\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2016 (2016), No. 20, pp. 1--14.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2016 Texas State University.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2016/20\hfil Semi-linear pseudo-hyperbolic systems]
{Nonexistence of solutions to Cauchy problems for fractional
time semi-linear pseudo-hyperbolic systems}
\author[S. Abdelmalek, M. Bajneed, K. Sioud \hfil EJDE-2016/20\hfilneg]
{Salem Abdelmalek, Maha Bajneed, Khaled Sioud}
\address{Salem Abdelmalek \newline
Department of Mathematics, College of Sciences,
Yanbu, Taibah University,
Saudi Arabia}
\email{sallllm@gmail.com}
\address{Maha Bajneed \newline
Department of Mathematics,
Faculty of Sciences at Yanbu,
Taibah University,
Saudi Arabia}
\email{m\_bajneed@hotmail.com}
\address{Khaled Sioud \newline
Department of Mathematics,
Faculty of Sciences at Yanbu, Taibah University,
Saudi Arabia}
\email{sioudkha@aol.com}
\thanks{Submitted June 25, 2015. Published January 12, 2016.}
\subjclass[2010]{80A23, 65N21, 26A33, 45J05, 34K37, 42A16}
\keywords{Semi-linear pseudo-hyperbolic equation; non-existence of solutions;
\hfill\break\indent non-linear capacity method}
\begin{abstract}
We study Cauchy problems time fractional semi-linear
pseudo-hyperbolic equations and systems. Using the method of
nonlinear capacity, we show that there are no solutions for certain
nonlinearities and initial data. Our work complements the work by
Aliev and col. \cite{Aliev3, Aliev2, Aliev5}.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\allowdisplaybreaks
\section{Introduction}
In this article, we study Cauchy problems for time
fractional pseudo-hyperbolic equations and systems.
We start by considering the time fractional equation
\begin{equation}
u_{tt}+\eta ( -\Delta ) ^{k}u_{tt}+( -\Delta ) ^{\ell
}u+\xi ( -\Delta ) ^{r}D_{0|t}^{\alpha
}u+\gamma D_{ 0| t}^{\beta }u=f( u) ,
\label{1.1}
\end{equation}
for $x\in\mathbb{R} ^{N}$, $t>0$, supplemented with the initial data
\begin{equation}
u( x,0) =u_{0}( x) ,\quad u_{t}( x,0)=u_1( x) ,\quad x\in
\mathbb{R}^{N}, \label{1.2}
\end{equation}
and with
\begin{equation}
\eta ,\xi ,\gamma \geq 0\quad \text{for }r,k\in\mathbb{N}\cup \{ 0\} ,\;
\ell \in \mathbb{N}, \; 0<\beta \leq \alpha \leq 1, \label{1.3}
\end{equation}
$\Delta $ is the Laplacian and $D_{0|t}^{\alpha }$ is the
left-sided Riemann-Liouville fractional derivative of order $\alpha $.
The aim of this paper is to show, using the method of nonlinear capacity
proposed by Pokhozhaev in 1997 \cite{Pokhozhaev} and developed successfully
and jointly with Mitidieri \cite{Mitidieri3, Mitidieri2,Mitidieri}, that
under certain conditions, there are no solutions to \eqref{1.1}-\eqref{1.2}.
For the non fractional case $\alpha =\beta =1$, Lions' monograph \cite{Lions}
considered equation \eqref{1.1} in the case where $\eta =0$ and $f(
u) =-| u| ^{p}u$. A step forward was achieved by
\cite{ Kato, Mitidieri3, Zhang} where they considered the absence of global
solutions for the case where $\eta =\xi =0$ and $f( u)
=| u| ^{p-1}u$ or $f( u) =\pm |
u| ^{p}$. Kato \cite{Kato} showed that for $\ell =1$, $\xi =0$,
and $1
0$, $\alpha =1$, by Zhang \cite{Zhang} and
Kirane and Qafsaoui \cite{Kirane}. The two studies proved that the critical
exponent for this case is in fact $p=1+\frac{2}{N}$.
The existence of global solutions of problem \eqref{1.1}-\eqref{1.3} for the
non-fractional case $\alpha =\beta =1$, $\eta ,\xi ,\gamma \geq 0$,
$r,k\in\mathbb{N}\cup \{ 0\} $ and $\ell \in \mathbb{N}$ was achieved by Aliev and Kazymov \cite{Aliev1}.
Recently, by using the method of the test function Aliev and col.
