\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 107, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/107\hfil Infinitely many solutions] {Infinitely many solutions via variational-hemivariational inequalities under Neumann boundary conditions} \author[F. Fattahi, M. Alimohammady \hfil EJDE-2016/107\hfilneg] {Fariba Fattahi, Mohsen Alimohammady } \address{Fariba Fattahi \newline Department of Mathematics, University of Mazandaran, Babolsar, Iran} \email{F.Fattahi@stu.umz.ac.ir} \address{Mohsen Alimohammady \newline Department of Mathematics, University of Mazandaran, Babolsar, Iran} \email{Amohsen@umz.ac.ir} \thanks{Submitted November 21, 2015. Published April 26, 2016.} \subjclass[2010]{35J87, 49J40, 49J52, 49J53} \keywords{Nonsmooth critical point theory; infinitely many solutions; \hfill\break\indent variational-hemivariational inequality} \begin{abstract} In this article, we study the variational-hemivariational inequalities with Neumann boundary condition. Using a nonsmooth critical point theorem, we prove the existence of infinitely many solutions for boundary-value problems. Our technical approach is based on variational methods. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section {Introduction} In this article, we study following boundary-value problem, depending on the parameters $\lambda,\mu $ with nonsmooth Neumann boundary condition: \begin{equation}\label{e1} \begin{gathered} -\Delta_{p(x)}u +a(x)|u|^{p(x)-2}u=0 \quad\text{in }\Omega\\ -|\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu} \in -\lambda \theta(x)\partial F(u)-\mu \partial \vartheta(x)G(u) \quad\text{on } \partial \Omega, \end{gathered} \end{equation} where $\Omega\subset \mathbb{R}^{N} (N \geq 2)$ is a bounded smooth domain, $\frac{\partial u}{\partial \nu}$ is the outer unit normal derivative on $\partial\Omega$, $p :\bar{\Omega} \to \mathbb{R}$ is a continuous function satisfying $$ 1 < p^{-} = \min_{x\in \bar{\Omega}} p(x)\leq p(x) \leq p^{+} =\max _{x\in \bar{\Omega}} p(x) < +\infty. $$ Here $\lambda,\mu $ are real parameters, $\lambda\in ]0,\infty[,\mu\in [0,\infty[ $ and $\theta,\vartheta\in L^{1}(\partial\Omega)$, where $\theta(x),\vartheta(x)\geq0$ for \textrm{a.e.} $x\in\partial\Omega$. $F,G : \mathbb{R} \to \mathbb{R}$ are locally Lipschitz functions given by $F(\omega)=\int_0^{\omega}f(t)dt$, $G(\omega)=\int_0^{\omega}g(t)dt$, $\omega\in\mathbb{R}$ such that $f,g:\mathbb{R}\to\mathbb{R}$ are locally essentially bounded functions. $\partial F (u),\partial G (u)$ denote the generalized Clarke gradient of $F (u),G (u)$. Let $X$ be real Banach space. We assume that it is also given a functional $\chi : X \to \mathbb{R}\cup \{+\infty\}$ which is convex, lower semicontinuous, proper whose effective domain $dom(\chi) = \{x \in X : \chi(x) < +\infty\}$ is a (nonempty, closed, convex) cone in $X$. Our aim is to study the following