\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 108, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/108\hfil Superlinear singular fractional problems] {Superlinear singular fractional boundary-value problems} \author[I. Bachar, H. M\^{a}agli \hfil EJDE-2016/108\hfilneg] {Imed Bachar, Habib M\^{a}agli} \address{Imed Bachar \newline King Saud University, College of Science, Mathematics Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia} \email{abachar@ksu.edu.sa} \address{Habib M\^{a}agli \newline King Abdulaziz University, Rabigh Campus, College of Sciences and Arts, Department of Mathematics, P.O. Box 344, Rabigh 21911, Saudi Arabia.\newline D\'{e}partement de Math\'{e}matiques, Facult\'{e} des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia} \email{abobaker@kau.edu.sa, habib.maagli@fst.rnu.tn} \thanks{Submitted February 8, 2016. Published April 26, 2016.} \subjclass[2010]{34A08, 34B15, 34B18, 34B27} \keywords{Fractional differential equation; positive solution; Green's function; \hfill\break\indent perturbation arguments} \begin{abstract} In this article, we study the superlinear fractional boundary-value problem \begin{gather*} D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 00$. The function $g(x,u)\in C((0,1)\times [ 0,\infty ),[0,\infty)) $ that may be singular at $x=0$ and $x=1$ is required to satisfy convenient hypotheses to be stated later. By means of a perturbation argument, we establish the existence, uniqueness and global asymptotic behavior of a positive continuous solution to the above problem.An example is given to illustrate our main results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} Fractional differential equations have been of great interest recently. Many phenomena in viscoelasticity, porous structures, fluid flows, electrical networks can be modeled by these fractional boundary-value problems (see, for instance, \cite{H,KST,MR,P,SKM} and references therein) for discussions of various applications. Fractional boundary-value problems of the form \begin{equation} D^{\alpha }u(x) +f(x,u(x))=0,\quad 00$, \begin{equation*} I^{\beta }u(x)=\frac{1}{\Gamma (\beta ) }\int_0^{x}( x-y) ^{\beta -1}u(y) \,dy. \end{equation*} Liang and Zhang \cite{LZ} established the existence of positive solutions to problem \eqref{e1.1} subject to \begin{equation} u(0)=u'(0)=u''(0)=u''(1)=0, \label{e1.2} \end{equation} where $f(x,u)\in C([0,1]\times [ 0,\infty ),[0,\infty)) $ is nondecreasing with respect to $u$, \[ f\Big(t,\frac{1}{\Gamma (\alpha )}\big(\frac{t^{\alpha -1}}{ \alpha -2}-\frac{t^{\alpha }}{\alpha }\big) \Big) \neq 0 \] for $t\in (0,1) $ and there exists a positive constant $\gamma <1$ such that $f$ is $ \gamma $-concave with respect to $u$, that is, for all $\lambda \in [0,1]$, \begin{equation*} \lambda ^{\gamma }f(x,u)\leq f(x,\lambda u). \end{equation*} Their approach is based on lower and upper solution method. Recently Zhai et al \cite{ZYY}, by means of fixed point theorem for a sum operator proved the existence and uniqueness of a