\cite{Aliev3, Aliev2, Aliev5} established sufficient conditions for the
nonexistence of global solutions of problem \eqref{1.1}-\eqref{1.3} for the
non-fractional case $\alpha =\beta =1$:
Aliev and Lichaei \cite{Aliev2} considered the case
$\alpha =\beta =1$ and $\eta ,\xi ,\gamma >0$ for
$r=k\in\mathbb{N} \cup \{ 0\} $, $\ell \in\mathbb{N}$, and
$f( u) \geq C| u| ^{p}$.
Aliev and Kazymov \cite{Aliev3} examined the case\newline
$\alpha =\beta =1$, $k=0$, $r=0$, $\ell \in \mathbb{N}$ and
$f( u) =\frac{1}{( 1+| x|^{2}) ^{s}}| u| ^{p}$.
Aliev and Mamedov \cite{Aliev5} treated the non existence of global
solutions of a semilinear hyperbolic equation with an anisotopic elliptic
part ($\alpha =\beta =1$, $k=r=0$),
\begin{equation*}
u_{tt}+\varepsilon u_{t}+\underset{k=1}{\overset{N}{\sum }}( -1)
^{\ell _{k}}D_{x_{k}}^{2\ell _{k}}u=f( u), \quad
f(u) \geq c| u| ^{p}.
\end{equation*}
Our work will complement the results of \cite{Aliev2} for
$r,k\in\mathbb{N}\cup \{ 0\} $, $\eta ,\xi ,\gamma \geq 0$ and
$\ell \in\mathbb{N}$ and extend it to the time-fractional case
$0<\beta \leq \alpha <1$, using the test function method.
In the second part of this paper, we study the Cauchy problem
for the time-fractional pseudo-hyperbolic system
\begin{equation}
\begin{gathered}
u_{tt}+\eta _1( -\Delta ) ^{k_1}u_{tt}+( -\Delta )
^{\ell _1}u+\xi _1( -\Delta ) ^{r_1}D_{0|t}^{\alpha _1}u+\gamma _1D_{0|t}^{\beta
_1}u=f( v) =| v| ^{p} \\
v_{tt}+\eta _2( -\Delta ) ^{k_2}v_{tt}+( -\Delta )
^{\ell _2}v+\xi _2( -\Delta ) ^{r_2}D_{0|t}^{\alpha _2}v+\gamma _2D_{0|t}^{\beta
_2}v=g( u) =| u| ^{q}
\end{gathered}\label{1.4}
\end{equation}
posed in $Q_{\infty }:=\mathbb{R}^{N}\times ( 0,\infty ) $,
subject to the initial conditions
\begin{equation}
\begin{gathered}
u( x,0) =u_{0}( x) ,u_{t}( x,0) =u_1( x), \quad x\in\mathbb{R}^{N}, \\
v( x,0) =v_{0}( x) ,v_{t}( x,0)
=v_1( x) x\in\mathbb{R}^{N}
\end{gathered} \label{1.5}
\end{equation}
with $p,q>1$, $r_i,k_i\in\mathbb{N}\cup \{ 0\}$,
$\ell _i\in\mathbb{N}$, $\eta _i,\xi _i,\gamma _i\geq 0$ and
$0<\beta_i\leq \alpha _i\leq 1$ for $i=1,2$.
The non-existence of global solutions in the case of a non fractional system
of two (or more) equations with $\alpha _i=0$ or $1$ and $\beta _i=0$ or
$1$, is investigated in numerous studies of Aliev and colleagues:
Aliev, Mammadzada, and Lichaei \cite{Aliev4} considered the case
$\beta _i=1$, $\gamma _i=\eta _i=1$, $\xi _i=0$, $\ell _1=1$, $\ell _2=2$,
$p=\frac{7}{2}$ and $q=\frac{5}{2}$;
Aliev and Kazymov \cite{Aliev6} examined the case
$\beta _i=1$, $\gamma _i=\eta _i=1$, $\xi _i=0 $,
$\ell _i\in\mathbb{N}$, and $f_i( u,v) \geq C_{i,1}| u|^{p_i}+C_{i,2}| v| ^{q_i}$;
Aliev and Kazymov \cite{Aliev7} considered the case
$\beta _i=1$, $\gamma _i=\eta _i=1$, $\xi _i=0$, $\ell _i\in\mathbb{N}$, and
$f( v) \geq C| v| ^{p}$ and $g(u) \geq C| u| ^{q}$;
Aliev and Kazymov \cite{Aliev8} dealt with a system of three equations
that is similar to the case presented in \cite{Aliev6}.
Our work will complement these papers for the system of two equations in the
cases $\gamma _i,\eta _i,\xi _i >0$,
$r_i,k_i\in\mathbb{N}\cup \{ 0\}$, $\ell _i\in\mathbb{N}$ and extend it to
the time-fractional case, using again the test function
method.