variational-hemivariational inequalities problem: Find $u\in \mathcal{B}$ which is called a \emph{weak solution} of problem \eqref{e1}, i.e; if for all $v\in \mathcal{B}$, \begin{equation}\label{t2} \begin{aligned} &\int_{\Omega} |\nabla u|^{p(x)-2}\nabla u \nabla (v-u) dx +\int_{\Omega}a(x)|u|^{p(x)-2} u(v-u) dx\\ &-\lambda\int_{\partial\Omega}\theta(x)F^{0}(u;u-v)d\sigma -\mu\int_{\partial\Omega}\vartheta(x)G^{0}(u;u-v)d\sigma\geq 0, \end{aligned} \end{equation} where $\mathcal{B}$ is a closed convex subset of $W^{1,p(\cdot)}_0(\Omega)$. For simplicity $\mathcal{B}=W^{1,p(\cdot)}_0(\Omega)$. Recently, many researchers have paid attention to impulsive differential equations by variational method. We refer the reader to \cite{Afrou,Chabrowski,Molica,Radu1,Rad2,Radu3,Rosiu} and references cited therein. The operator $\Delta_{p(x)}u=\operatorname{div} (|\nabla u|^{p(x)-2}\nabla u)$ is the so-called $p(x)$-Laplacian, which becomes $p$-Laplacian when $p(x)\equiv p$ is a constant. More recently, the study of $p(x)$-Laplacian problems has attracted more and more attention \cite{Allaoui,Zhou}. Variational-hemivariational inequalities have been extensively studied in recent years via variational methods: in \cite{Kri}, the author studied hemivariational inequalities on an unbounded strip-like domain; in \cite{mot5}, the authors studied variational-hemivariational inequalities for the existence of a whole sequence of solutions with non-smooth potential and non-zero Neumann boundary condition; in \cite{Bona2}, the authors studied variational-hemivariational inequalities involving the $p-$Laplace operator and a nonlinear Neumann boundary condition via abstract critical point result; in \cite{Ali}, the authors studied variational-hemivariational inequality on bounded domains by using the mountain pass theorem and the critical point theory for Motreanu-Panagiotopoulos type functionals. The aim of the present paper is find sufficient conditions to guarantee the existence of infinitely many weak solutions for a variational-hemivariational inequality depending on two parameters. Our approach is a variational method and the main tool is a general nonsmooth critical point theorem. \section{Preliminaries} In this section, we recall some definitions and results which are used further in this paper. The variable exponent Lebesgue space is defined by $$ L^{p(\cdot)}(\Omega)=\{u:\Omega \to \mathbb{R}: \int_{\Omega}|u(x)|^{p(x)}dx<\infty \} $$ and is endowed with the Luxemburg norm $$ \|u\|_{p(\cdot)}=\inf\:\{\:\lambda > 0 : \int_{\Omega}|\frac{u(x)}{\lambda}|^{p(x)}dx \leq 1 \}. $$ Note that, when $p$ is constant, the Luxemburg norm $\|\cdot\|_{p(\cdot)}$ coincides with the standard norm $\|\cdot\|_p$ of the Lebesgue space $L^{p}(\Omega)$. $(L^{p(\cdot)}(\Omega),\|\cdot\|_{p(\cdot)})$ is a Banach space. The generalized Lebesgue-Sobolev space $W^{L,p(\cdot)}(\Omega)$ for $L=1,2,\dots$ is defined by $$ W^{L,p(\cdot)}(\Omega)=\{u\in L^{p(\cdot)}(\Omega): D^{\alpha}u\in L^{p(\cdot)}(\Omega),|\alpha| \leq L\}, $$ where $D^{\alpha}u=\frac{\partial^{|\alpha|}}{\partial^{\alpha_1}x_1\dots \partial^{\alpha_n}x_n}$ with $\alpha=(\alpha_1,\alpha_2,\dots ,\alpha_{N})$ is a multi-index and $|\alpha|=\Sigma_{i=1}^{N}\alpha_{i}$. The space $W^{L,p(\cdot)}(\Omega)$ with the norm $$ \|u\|_{W^{L,p(\cdot)}}(\Omega)=\sum_{|\alpha|\leq L}\|D^{\alpha}u\|_{p(\cdot)}, $$ is a separable reflexive Banach space \cite{Die1}. $W^{L,p(\cdot)}_0(\Omega)$ denotes the closure in $W^{L,p(\cdot)}(\Omega)$ of the set of functions in $W^{L,p(\cdot)}(\Omega)$ with compact support. For every $u\in W^{L,p(\cdot)}_0(\Omega)$ the Poincar\'{e} inequality holds, where $C_p>0$ is a constant $$ \|u\|_{L^{p(\cdot)}(\Omega)} \leq C_p\|\nabla u\|_{L^{p(\cdot)}(\Omega)}. $$ (see \cite{Fan2}). Hence, an equivalent norm for the space $W^{L,p(\cdot)}_0(\Omega)$ is given by $$ \|u\|_{W^{L,p(\cdot)}_0(\Omega)}=\sum_{|\alpha|= L}\|D^{\alpha}u\|_{p(\cdot)}. $$ Given $p(x)$, let $p^{\ast}_{L}$ denote the critical variable exponent related to $p$, defined for all $x \in\bar{\Omega}$ by the pointwise relation \begin{equation}\label{a3} p^{\ast}_{L}(x)=\begin{cases} \frac{Np(x)}{N-L p(x)} & L p(x)< N, \\ +\infty & L p(x)\geq N, \end{cases} \end{equation} is the critical exponent related to $p$. Let \begin{equation} \label{z5} \mathcal{K}=\sup_{u\in X \backslash \{0\}} \frac{\max_{x\in\bar{\Omega}}|u(x)|^{p}}{\|u\|^{p}},\quad \mathcal{M}=\inf_{u\in X \backslash \{0\}} \frac{\min_{x\in\bar{\Omega}}|u(x)|^{p}}{\|u\|^{p}}\,. \end{equation} Since $p>N$, $X$ are compactly embedded in $C^{0}(\bar{\Omega})$, it follows that $\mathcal{K},\mathcal{M}<\infty$. \begin{proposition} \label{prop1} For $\Phi(u)=\int_{\Omega}[|\nabla u|^{p(x)}+a(x)| u(x)|^{p(x)}]dx$, and $u,u_n\in X$, we have \begin{itemize} \item[(i)] $\|u\|<(=,>)1 \Leftrightarrow \Phi(u)<(=,>)1$, \item[(ii)] $\|u\|\leq 1 \Rightarrow \|u\|^{p^{+}}\leq\Phi(u)\leq \|u\|^{p^{-}}$, \item[(iii)] $\|u\|\geq 1 \Rightarrow \|u\|^{p^{-}}\leq\Phi(u)\leq \|u\|^{p^{+}}$, \item[(iv)] $\|u_n\|\to 0 \Leftrightarrow \Phi(u_n) \to 0$, \item[(v)] $\|u_n\|\to \infty \Leftrightarrow \Phi(u_n)\to \infty$. \end{itemize} \end{proposition} The proof of the above proposition is similar to that in \cite{Fan}. \begin{proposition}[\cite{Fan,Kov}] \label{prop2} For $p,q \in C_{+}(\overline{\Omega})$ in which $q(x) \leq p^{\ast}_{L}(x)$ for all $x \in \overline{\Omega}$, there is a continuous embedding $$ W^{L,p(\cdot)}(\Omega)\hookrightarrow L^{q(\cdot)}(\Omega). $$ If we replace $\leq$ with $<$, the embedding is compact. \end{proposition} \begin{remark}\label{rmk1} \rm % s1 (i) By the proposition \ref{prop2} there is a continuous and compact embedding of $ W^{1,p(\cdot)}_0(\Omega)$ into $L^{q(\cdot)}$ where $q(x)