positive solution to problem \eqref{e1.1}-\eqref{e1.2} with $f(x,u)=\varphi (x,u)+\psi (x,u)$, where $\varphi ,\psi \in C([0,1]\times [0,\infty ),[0,\infty )) $ increasing with respect to the second variable. The function $\varphi $ is $\gamma $-concave with respect to $u$ for some $\gamma \in (0,1)$, $\varphi \geq \delta _0\psi $ for some positive constant $\delta _0$, $\psi (x,0)\neq 0$ and $\psi (x,\lambda u)\geq \lambda \psi (x,u)$ for $\lambda \in (0,1)$. In this article, we consider the superlinear fractional problem \begin{equation} \begin{gathered} D^{\alpha }u(x) -u(x)g(x,u(x))=0,\quad 00 $. The function $g(x,u)\in C((0,1)\times [ 0,\infty ),[0,\infty )) $, which may be singular at $x=0$ and $x=1$ is required to satisfy some convenient hypotheses to be stated later. We emphasize that the condition $\xi +\zeta >0$ on the boundary data is essential to obtain positive solutions. To simplify our statements, we use the following notation: (i) $\mathcal{B}^{+}((0,1)) $ denotes the set of nonnegative measurable functions on $(0,1)$. (ii) $C(X)$ (resp. $C^{+}(X)$) denotes the set of continuous (resp. nonnegative continuous) functions on a metric space $X$. (iii) We denote by $G(x,y)$ the Green's function of the operator $u\to -D^{\alpha }u$, with boundary conditions \[ u(0)=\lim_{x\to0^{+}} D^{\alpha -3}u(x)=\lim_{x\to0^{+}} D^{\alpha -2}u(x)=u''(1)=0. \] (iv) For $\alpha \in (3,4]$, we let \begin{equation} \mathcal{J}_{\alpha }=\{p\in \mathcal{B}^{+}((0,1)) :\int_0^{1}t^{\alpha -1}(1-t)^{\alpha -3}p(t)dt<\infty \}. \label{e1.4} \end{equation} (v) For $p\in \mathcal{B}^{+}((0,1)) $, we denote \begin{equation} \tau _p:=\sup_{x,y\in (0,1)}\int_0^{1}\frac{G(x,t)G(t,y)}{G(x,y)}p(t)dt. \label{e1.5} \end{equation} and we will prove that if $p\in \mathcal{J}_{\alpha }$, then $\tau_p<\infty$. (vi) For $3<\alpha \leq 4$ and $\xi ,\zeta \geq 0$ with $\xi +\zeta >0$, we define the function $h$ on $[0,1]$ by \begin{equation} \begin{aligned} h(x) &= \frac{\xi }{\Gamma (\alpha )}x^{\alpha -2}(\alpha -1-(\alpha -3)x)+ \frac{\zeta }{(\alpha -1)(\alpha -2)}x^{\alpha -1} \\ &= h_1(x)+h_{2}(x). \end{aligned} \label{e1.6} \end{equation} It is easy to show that $h$ is the unique solution of the problem \begin{equation} \begin{gathered} D^{\alpha }u(x)=0,\quad 00$, such that \begin{equation} \frac{1}{M}\phi (x)\leq h(x)\leq M\phi (x),\text{ for all }x\in [ 0,1] \label{e1.8} \end{equation} where \begin{equation*} \phi (x)=\begin{cases} x^{\alpha -1}, & \text{if }\xi =0, \\ x^{\alpha -2}, & \text{if }\xi >0. \end{cases} \end{equation*} To state our main results, we require a combination of the following conditions. \begin{itemize} \item[(H1)] $g:(0,1)\times [ 0,\infty )\to [ 0,\infty )$, continuous, \item[(H2)] There exists a function $p\in C((0,1))\mathcal{\cap J}_{\alpha }$ with $\tau _p\leq \frac{1}{2}$ such that, for all $x\in (0,1)$, the map $y\to y(p(x) -g(x,yh(x) ) ) $ is nondecreasing on $[ 0,1]$. \item[(H3)] For all $x\in (0,1)$, the function $y\to yg(x,y) $ is nondecreasing on $[0,\infty )$. \end{itemize} Using