\section{Preliminaries}
For the convenience of the reader, we start by recalling some basic
definitions and properties which will be useful throughout this paper.
\begin{definition} \label{def1}\rm
The left- and right-sided Riemann-Liouville integrals of order $0<\alpha <1$
for an integrable function\ are defined as
\begin{gather}
\big( I_{0| t }^{\alpha }f\big) ( t)
:=\frac{1 }{\Gamma ( \alpha ) }\int_{0}^{t}( t-s) ^{\alpha -1}f( s) ds, \label{2.1} \\
\big( I_{t| T}^{\alpha }f\big) ( t)
:=\frac{1 }{\Gamma (\alpha ) }\int_{t}^{T}( s-t) ^{\alpha -1}f( s) ds, \label{2.2}
\end{gather}
where $\Gamma $ is the Euler gamma function.
\end{definition}
\begin{definition} \label{def2}\rm
Let $AC[0,T]$ be the space of functions $f$ which are
absolutely continuous on $[0,T]$. The left and right-handed
Riemann-Liouville fractional derivatives of order$\ n-1<\gamma 0,
\label{2.3} \\
D_{t|T}^{\gamma }f( t) :=( -1)^{n}D^{n}( I_{t|T}^{n-\gamma }f) (t) , \label{2.4}
\end{gather}
where $D$ is the usual time derivative.
\end{definition}
Furthermore, for every $f,g\in C( [ 0,T] ) $ such that
$D_{0|t}^{\alpha }f( t) ,D_{0|t}^{\alpha }g( t) $ exist and are continuous
for all $t\in [ 0,T] $, $0<\alpha <1$, the formula of integration by parts
can be given according to Love and Young \cite{Love} by
\begin{equation}
\int_{0}^{T}g( t) ( D_{0|t}^{\alpha}f) ( t) dt
=\int_{0}^{T}f( t) ( D_{t|T}^{\alpha }g) ( t) dt. \label{2.7}
\end{equation}
In addition, \cite[Lemma 2.2]{Samko} provides us with the formula
\begin{equation}
D_{t|T}^{\alpha }f( t) :=\frac{1}{\Gamma
( 1-\alpha ) }[ \frac{f( T) }{( T-t)
^{\alpha }}-\int_{t}^{T}( t-s) ^{-\alpha }f'(s) ds] \label{2.9}
\end{equation}
or
\begin{equation}
D_{t|T}^{\alpha }f( t) :=\frac{1}{\Gamma
( 1-\alpha ) }\frac{d}{dt}\int_{t}^{T}( t-s) ^{-\alpha}f( s) ds. \label{2.10}
\end{equation}
\section{Non-existence of global solutions of one equation} \label{Sec3}
In this section, we study the non-existence of global solutions for the
time-fractional semi-linear pseudo-hyperbolic equation \eqref{1.1} for
certain initial data with $f( u) =| u| ^{p}$. Before we state our result.
let us define the weak solution of problem \eqref{1.1}-\eqref{1.3}.
In this article, $Q_T$ denotes the set $Q_T:=\mathbb{R}^{N}\times ( 0,T) $,
$00$,
$\int_{\mathbb{R}^{N}}u_1( x) dx>0$
\item[(3)] $11,\;a\geq 0,\; b\geq 0,\; p+\widetilde{p}=p\widetilde{p},
\;\epsilon >0,
\end{equation*}
we can write
\begin{equation}
\begin{gathered}
\int_{Q_T}u\varphi _{tt}
\leq \epsilon \int_{Q_T}| u| ^{p}\varphi +c( \epsilon ) \int_{Q_T}| \varphi
_{tt}| ^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}, \\
\int_{Q_T}u( -\Delta ) ^{k}\varphi _{tt}\leq \epsilon
\int_{Q_T}| u| ^{p}\varphi +c( \epsilon )
\int_{Q_T}| ( -\Delta ) ^{k_1}\varphi _{tt}|
^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}, \\
\int_{Q_T}u( -\Delta ) ^{r}D_{t| T}^{\alpha
}\varphi \leq \epsilon \int_{Q_T}| u| ^{p}\varphi
+c( \epsilon ) \int_{Q_T}| ( -\Delta )
^{r}D_{t| T}^{\alpha }\varphi | ^{\widetilde{p}
}\varphi ^{-\widetilde{p}/p}, \\
\int_{Q_T}uD_{t| T}^{\beta }\varphi \leq \epsilon
\int_{Q_T}| u| ^{p}\varphi +c( \epsilon )
\int_{Q_T}| D_{t| T}^{\beta }\varphi | ^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}, \\
\int_{Q_T}u( -\Delta ) ^{\ell }\varphi \leq \epsilon
\int_{Q_T}| u| ^{p}\varphi +c( \epsilon )
\int_{Q_T}| ( -\Delta ) ^{\ell }\varphi |
^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}.