N$, we deduce that $W^{1,p^{-}}_0(\Omega)$ is compactly embedded in $C^{0}(\bar{\Omega})$, So, there exists a constant $c > 0$ such that \begin{equation} \label{s1} \|u\|_{\infty}\leq c \|u\|,\quad \forall u\in X, \end{equation} where $\|u\|_{\infty}:=\sup_{x\in\bar{\Omega}}|u(x)|$. (ii) Denote $$ \|u\|=\inf\{\lambda>0:\int_{\Omega}[|\frac{\nabla u}{\lambda}|^{p(x)} +a(x) |\frac{ u}{\lambda}|^{p(x)} ]dx\leq 1 \}, $$ which is a norm on $ W^{1,p(\cdot)}_0(\Omega)$. \end{remark} Let $\eta : \partial \Omega \to \mathbb{R}$ be a measurable. Define the weighted variable exponent Lebesgue space by $$ L^{p(x)}_{\eta(x)}(\partial\Omega) =\{u:\partial\Omega \to \mathbb{R}\textrm{ is measurable and } \int_{\partial\Omega} |\eta(x)||u|^{p(x)}d\sigma<\infty\}, $$ with the norm $$ |u|_{(p(x),\eta(x))}=\inf\{ \tau>0;\int_{\partial\Omega}|\eta(x)|\, |\frac{u}{\tau}|^{p(x)}d\sigma\leq1\}, $$ where $d\sigma$ is the measure on the boundary. \begin{lemma}[\cite{Den}] \label{lem1} Let $\rho(x)=\int_{\partial\Omega} |\eta(x)||u|^{p(x)}d\sigma$ for $u\in L^{p(x)}_{\eta(x)}(\partial\Omega)$ we have \begin{gather*} |u|_{(p(x),\eta(x))}\geq 1\Rightarrow |u|_{(p(x),\eta(x))}^{p^{-}}\leq\rho(u)\leq |u|_{(p(x),\eta(x))}^{p^{+}},\\ |u|_{(p(x),\eta(x))}\leq 1\Rightarrow |u|_{(p(x),\eta(x))}^{p^{+}} \leq\rho(u)\leq |u|_{(p(x),\eta(x))}^{p^{-}}. \end{gather*} \end{lemma} For $A \subseteq \bar{\Omega}$ denote by $\inf_{x \in A} p(x)=p^{-},\:\sup_{x \in A} p(x)=p^{+}$. Define \begin{gather}\label{a3b} p^{\partial}(x)=(p(x))^{\partial} :=\begin{cases} \frac{(N-1)p(x)}{N- p(x)} \quad p(x)< N, \\ +\infty \quad p(x)\geq N, \end{cases} \\ p^{\partial}(x)_{r(x)}:=\frac{r(x)-1}{r(x)} p^{\partial}(x), \nonumber \end{gather} where $x\in\partial\Omega,r\in C(\partial\Omega,\mathbb{R})$ and $r(x)>1$. \begin{proposition}[\cite{Fan5,Kov}] \label{prop3} If $q \in C_{+}(\overline{\Omega})$ and $q(x)
0$ depending on $U$ such that $|h(y)-h(z)|\leq K \|y-z\|$ for all
$y, z \in U$.
For a locally Lipschitz function $h : X \to \mathbb{R}$ is
defined by the generalized directional derivative of $h$ at $u \in X$ in
the direction $\gamma \in X$ by
$$
h^{0}(u;\gamma)=\limsup_{w\to u,t\to 0^{+}}\frac{h(w+t\gamma)-h(w)}{t}.
$$
The generalized gradient of $h$ at $u \in X$ is defined by
$$
\partial h(u)=\{x^{\star}\in X^{\star}:
\langle x^{\star},\gamma\rangle _{X}\leq h^{0}(u;\gamma),\;\forall \gamma\in X\},
$$
which is non-empty, convex and $w^{\star}-$compact subset of
$X^{\star}$, where $<\cdot,\cdot>_{X}$ is the duality pairing
between $X^{\star}$ and $X$.
\begin{proposition}[\cite{Clar}] \label{prop4}
Let $h,g:X\to\mathbb{R} $ be locally Lipschitz functions. Then:
\begin{itemize}
\item[(i)] $h^{0}(u;\cdot)$ is subadditive, positively homogeneous.
\item[(ii)] $(-h)^{0}(u;v)=h^{0}(u;-v)$ for all $u,v\in X$.
\item[(iii)] $h^{0}(u;v)=\max\{<\xi,v>:\xi\in\partial h(u)\}$ for all
$u,v\in X$.