a perturbation method, we establish the following result. \begin{theorem}\label{thm1.1} Under assumptions {\rm (H1)--(H2)}, problem \eqref{e1.3} admits a solution $u\in C([0,1])$ such that, for all $x\in [ 0,1] $, \begin{equation} c_0h(x)\leq u(x) \leq h(x), \label{e1.9} \end{equation} where $c_0\in [ 0,1]$. Furthermore, if assumption (H3) is also fulfilled, then this solution is unique. \end{theorem} \begin{corollary} \label{coro1.2} Let $\psi \in C^{1}([0,\infty ))$, $\psi \geq 0$ such that the map $y\to \varphi (y)=y\psi (y)$ is nondecreasing on $[0,\infty)$. Let $q\in C^{+}((0,1)) $ such that the function $x\to \widetilde{q}(x):=q(x)\max_{0\leq t\leq h(x) } \varphi '(t)\in \mathcal{J}_{\alpha }$. Then for $\lambda \in [ 0,\frac{1}{2\tau _{\widetilde{q}}})$, the problem \begin{gather*} D^{\alpha }u(x)=\lambda q(x)u(x)\psi (u(x)),\quad x\in (0,1),\\ u(0)=0,\quad \lim_{x\to0^{+}} D^{\alpha -3}u(x)=0,\quad \lim_{x\to0^{+}} D^{\alpha -2}u(x)=\xi ,\quad u''(1)=\zeta , \end{gather*} admits a unique positive solution $u\in C([0,1])$ such that \begin{equation*} (1-\lambda \tau _{\widetilde{q}})h(x)\leq u(x) \leq h(x),\quad \text{for all }x\in [ 0,1]. \end{equation*} \end{corollary} Our paper is organized as follows. In section 2, we give the explicit expression of the Green's function $G(x,y)$ and we establish some sharp estimates on it. In section 3, first for a convenient nonnegative given function $p$, we construct the Green's function $\mathcal{H}( x,y) $ of the operator $u\to -D^{\alpha }u+pu$, with boundary conditions $u(0)=\lim_{x\to0^{+}} D^{\alpha -3}u(x)= \lim_{x\to0^{+}} D^{\alpha -2}u(x)=u''(1)=0 $ and we derive some of its properties. In particular, we prove the following statements: (i) There exists a constant $c\in (0,1]$ such that for $(x,y) \in [ 0,1]\times [ 0,1]$, \begin{equation*} cG(x,y) \leq \mathcal{H}(x,y) \leq G(x,y) . \end{equation*} (ii) The equation holds \begin{equation*} U\psi =U_p\psi +U_p(pU\psi ) =U_p\psi +U(pU_p\psi) ,\quad \text{for all }\psi \in \mathcal{B}^{+}((0,1)) . \end{equation*} where the kernels $U$ and $U_p$ are defined on $\mathcal{B}^{+}((0,1)) $ by \begin{equation} U\psi (x) :=\int_0^{1}G(x,y) \psi (y)dy,\quad U_p\psi (x) :=\int_0^{1}\mathcal{H}(x,y) \psi (y)dy,\text{\ }x\in [ 0,1]. \label{e1.10} \end{equation} By exploiting these properties, we prove our main results. \section{On the Green function} We recall the following known properties. \begin{lemma}[\cite{KST,P,SKM}] \label{lem2.4} Let $\alpha \in (3,4)$ and $u\in C((0,1) ) \cap L^{1}((0,1) )$. Then we have \begin{itemize} \item[(i)] For $\ 0<\gamma <\alpha $, $\ D^{\gamma }I^{\alpha }u=I^{\alpha -\gamma }u$ and $\ D^{\alpha }I^{\alpha }u=u$. \item[(ii)] $D^{\alpha }u(x)=0$ if and only if $u(x)=c_1x^{\alpha -1}+c_{2}x^{\alpha -2}+c_{3}x^{\alpha -3}+c_{4}x^{\alpha -4}$, where $c_{i}\in \mathbb{R}$, for $i\in \{1,2,3,4\}$. \item[(iii)] Assume that $D^{\alpha }u\in C((0,1)) \cap L^{1}((0,1) ) $, then \begin{equation*} I^{\alpha }D^{\alpha }u(x) =u(x)+c_1x^{\alpha -1}+c_{2}x^{\alpha -2}+c_{3}x^{\alpha -3}+c_{4}x^{\alpha -4}, \end{equation*} where $c_{i}\in \mathbb{R}$, for $i\in \{1,2,3,4\}$. \end{itemize} \end{lemma} Next we give the explicit expression of the Green's function $G(x,y) $. \begin{lemma} \label{lem2.5} Let $\alpha \in (3,4]$ and $\psi \in C^{+}([0,1])$. Then the problem \begin{equation} \begin{gathered} -D^{\alpha }u(x) =\psi (x),\quad 03$, if follows that the function $x\to (\max (x-y,0)) ^{\alpha -1}$ belongs to $C^{2}([0,1])$. This implies the result. (ii) Observe that for $a,b>0$ and $c,y\in [ 0,1]$, we have \begin{equation} \min (1,\frac{b}{a})(1-cy^{a})\leq 1-cy^{b}\leq \max (1,\frac{b}{a} )(1-cy^{a}). \label{e2.3} \end{equation} Now, since for $x,y\in [ 0,1]$, we have \begin{equation*} G(x,y) =\frac{1}{\Gamma (\alpha ) }x^{\alpha -1}(1-y)^{\alpha -3}\Big[ 1-(1-y)^{2}(\frac{\max (x-y,0)}{x(1-y)} ) ^{\alpha -1}\Big] , \end{equation*} and $\frac{\max (x-y,0)}{x(1-y)}\in [ 0,1]$, for $x\in (0,1]$ and $y\in [ 0,1)$, then the required result follows from \eqref{e2.3} with $b=\alpha -1$, $a=1$ and $c=(1-y)^{2}$. (iii) The inequalities follows from (i) and the fact that \begin{equation*} xy\leq \min (x,y)\leq y,\text{ for }x,y\in [ 0,1]. \end{equation*} (iv) Since for $x,y\in [ 0,1]$, \begin{align*} \frac{\partial }{\partial x}G(x,y) &= \frac{\alpha -1}{\Gamma(\alpha ) } \begin{cases} x^{\alpha -2}(1-y)^{\alpha -3}-(x-y)^{\alpha -2}, & 0\leq y\leq x\leq 1; \\ x^{\alpha -2}(1-y)^{\alpha -3}, & 0\leq x\leq y\leq 1, \end{cases} \\ &= \frac{\alpha -1}{\Gamma (\alpha ) }x^{\alpha -2}(1-y)^{\alpha -3}\Big[ 1-(1-y)\Big(\frac{\max (x-y,0)}{x(1-y)}\Big) ^{\alpha -2} \Big] , \end{align*} the required result follows from \eqref{e2.3} with $b=\alpha -2$, $a=1$ and $c=(1-y)$. (v) Since for $x\in (0,1]$ and $y\in [ 0,1)$, \begin{align*} \frac{\partial ^{2}}{\partial x^{2}}G(x,y) &= \frac{(\alpha -1) (\alpha -2) }{\Gamma (\alpha ) } \begin{cases} x^{\alpha -3}(1-y)^{\alpha -3}-(x-y)^{\alpha -3}, & 0\leq y\leq x\leq 1; \\ x^{\alpha -3}(1-y)^{\alpha -3}, & 0\leq x\leq y\leq 1, \end{cases} \\ &= \frac{(\alpha -1) (\alpha -2) }{\Gamma ( \alpha ) }x^{\alpha -3}(1-y)^{\alpha -3}[ 1-(\frac{\max (x-y,0)}{x(1-y)}) ^{\alpha -3}] , \end{align*} the required result follows again from $\eqref{e2.3}$ with $b=\alpha -3$, $a=1$ and $c=1$. This completes the proof. \end{proof} From Proposition \ref{prop2.6} (iii), we deduce the following result. \begin{corollary} \label{coro2.7} Let $\psi \in \mathcal{B}^{+}((0,1)) $, then \begin{equation*} U\psi \in C([0,1])\Longleftrightarrow \int_0^{1}y(1-y) ^{\alpha -3}\psi (y) dy<\infty . \end{equation*} \end{corollary} \begin{proposition}\label{prop2.8} Let $3<\alpha <4$ and $\psi \in C((0,1))$. Assume that the function $y\to y(1-y) ^{\alpha -3}\psi (y)\in C((0,1))\cap L^{1}((0,1)$, then $U\psi $ is the unique solution in $C([0,1])$ of \begin{equation} \begin{gathered} -D^{\alpha }u(x)=\psi (x),\quad 00$. By Proposition \ref{prop2.6} (v), there exists a constant $c>0$, such that for $x\in (\eta ,1]$ and $y\in (0,1)$, we have \begin{equation*} \big| \frac{\partial ^{2}}{\partial x^{2}}G(x,y)\big| \leq c\eta ^{\alpha -4}y(1-y) ^{\alpha -4}(1-\max (x,y)) \leq c\eta ^{\alpha -4}y(1-y) ^{\alpha -3}. \end{equation*} So by the Lebesgue theorem, we deduce that $(U\psi )''(1)=0$. Finally, the uniqueness follows immediately from Lemma \ref{lem2.4}. The proof is complete. \end{proof} Same properties in Proposition \ref{prop2.8} remain true for $\alpha =4$. \begin{proposition}\label{prop2.9} For each $x,t,y\in (0,1)$, we have \begin{equation} \frac{G(x,t)G(t,y)}{G(x,y)}\leq \frac{4(\alpha -1)^{2}}{\Gamma (\alpha )} t^{\alpha -1}(1-t)^{\alpha -3}. \label{e2.8} \end{equation} \end{proposition} \begin{proof} Using Proposition \ref{prop2.6} (ii), for each $x,t,y\in (0,1)$, we have \begin{equation*} \frac{G(x,t)G(t,y)}{G(x,y)}\leq \frac{4(\alpha -1)^{2}}{\Gamma (\alpha )} t^{\alpha -2}(1-t)^{\alpha -3}\frac{\min (x,t)\min (t,y)}{\min (x,y)}. \end{equation*} So the result follows from the fact that \begin{equation*} \frac{\min (x,t)\min (t,y)}{\min (x,y)}\leq t. \end{equation*} This completes the proof. \end{proof} \begin{proposition} \label{prop2.10} Let $p\in \mathcal{J}_{\alpha }$. We have: (i) \begin{equation} \tau _p\leq \frac{4(\alpha -1)^{2}}{\Gamma (\alpha )}\int _0^{1}t^{\alpha -1}(1-t)^{\alpha -3}p(t)dt<\infty , \label{e2.9} \end{equation} where $\tau _p$ is given by \eqref{e1.5}. (ii) \begin{equation} U(ph)(x)\leq \tau _ph(x),\text{ for }x\in [ 0,1]. \label{e2.10} \end{equation} \end{proposition} \begin{proof} Let $p\in \mathcal{J}_{\alpha }$. (i) Using \eqref{e1.5} and \eqref{e2.8}, we obtain \eqref{e2.9}. (ii) Since $h=h_1+h_{2}$, we need to prove \eqref{e2.10} for $ h_1$ and $h_{2}$. To this end, observe that for each $x,y\in (0,1]$, we have $\lim_{z\to 1} \frac{G(y,z)}{G(x,z)}=\frac{h_{2}(y)}{h_{2}(x)}$. Therefore, by applying Fatou lemma and \eqref{e1.5}, we obtain \begin{align*} \frac{1}{h_{2}(x)}U(ph_{2})(x) &= \int_0^{1}G(x,y)\frac{h_{2}(y)}{h_{2}(x)} p(y)dy \\ &\leq \liminf_{z\to 1}\int_0^{1}G(x,y)\frac{G(y,z)}{ G(x,z)}p(y)dy\leq \tau _p. \end{align*} Similarly, we prove $U(ph_1)(x)\leq \tau _ph_1(x)$, by observing that $\lim_{z\to 0} \frac{G(y,z)}{G(x,z)}= \frac{h_1(y)}{h_1(x)}$. This completes the proof. \end{proof} \section{Proofs of main results} \subsection{On the Green's function of the perturbed operator.} In this subsection, our goal is to determine the positive solution to the linear fractional problem \begin{equation} \begin{gathered} -D^{\alpha }u(x)+p(x)u(x)=\psi (x),\quad 00$. We recall that \begin{equation*} h(x):=\frac{\xi }{\Gamma (\alpha )}x^{\alpha -2}(\alpha -1-(\alpha -3)x)+ \frac{\zeta }{(\alpha -1)(\alpha -2)}x^{\alpha -1},\quad \text{for }x\in [0,1]. \end{equation*} Let $p\in C((0,1))\mathcal{\cap J}_{\alpha }$ with $\tau _p\leq \frac{1}{2}$ such that assumption (H2) is satisfied. Let \begin{equation*} F:=\{ u\in \mathcal{B}^{+}((0,1)) :(1-\tau_p) h\leq u\leq h\} . \end{equation*} Consider the operator $A$ defined on $F$ by \begin{equation*} Au=h-U_p(ph) +U_p((p-g(.,u) ) u). \end{equation*} By \eqref{e3.9} and \eqref{e2.10} we have \begin{equation} U_p(ph)\leq U(ph) \leq \tau _ph\leq h, \label{e3.13} \end{equation} \noindent and by (H2), we obtain \begin{equation} 0\leq g(.,u)\leq p\quad \text{for all }u\in F. \label{e3.14} \end{equation} Next, we prove that $A(F)\subset F$. Form \eqref{e3.14} and \eqref{e3.13}, we obtain \begin{gather*} Au\leq h-U_p(ph) +U_p(pu)\leq h, \\ Au\geq h-U_p(ph) \geq (1-\tau _p) h. \end{gather*} Since the map $y\mapsto y(p(x) -g(x,yh(x) ) ) $ is nondecreasing on $[ 0,1]$, for $x\in (0,1)$, the operator $A$ becomes nondecreasing on $F$. Define the sequence $\{ u_{k}\} $ by $u_0=(1-\tau _p) h$ and $u_{k+1}=Au_{k}$ for $k\in \mathbb{N}$. Since $F$ is invariant under $A$, we have $u_1=Au_0\geq $ $u_0$ and by the monotonicity of $A$, we obtain \begin{equation*} (1-\tau _p) h=u_0\leq u_1\leq \dots \leq u_{k}\leq u_{k+1}\leq h. \end{equation*} Therefore, the sequence $\left\{ u_{k}\right\} $ converges to a function $u\in F$ satisfying \begin{equation*} u=(I-U_p(p.) ) h+U_p((p-g(.,u)) u). \end{equation*} Namely \begin{equation} (I-U_p(p.) ) u=(I-U_p(p.)) h-U_p(ug(.,u) ) . \label{e3.14a} \end{equation} Now, since $U(pu) \leq U(ph) \leq h<\infty$, by applying the operator $(I+U(p.) ) $ on \eqref{e3.14a} and using \eqref{e3.9} and \eqref{e3.10}, we conclude that $u$ satisfies \begin{equation} u=h-U(ug(.,u) ) . \label{e3.15} \end{equation} We claim that $u$ is a solution of $\eqref{e1.3}$. From \eqref{e3.14} and \eqref{e1.8}, we have \begin{equation} u(y)g(y,u(y)) \leq p(y)h(y)\leq Mp(y)\phi (y)\leq My^{\alpha -2}p(y). \label{e3.16} \end{equation} This implies that $\int_0^{1}y(1-y)^{\alpha -3}u(y)g(y,u(y)) dy<\infty $. Hence from Corollary \ref{coro2.7}, we deduce that the function $x\mapsto U(ug(.,u) ) (x)\in C([0,1])$ and from \eqref{e3.15}, we conclude that $u\in C([0,1])$. Using (H1) and \eqref{e3.16}, we obtain that the function $y\mapsto y(1-y)^{\alpha -3}u(y)g(y,u(y))$ belongs to $C((0,1)) \mathcal{\cap }L^{1}((0,1)))$, which implies by Proposition \ref{prop2.8} that $u$ is a solution of \eqref{e1.3}. Now assume further that condition (H3) is satisfied. Let $v\in C([0,1])$ be another nonnegative solution to problem \eqref{e1.3} satisfying \eqref{e1.9}. As above, we have \begin{equation*} 0\leq v(y)g(y,v(y)) \leq p(y)h(y)\leq My^{\alpha -2}p(y). \end{equation*} So the function $y\to y(1-y)^{\alpha -3}v(y)g( y,v(y)) \in C((0,1))\mathcal{\cap }L^{1}((0,1)))$. Put $\widetilde{v}:=v+U(vg(.,v) ) $. By Proposition \ref{prop2.8} we have \begin{gather*} D^{\alpha }\widetilde{v}(x)=0,\quad 00$. Let $ r\geq 0$, $\nu \geq 0$ and $q\in C^{+}((0,1)) $ such that \begin{equation*} \int_0^{1}t^{(\alpha -1)+(\alpha -2)(r+\nu )}(1-t)^{\alpha -3}q(t)dt<\infty . \end{equation*} Let $\varphi (s)=s^{r+1}\log (1+s^{\nu })$ and $\widetilde{q} (y):=q(y)\max_{0\leq t\leq h(y) } \varphi '(t)$. Since $\widetilde{q}\in \mathcal{J}_{\alpha }$, then for $\lambda \in [ 0,\frac{1}{2\tau _{\widetilde{q}}})$, the problem \begin{gather*} D^{\alpha }u(x)=\lambda q(x)u^{r+1}(x)\log (1+u^{\nu }(x)),\quad 0