\end{gathered}\label{3.3}
\end{equation}
Using inequalities \eqref{3.3} in \eqref{3.1}, we obtain the inequality
\begin{equation}
\begin{aligned}
& \int_{Q_T}| u| ^{p}\varphi +\int_{\mathbb{R}^{N}}u_1( x) \varphi ( x,0)
+\int_{\mathbb{R}^{N}}u_1( x) ( -\Delta ) ^{k}\varphi (x,0) \\
& -\int_{\mathbb{R}^{N}}u_{0}( x) \varphi _{t}( x,0)
-\int_{\mathbb{R}^{N}}u_{0}( x) ( -\Delta ) ^{k}\varphi (x,0) \\
&\leq \epsilon _1\int_{Q_T}| u| ^{p}\varphi
+C_1\Big\{ \int_{Q_T}| \varphi _{tt}| ^{\widetilde{p}}
\varphi ^{-\widetilde{p}/p}+\int_{Q_T}|
( -\Delta ) ^{k}\varphi _{tt}| ^{\widetilde{p}}\varphi
^{-\widetilde{p}/p} \\
& +\int_{Q_T}| ( -\Delta ) ^{r}D_{
t| T}^{\alpha }\varphi | ^{\widetilde{p}}\varphi ^{
\frac{-\widetilde{p}}{p}}+\int_{Q_T}| D_{t|
T}^{\beta }\varphi | ^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}
+\int_{Q_T}| ( -\Delta ) ^{\ell }\varphi
| ^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}\Big\}.
\end{aligned}\label{3.4}
\end{equation}
Setting
\begin{gather*}
A_1=\int_{Q_T}| \varphi _{tt}| ^{\widetilde{p} }\varphi ^{-\widetilde{p}/p}, \quad
A_2=\int_{Q_T}| ( -\Delta ) ^{k}\varphi_{tt}| ^{\widetilde{p}}
\varphi ^{-\widetilde{p}/p}, \\
A_3=\int_{Q_T}| ( -\Delta ) ^{r}D_{t| T}^{\alpha }\varphi
| ^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}, \quad
A_4=\int_{Q_T}| D_{t| T}^{\beta }\varphi
| ^{\widetilde{p}}\varphi ^{-\widetilde{p}/p}, \\
A_5=\int_{Q_T}| ( -\Delta ) ^{\ell }\varphi | ^{\widetilde{p}}
\varphi ^{-\widetilde{p}/p},
\end{gather*}
and taking $\epsilon =1/2$, inequality \eqref{3.4} becomes
\begin{equation}
\begin{aligned}
& \int_{Q_T}| u| ^{p}\varphi +\int_{\mathbb{R}^{N}}u_1( x) \varphi ( x,0)
+\int_{\mathbb{R}^{N}}u_1( x) ( -\Delta ) ^{k}\varphi (x,0) \\
& -\int_{\mathbb{R}^{N}}u_{0}( x) \varphi _{t}( x,0)
-\int_{\mathbb{R}^{N}}u_{0}( x) ( -\Delta ) ^{k}\varphi _{t}(x,0) \\
&\leq C\{ A_1+A_2+A_3+A_4+A_5\} .
\end{aligned} \label{3.5}
\end{equation}
At this stage, we set
\begin{equation}
\varphi ( x,t) =\Psi ^{\nu }\Big( \frac{t^{2}+|
x| ^{4\rho }}{R^4}\Big) ,\quad R>0,\; \nu \gg 1,\; \rho >0, \label{3.6}
\end{equation}
where $\Psi \in C_{c}^{\infty }(\mathbb{R}^{+}) $ is a decreasing function
defined as
\begin{equation*}
\Psi ( r) =\begin{cases}
1 & \text{if }r\leq 1 \\
0 & \text{if }r\geq 2,
\end{cases}
\end{equation*}
with $0\leq \Psi \leq 1$ and $r| \Psi '( r) | 0,
\end{equation*}
we get a contradiction. This proves the theorem in the case \eqref{siod}.