\item[(iv)] $(h+g)^{0}(u;v)\leq h^{0}(u;v)+g^{0}(u;v)$ for all $u,v\in X$.
\end{itemize}
\end{proposition}
\begin{definition}[\cite{pan2}] \label{def1} \rm
Let $X$ be a Banach space,
$\mathcal{I}:X\to (-\infty,+\infty]$ is called a
Motreanu-Panagiotopoulos-type functional, if $\mathcal{I}=h+\chi$, where
$h:X\to \mathbb{R}$ is locally Lipschitz and
$\chi:X\to (-\infty,+\infty]$ is convex, proper and lower
semicontinuous.
\end{definition}
\noindent \begin{definition}[\cite{Ian}] \label{x1} \rm
An element $u\in X$ is said to be a critical point of $\mathcal{I}=h+\chi$ if
$$
h^{0}(u;v-u)+\chi(v)-\chi(u)\geq 0,\quad \forall v\in X.
$$
\end{definition}
Let $X$ is a reflexive real Banach space, $\phi: X \to \mathbb{R}$
is a sequentially weakly lower semicontinuous and coercive,
$\Upsilon: X \to \mathbb{R}$ is a sequentially weakly upper semicontinuous,
$\lambda$ is a positive real parameter, $\chi:X\to (-\infty,+\infty]$
is a convex, proper, lower semicontinuous functional and $D(\chi)$
is the effective domain of $\chi$. Assuming also that $\phi$ and $\Upsilon$
are locally Lipschitz continuous functionals. Set
\[
\mathcal{E}:=\Upsilon -\chi, \quad
\mathcal{L}_{\lambda}:=\phi-\lambda\mathcal{E}
=(\phi-\lambda\Upsilon)+\lambda\chi.
\]
We assume that
$$
\phi^{-1}(]-\infty,r[) \cap D(\chi)\neq \emptyset,\quad \forall r>\inf_{X}\phi,
$$
and define for every $r>\inf_{X}\phi$,
$$
\varphi(r)=\inf_{u\in \phi^{-1}(]-\infty,r[)}
\frac{\Big(\sup_{v\in \phi^{-1}(]-\infty,r[)}
\mathcal{E}(v)\Big)-\mathcal{E}(u)}{r-\phi(u)}
$$
and
$$
\gamma:=\liminf_{r\to+\infty}\varphi(r),\quad
\delta:=\liminf_{r\to (\inf_{X} \phi)^{+}}\varphi(r).
$$
We recall the following nonsmooth version of a critical
point result.
\begin{theorem}[\cite{Mara}]\label{thm1}
Under the above assumptions on $X$, $\phi$ and $\mathcal{E}$, we have
\begin{itemize}
\item[(a)] For every $r > \inf_{X} \phi$, and every
$\lambda\in (0,\frac{1}{\varphi(r)})$, the restriction of the
functional
$$
\mathcal{L}_{\lambda}=\phi-\lambda\mathcal{E}
$$
to $\phi^{-1}(-\infty,r)$ admits a global minimum, which is a critical
point (local minimum) of $\mathcal{L}_{\lambda}$ in $X$.
\item[(b)]
If $\gamma < +\infty$, then for each $\lambda\in (0,1/\gamma)$,
the following alternative holds: either
(b1) $\mathcal{L}_{\lambda}$ possesses a global minimum, or
(b2) there is a sequence $\{u_n\}$ of critical points (local minima)
of $\mathcal{L}_{\lambda}$ such that
$$
\lim_{n\to+\infty} \phi(u_n)=+\infty.
$$
\item[(c)] If $\delta < +\infty$, then for each
$\lambda\in (0,\frac{1}{\delta})$, the following alternative holds: either
(c1) there is a global minimum of $\phi$ which is a local minimum of
$\mathcal{L}_{\lambda}$, or
(c2) there is a sequence $\{u_n\}$ of pairwise distinct critical points
(local minima) of $\mathcal{L}_{\lambda}$
that converges weakly to a global minimum of $\phi$.
