb{R}^3))$. Applying Theorem \ref{thm2}, there exist $t_0>$ such that \begin{equation}\label{enq5} \|e^{t_0|D|}u(t)\|_{H^1}\leq c_0=2+M_1^2,\quad \forall t\geq t_0, \end{equation} where $t_0=\frac{2}{K_1}(1+M_1^2)^{-2}$. Let $a>0$, $\beta>0$. Then there exists $c_3\geq0$ such that \begin{align*} ax^{1/\sigma}\leq c_3+\beta x,\quad \forall x\geq0. \end{align*} Indeed, $\frac{1}{\sigma}+\frac{\sigma-1}{\sigma}=\frac{1}{p}+\frac{1}{q}=1$. Using the Young inequality, we obtain \begin{align*} ax^{1/\sigma}&= a \beta^{\frac{-1}{\sigma}}(\beta^{1/\sigma}x^{1/\sigma})\\ &\leq \frac{(a \beta^{\frac{-1}{\sigma}})^q}{q} +\frac{( \beta^{1/\sigma}x^{1/\sigma})^p}{p}\\ &\leq c_3+\frac{\beta x}{\sigma} \leq c_3+\beta x, \end{align*} where $c_3=\frac{\sigma-1}{\sigma}a^{\frac{\sigma}{\sigma-1}} \beta^{\frac{1}{1-\sigma}}$. Take $\beta=\frac{t_0}{2}$, using \eqref{enq5} and the Cauchy Schwarz inequality, we have \begin{align*} \|u(t)\|_{ H^1_{a,\sigma}}^2 &= \|e^{a|D|^{1/\sigma}}u(t)\|_{H^1}^2\\ &= \int(1+|\xi|^2) e^{2a|\xi|^{1/\sigma}}|\widehat{u}(t,\xi)|^2d\xi\\ &\leq \int(1+|\xi|^2) e^{2(c_3+\beta|\xi|})|\widehat{u}(t,\xi)|^2d\xi\\ &\leq \int(1+|\xi|^2) e^{2c_3}e^{t_0 |\xi|}|\widehat{u}(t,\xi)|^2d\xi\\ &\leq e^{2c_3}\Big(\int(1+|\xi|^2)|\widehat{u}(t,\xi)|^2d\xi\Big)^{1/2} \Big(\int(1+|\xi|^2)e^{2t_0|\xi|}|\widehat{u}(t,\xi)|^2d\xi\Big)^{1/2}\\ &\leq e^{2c_3}\|u\|_{ H^1}^{1/2}\|e^{t_0|D|}u(t)\|_{H^1}^{1/2}\\ &\leq c\|u\|_{ H^1}^{1/2}, \end{align*} where $c=e^{2c_3}c_0^{1/2}$. Using the inequality \eqref{eq3}, we obtain $$ \limsup_{t\to\infty}\|e^{a|D|^{1/\sigma}}u(t)\|_{H^1}=0. $$ \begin{thebibliography}{00} \bibitem{HB} J. Y. Chemin; \emph{About Navier-Stokes Equations}, Publication du Laboratoire Jaques-Louis Lions, Universit\'e de Paris VI, 1996, R96023. \bibitem{BB1} J. Benameur, M. Blel; \emph{Long-Time Decay to the Global Solution of the 2D Dissipative Quasigeostrophic Equation}, Abstract and Applied Analysis. Volume 2012, Article ID 627813, 12 pages, doi:10.1155/2012/627813, 2012. \bibitem{BL1} J. Benameur, L. Jlali; \emph{On the blow up criterion of 3D-NSE in Sobolev-Gevrey spaces}, To appear in Journal of Mathematical Fluid Mechanics. \bibitem{BS1} J. Benameur, R. Selmi; \emph{Long time decay to the Leray solution of the two-dimensional Navier-Stokes equations}, Bull. Lond. Math. Soc. \textbf{44} (5), (2012), 1001-1019. \bibitem{FT} C. Foias, R. Temam; \emph{Gevrey class regularity for the solutions of the Navier-Stokes equations}, J. Funct. Anal. \textbf{87} (2), (189) 359-369. \bibitem{GIP} I. Gallagher, D. Iftimie, F. Planchon; \emph{Non-blowup at large times and stability for global solutions to the Navier-Stokes equations}, C. R. Acad. Sc. Paris, Ser. \textbf{I334} (2002), 289-292. \bibitem{MS2} M. E. Schonbek; \emph{Large time behaviour of solutions to the Navier-Stokes equations in $H^m$ spaces}, Comm. Partial Differential Equations \textbf{20} (1995), 103-117. \bibitem{MW1} M. Wiegner; \emph{Decay results for weak solutions of the Navier-Stokes equations on $R^n$}, J. London Math. Soc. (2) \textbf{35} (1987), 303-313. \bibitem{MWS} M. E. Schonbek, M. Wiegner; \emph{On the decay of higher order of norms of the solutions of the Navier-Stokes equations}, Proc. Roy. Soc. Edinburgh Sect. A \textbf126 (1996), 677-685. \end{thebibliography} \end{document}