For the border case where $p=p_{c}$ which corresponds to $\theta _4=\theta
_5=0$ and $\rho =\frac{\ell }{\beta }$, let
\begin{equation*}
Q_{T,R}=\{ ( x,t) ,R^4\leq t^{2}+| x| ^{4\rho }\leq 2R^4\} ,
\end{equation*}
if we use the H\"{o}lder inequality in the estimate of
$\int_{Q_T}u \varphi _{tt}$ instead of the $\epsilon$-Young inequality,
we obtain
\begin{align*}
\int_{Q_T}u\varphi _{tt}
&=\int_{Q_{T,R}}u\varphi _{tt}
\leq \Big(\int_{Q_{T,R}}| u| ^{p}\varphi \Big) ^{1/p}
\Big( \int_{Q_{T,R}}\varphi ^{-\widetilde{p}/p}|
\varphi _{tt}| ^{\widetilde{p}}\Big) ^{1/\widetilde{p}}\\
&\leq ( A_1) ^{1/\widetilde{p}}(
\int_{Q_{T,R}}| u| ^{p}\varphi ) ^{1/p},
\end{align*}
and similarly
\begin{gather*}
\int_{Q_T}u( -\Delta ) ^{k}\varphi _{tt}
=\int_{Q_{T,R}}u( -\Delta ) ^{k}\varphi _{tt}\leq ( A_2) ^{1/\widetilde{p}}
\int_{Q_{T,R}}| u| ^{p}\varphi ,
\\
\int_{Q_T}u( -\Delta ) ^{r}D_{t| T}^{\alpha
}\varphi =\int_{Q_{T,R}}u( -\Delta ) ^{r}D_{t|
T}^{\alpha }\varphi
\leq ( A_3) ^{1/\widetilde{p}
}\Big( \int_{Q_{T,R}}| u| ^{p}\varphi \Big) ^{1/p},
\\
\int_{Q_T}uD_{t| T}^{\beta }\varphi
=\int_{Q_{T,R}}uD_{t| T}^{\beta }\varphi \leq (
A_4) ^{1/\widetilde{p}}\Big( \int_{Q_{T,R}}|
u| ^{p}\varphi \Big) ^{1/p},
\\
\int_{Q_T}u( -\Delta ) ^{\ell }\varphi
=\int_{Q_{T,R}}u( -\Delta ) ^{\ell }\varphi \leq ( A_5) ^{1/\widetilde{p}}
\Big( \int_{Q_{T,R}}| u| ^{p}\varphi \Big) ^{1/p}.
\end{gather*}
Thus, we obtain
\begin{align*}
\int_{Q_T}| u| ^{p}\varphi +\int_{\mathbb{R}^{N}}u_1( x)
& \leq \big( A_1^{1/\widetilde{p}
}+A_2^{1/\widetilde{p}}+A_3^{1/\widetilde{p}}+A_4^{
\frac{1}{\widetilde{p}}}+A_5^{1/\widetilde{p}}\big)
\Big(\int_{Q_{T,R}}| u| ^{p}\varphi \Big) ^{1/p}
\\
& \leq C\Big( \int_{Q_{T,R}}| u| ^{p}\varphi \Big)^{1/p}.
\end{align*}
As $\int_{Q_T}| u| ^{q}<+\infty $, we have
\begin{equation*}
\lim_{R\to +\infty} \int_{Q_{T,R}}| u| ^{q}\varphi
\leq \lim_{R\to +\infty} \int_{Q_{T,R}}| u| ^{q}=0.
\end{equation*}
Passing to the limit as $R\to +\infty $, we find that
$\int_{Q_{\infty }}| u| ^{q}+\int_{\mathbb{R}^{N}}u_1( x) =0$, which
contradicts $\int_{\mathbb{R}^{N}}u_1>0$. This prove the theorem
in the case $p=p_{c}$.
\end{proof}
\section{A pseudo-hyperbolic system}
This section is concerned with the fractional time pseudo-hyperbolic system
\eqref{1.4})-\eqref{1.5}.