\end{itemize}
\end{theorem}
Consider $\phi,\mathcal{F},\mathcal{G}:X\to \mathbb{R}$, as follows
\begin{gather*}
\phi(u)=\int_{\Omega}\frac{1}{p(x)}[|\nabla u|^{p(x)}+a(x)|u|^{p(x)}]dx,
\quad u\in W^{1,p(\cdot)}_0(\Omega),\\
\mathcal{F}(u)=\int_{\partial\Omega}F(u(x))d\sigma,\quad
u\in W^{1,p(\cdot)}_0(\Omega),\\
\mathcal{G}(u)=\int_{\partial\Omega}G(u(x))d\sigma,\quad
u\in W^{1,p(\cdot)}_0(\Omega).
\end{gather*}
The next lemma characterizes some properties of $\phi$ \cite{Abd}.
\begin{lemma}\label{lem2}
Let
\[
\phi(u)=\int_{\Omega}\frac{1}{p(x)}[|\nabla u|^{p(x)}+a(x)|u|^{p(x)}]dx.
\]
Then
\begin{itemize}
\item[(i)] $\phi : X \to \mathbb{R}$ is sequentially weakly lower semicontinuous;
\item[(ii)] $\phi'$ is of $(S_{+})$ type;
\item[(iii)] $\phi'$ is a homeomorphism.
\end{itemize}
\end{lemma}
\begin{proposition}[\cite{Kri}] \label{prop5}
Let $F,G:\mathbb{R}\to\mathbb{R}$ be locally Lipschitz functions. Then
$\mathcal{F}$ and $\mathcal{G}$ are well-defined and
\begin{gather*}
\mathcal{F}^{0}(u;v)\leq\int _{\partial\Omega}F^{0}(u(x);v(x))d\sigma,
\quad \forall u,v\in W^{1,p(\cdot)}_0(\Omega),\\
\mathcal{G}^{0}(u;v)\leq\int _{\partial\Omega}G^{0}(u(x);v(x))d\sigma,\quad
\forall u,v\in W^{1,p(\cdot)}_0(\Omega).
\end{gather*}
\end{proposition}
\section{Main results}
Let $f:\mathbb{R}\to\mathbb{R}$ be a locally essentially bounded
function whose potential $F(t)=\int_0^{t}f(\omega)d\omega$ for all $t\in\mathbb{R}$.
Set
\[
\alpha:=\liminf_{\omega\to+\infty}
\frac{\max_{|t|\leq \omega}F(t)}{|\omega|^{p^{-}}},\quad
\beta:=\limsup_{\omega\to+\infty}\frac{F(\omega)}{|\omega|^{p^{+}}}.
\]
\begin{theorem}\label{thm2}
Let $\theta,\vartheta \in L^{1}(\partial \Omega)$ be non-negative and non-zero
identically zero functions.
Assume that
\begin{equation} \label{ei}
\alpha<\frac{p^{-}\mathcal{M}\theta^{\ast}\beta}{p^{+}\mathcal{K}}
\end{equation}
for each ${\lambda}\in (\lambda_1,\lambda_2)$, where
$$
\lambda_1=\frac{1}{p^{-} \mathcal{M}\theta^{\ast}\beta},\quad
\lambda_2=\frac{1}{p^{+}\mathcal{K}\alpha},
$$
and $\theta^{\ast}=\int_{\partial\Omega}\theta(x)d\sigma$.