\begin{definition} \label{DefWeakSys} \rm
The couple of functions $( u,v) $, $u\in L_{\rm loc}^{q}( Q_{\infty }) $ and
$v\in L_{\rm loc}^{p}( Q_{\infty }) $ is a weak solution of \eqref{1.4}-\eqref{1.5}
on $Q_T$ with initial data $u_{0}( x) ,u_1( x) ,v_{0}( x) $ and
$v_1( x) \in L_{\rm loc}^{1}(\mathbb{R}^{N}) $, if it satisfies
\begin{equation}
\begin{aligned}
& \int_{Q_T}| v| ^{p}\varphi +\int_{\mathbb{R}^{N}}u_1( x) \varphi ( x,0)
+\eta _1\int_{\mathbb{R}^{N}}u_1( x) ( -\Delta ) ^{k_1}\varphi (x,0) \\
& =\int_{\mathbb{R}^{N}}u_{0}( x) \varphi _{t}( x,0)
+\eta _1\int_{\mathbb{R}^{N}}u_{0}( x) ( -\Delta ) ^{k_1}\varphi _{t}(x,0)
+\int_{Q_T}u\varphi _{tt} \\
&\quad +\int_{Q_T}u( -\Delta )^{\ell _1}\varphi
+\eta _1\int_{Q_T}u( -\Delta ) ^{k_1}\varphi _{tt}
-\xi_1\int_{Q_T}u( -\Delta ) ^{r_1}D_{t|T}^{\alpha _1}\varphi \\
&\quad +\gamma _1\int_{Q_T}uD_{t|T}^{\beta _1}\varphi , \label{4.1}
\end{aligned}
\end{equation}
and
\begin{equation}
\begin{aligned}
& \int_{Q_T}| u| ^{q}\varphi +\int_{\mathbb{R}^{N}}v_1( x) \varphi ( x,0)
+\eta _2\int_{\mathbb{R}^{N}}v_1( x) ( -\Delta ) ^{k_2}\varphi (x,0) \\
& =\int_{\mathbb{R}^{N}}v_{0}( x) \varphi _{t}( x,0)
+\eta _2\int_{\mathbb{R}^{N}}v_{0}( x) ( -\Delta ) ^{k_2}\varphi _{t}(x,0)
+\int_{Q_T}v\varphi _{tt} \\
&\quad +\int_{Q_T}v( -\Delta ) ^{\ell _2}\varphi
+\eta _2\int_{Q_T}v( -\Delta ) ^{k_2}\varphi _{tt}
-\xi_2\int_{Q_T}v( -\Delta ) ^{r_1}D_{t| T}^{\alpha _2}\varphi \\
&\quad +\gamma _2\int_{Q_T}vD_{t|T}^{\beta _2}\varphi ,
\end{aligned} \label{4.2}
\end{equation}
for any test-function $\varphi \in C_{x\text{ \ }t}^{2\ell 2}( Q_T) $,
$\ell =\max \{ \ell _1,\ell _2\} $
being positive, $\varphi \equiv 0$ outside a compact
$K\subset\mathbb{R}^{n}$, $\varphi ( x,T) =\varphi _{t}( x,T) =0$ and
$D_{t| T}^{\alpha _1}\varphi ,D_{t|T}^{\beta _1}\varphi ,
D_{t| T}^{\alpha _2}\varphi,D_{t| T}^{\beta _2}\varphi \in C( Q_T)$.
\end{definition}
\begin{theorem} \label{TheoCaseSys}
Assume that
\begin{itemize}
\item[(1)] $r_i,k_i\in \mathbb{N}\cup \{ 0\}$,
$\ell _i\in\mathbb{N}$ and $0<\beta _i\leq \alpha _i<1$, $i=1,2$;
\item[(2)] $u_{0},u_1,v_{0},v_1\in L^{1}(\mathbb{R}^{N}) $ such that
$\int_{\mathbb{R}^{N}}u_{0}( x) >0,\int_{\mathbb{R}^{N}}u_1( x) >0$,
$\int_{\mathbb{R}^{N}}v_{0}( x) >0$ and
$\int_{\mathbb{R}^{N}}v_1( x) >0$;
\item[(3)] $p>1$, $q>1$,
\[
pq\leq \min \Big(1+\frac{2( p\beta _2+\beta _1)
\overline{\rho }}{N+2( 1-\beta _1) \overline{\rho }},1+\frac{
2( q\beta _1+\beta _2) \overline{\rho }}{N+2( 1-\beta
_2) \overline{\rho }}\Big)
\]
where $\overline{\rho }=\min (\frac{\ell _1}{\beta _1},\frac{\ell _2}{\beta _2}) $.
\end{itemize}
Then problem \eqref{1.4}-\eqref{1.5} does not admit any global non trivial
solution.
\end{theorem}
\begin{proof}
The proof is by contraction. Let $( u,v) $ be a global weak
solution of \eqref{1.4}-\eqref{1.5} and $\varphi $ be a non-negative
function (satisfying the conditions of Definition \ref{DefWeakSys}).
Applying H\"{o}lder inequality to $\int_{Q_T}u\varphi _{tt}$, we obtain
\begin{equation*}
\int_{Q_T}u\varphi _{tt}
\leq \Big( \int_{Q_T}| u| ^{q}\varphi \Big) ^{1/q}
\Big( \int_{Q_T}\varphi ^{\frac{-
\widetilde{q}}{q}}| \varphi _{tt}| ^{\widetilde{q}
}\Big) ^{1/\widetilde{q}}
\leq ( A_1) ^{1/\widetilde{q}}\Big( \int_{Q_T}| u| ^{q}\varphi
\Big) ^{1/q}
\end{equation*}
and similarly
\begin{equation}
\begin{gathered}
\int_{Q_T}u( -\Delta ) ^{k_1}\varphi _{tt}\leq (
A_2) ^{1/\widetilde{q}}\Big( \int_{Q_T}|u| ^{q}\varphi \Big) ^{1/q}, \\
\int_{Q_T}u( -\Delta ) ^{r_1}D_{t|
T}^{\alpha _1}\varphi \leq ( A_3) ^{\frac{1}{\widetilde{q}}
}\Big( \int_{Q_T}| u| ^{q}\varphi \Big) ^{1/q}, \\
\int_{Q_T}uD_{t| T}^{\beta _1}\varphi \leq (
A_4) ^{1/\widetilde{q}}\Big( \int_{Q_T}| u| ^{q}\varphi \Big) ^{1/q}, \\
\int_{Q_T}u( -\Delta ) ^{\ell _1}\varphi \leq (
A_5) ^{1/\widetilde{q}}\Big( \int_{Q_T}|u| ^{q}\varphi \Big) ^{1/q},
\end{gathered}\label{4.3}
\end{equation}
where
\begin{gather*}
A_1 =\int_{Q_T}| \varphi _{tt}| ^{\widetilde{q}
}\varphi ^{\frac{-\widetilde{q}}{q}}\,dx\,dt, \\
A_2 =\int_{Q_T}| ( -\Delta ) ^{k_1}\varphi
_{tt}| ^{\widetilde{q}}\varphi ^{-\widetilde{q}/q}\,dx\,dt, \\
A_3 =\int_{Q_T}| ( -\Delta ) ^{r_1}D_{
t| T}^{\alpha _1}\varphi | ^{\widetilde{q}}\varphi ^{-\widetilde{q}/q}\,dx\,dt, \\
A_4 =\int_{Q_T}| D_{t| T}^{\beta
_1}\varphi | ^{\widetilde{q}}\varphi ^{-\widetilde{q}/q}\,dx\,dt, \\
A_5 =\int_{Q_T}| ( -\Delta ) ^{\ell _1}\varphi
| ^{\widetilde{q}}\varphi ^{-\widetilde{q}/q}\,dx\,dt.
\end{gather*}
Now, let $\varphi $ be the test function defined by the expression
\eqref{3.6}. Using the previous estimates \eqref{4.3} and the
properties \eqref{3.6} and \eqref{3.7} of the function $\varphi $
in equation \eqref{4.1}, we obtain the inequality
\begin{equation}
\begin{aligned}
& \int_{Q_T}| v| ^{p}\varphi +\int_{\mathbb{R}^{N}}u_1\varphi ( x,0) \\
&\leq \Big( \int_{\mathbb{R}^{N}}| u| ^{q}\varphi \Big) ^{1/q}
\Big[A_1^{1/\widetilde{q}}+A_2^{1/\widetilde{q}}
+A_3^{1/\widetilde{q}}+A_4^{1/\widetilde{q}}+A_5^{1/\widetilde{q}}\Big] .
\end{aligned} \label{4.4}
\end{equation}
Similarly, for the equation \eqref{4.2}, we have
\begin{equation}
\begin{aligned}
& \int_{Q_T}| u| ^{p}\varphi +\int_{\mathbb{R}^{N}}v_1\varphi ( x,0) \\
&\leq \Big( \int_{\mathbb{R}^{N}}| v| ^{q}\varphi \Big) ^{1/q}
\big[B_1^{1/\widetilde{q}}+B_2^{1/\widetilde{q}}+B_3^{\frac{
1}{\widetilde{q}}}+B_4^{1/\widetilde{q}}+B_5^{\frac{1}{
\widetilde{q}}}\big] ,
\end{aligned}\label{4.5}
\end{equation}
where
\begin{gather*}
B_1 =\int_{Q_T}| \varphi _{tt}| ^{\widetilde{q}
}\varphi ^{\frac{-\widetilde{q}}{q}}\,dx\,dt, \\
B_2 =\int_{Q_T}| u( -\Delta ) ^{k_2}\varphi
_{tt}| ^{\widetilde{q}}\varphi ^{\frac{-\widetilde{q}}{q}
}\,dx\,dt, \\
B_3 = \int_{Q_T}| ( -\Delta ) ^{r_2}D_{
t| T}^{\alpha _2}\varphi | ^{\widetilde{q}}\varphi ^{
\frac{-\widetilde{q}}{q}}\,dx\,dt, \\
B_4 =\int_{Q_T}| D_{t| T}^{\beta
_2}\varphi | ^{\widetilde{q}}\varphi ^{\frac{-\widetilde{q}}{q}
}\,dx\,dt, \\
B_5 =\int_{Q_T}| ( -\Delta ) ^{\ell _2}\varphi
| ^{\widetilde{q}}\varphi ^{\frac{-\widetilde{q}}{q}}\,dx\,dt.