Also assume that for each locally essentially bounded function
$g:\mathbb{R}\to\mathbb{R}$ with potential
$G(t)=\int_0^{t}g(\omega)d\omega$, for all $t\in\mathbb{R}$, satisfies
\begin{equation}\label{h1}
G_{\infty}=\limsup_{\omega\to+\infty}
\frac{\max_{|t|\leq\omega}G(t)}{|\omega|^{p^{-}}}<+\infty,
\end{equation}
for every $\mu \in [0, \mu_{G,\lambda})$, where
$$
\mu_{G,\lambda}=\frac{1}{p^{+}\mathcal{K}G_{\infty}}(1-p^{+}
\mathcal{K}\lambda \alpha).
$$
Then \eqref{e1} has a sequence of weak solutions for every
$\mu \in [0, \mu_{G,\lambda})$ in $X$ such that
$$
\int_{\Omega}\frac{1}{p(x)}[|\nabla u_n|^{p(x)}+a(x)|u_n|^{p(x)}]dx\to+\infty.
$$
\end{theorem}
\begin{proof}
Our strategy is to apply Theorem \ref{thm1} (b).
\smallskip
\noindent\textbf{Case 1.} Assume that $\|u\|\geq 1$.
Let $\bar{\lambda}\in (\lambda_1,\lambda_2)$ and
$G$ satisfy our assumptions.
Since $\bar{\lambda}<\lambda_2$, it follows that
\[
\mu_{G,\bar{\lambda}} =\frac{1}{p^{+}\mathcal{K}G_{\infty}} (1-p^{+}
\mathcal{K}\bar{\lambda}\alpha).
\]
Fix $\bar{\mu}\in (0,\mu_{G,\bar{\lambda}})$
and define the functionals $\phi,\mathcal{E}:X\to\mathbb{R}$ for each
$u \in X$ as follows:
\begin{equation} \label{a3c}
\begin{gathered}
\phi(u)=\int_{\Omega}\frac{1}{p(x)}[|\nabla u|^{p(x)}+a(x)|u|^{p(x)}]dx, \\
\Upsilon(u)=\int_{\partial\Omega}\theta(x)[F(u(x))]d\sigma
+\frac{\bar{\mu}}{\bar{\lambda}}\int_{\partial\Omega}\vartheta(x)[G(u(x))]d\sigma,
\\
\chi (u)=\begin{cases} 0 & u\in\mathcal{B}, \\
+\infty & u \notin \mathcal{B},
\end{cases}\\
\mathcal{E}(u)=\Upsilon(u)-\chi(u)\,.
\end{gathered}
\end{equation}
Then define the functional
$$
\mathcal{L}_{\bar{\lambda}}(u):=\phi(u)-\bar{\lambda}\mathcal{E}(u)
$$
whose critical points are the weak solutions of \eqref{e1}.
To apply Lemma \ref{lem2}, we assume that $\phi$ satisfies the regularity
assumptions of Theorem \ref{thm1}.
By standard argument, $\Upsilon$ is sequentially weakly continuous.
First, we claim that $\bar{\lambda}<1/\gamma$.
Note that $\phi(0) = \mathcal{E}(0) = 0$, then for every $n$ large enough,
one has
\begin{align*}
\varphi(r)
&=\inf_{u\in \phi^{-1}(]-\infty,r[)}
\frac{\big(\sup_{v\in \phi^{-1}(]-\infty,r[)}\mathcal{E}(v)\big)
-\mathcal{E}(u)}{r-\phi(u)}\\
&\leq \frac{\sup_{ v\in \phi^{-1}(]-\infty,r[)}\mathcal{E}(v)}{r}.
\end{align*}
Coercivity of $\phi$ implies that $\inf_{X}\phi=\phi(0)=0$.
Since $\mathcal{B}$ contains constant functions, $0\in\mathcal{B}=D(\chi)$, thus
$$
0\in \phi^{-1}(]-\infty,r[) \cap D(\chi),\quad \forall r>\inf_{X}\phi.
$$
For $v \in X$ with $\phi(v) < r$ and in view of
$\eqref{z5}$,
\begin{equation}\label{h5}
\begin{aligned}
\phi^{-1}(]-\infty,r[):&=\{v\in X :\phi(v)< r\}
=\{v\in X :\frac{1}{p^{+}}\|v\|^{p^{-}}