\end{gather*}
Now, we estimate $A_1,\dots ,A_5$ and $B_1,\dots ,B_5$ in the same way as
in Section \ref{Sec3}, we obtain inequalities similar to those given in
\eqref{3.9} and \eqref{3.10}
\begin{equation}
A_i=C_iR^{\theta _i}, \quad B_i=D_iR^{\delta _i}\quad \text{for }
i=1,2,\dots ,5, \label{4.6}
\end{equation}
where
\begin{equation}
\begin{gathered}
\theta _1=-4\widetilde{q}+\frac{N}{\rho }+2, \quad
\delta _1=-4 \widetilde{p}+\frac{N}{\rho }+2, \\
\theta _2=-\big( \frac{2k_1}{\rho }+4\big) \widetilde{q}+\frac{N}{
\rho }+2, \quad
\delta _2=-\big( \frac{2k_2}{\rho }+4\big)
\widetilde{p}+\frac{N}{\rho }+2, \\
\theta _3=-\big( \frac{2r_1}{\rho }+2\alpha _1\big) \widetilde{q}+
\frac{N}{\rho }+2, \quad
\delta _3=-\big( \frac{2r_2}{\rho }
+2\alpha _2\big) \widetilde{p}+\frac{N}{\rho }+2, \\
\theta _4=-2\beta _1\widetilde{q}+\frac{N}{\rho }+2, \quad
\delta_4=-2\beta _2\widetilde{p}+\frac{N}{\rho }+2, \\
\theta _5=\frac{-2\ell _1}{\rho }\widetilde{q}+\frac{N}{\rho }+2, \quad
\delta _5=\frac{-2\ell _2}{\rho }\widetilde{p}+\frac{N}{\rho }+2.
\end{gathered}\label{4.7}
\end{equation}
If we set
\begin{equation*}
I=\Big( \int_{Q_T}| v| ^{p}\varphi \Big) ^{1/p}\quad \text{and}\quad
J=( \int_{Q_T}| u|^{q}\varphi ) ^{1/q},
\end{equation*}
inequalities \eqref{4.4} and \eqref{4.5} become
\begin{gather}
I^{P}+\int_{\mathbb{R}^{N}}u_1\varphi ( x,0)
\leq J( C_1R^{\theta _1/\widetilde{q}}
+C_2R^{\theta _2/\widetilde{q}}
+C_3R^{\theta _3/\widetilde{q}}
+C_4R^{\theta _4/\widetilde{q}}
+C_5R^{\theta _5/\widetilde{q}}) , \label{4.8}
\\
J^{q}+\int_{\mathbb{R}^{N}}v_1\varphi ( x,0)
\leq I( D_1R^{\frac{\delta _1}{\widetilde{q}}}
+D_2R^{\delta _2/\widetilde{q}}
+D_3R^{\delta _3/\widetilde{q}}
+D_4R^{\delta _4/\widetilde{q}}
+D_5R^{\delta _5/\widetilde{q}}) . \label{4.9}
\end{gather}
We can observe that under the conditions on $\alpha _i$ and $\beta _i$,
we have
\begin{equation*}
\theta _2\leq \theta _1\leq \theta _4,\quad
\theta _3\leq \theta _4,\quad
\delta _2\leq \delta _1\leq \delta _4, \quad
\delta _3\leq \delta _4.
\end{equation*}
Hence, for $R\geq 1$, we have
$R^{\theta i}\leq R^{\theta _4}+R^{\theta_5}$ and
$R^{\delta i}\leq R^{\delta _4}+R^{\delta _5}$, and
consequently, inequalities \eqref{4.8} and \eqref{4.9} can be rewritten as
\begin{gather}
I^{p}+\int_{\mathbb{R}^{N}}u_1\varphi ( x,0)
\leq CJ\big( R^{\frac{\theta _4}{
\widetilde{q}}}+R^{\theta _5/\widetilde{q}}\big) , \label{4.10}
\\
J^{P}+\int_{\mathbb{R}^{N}}v_1\varphi ( x,0) \leq
DI( R^{\frac{\delta _4}{ \widetilde{q}}}+R^{\frac{\delta _5}{\widetilde{q}}}) ,
\label{4.11}
\end{gather}
where
\begin{equation*}
C=\sum_{i=1}^5 C_i,\quad \text{and}\quad
D=\sum_{i=1}^5 D_i.
\end{equation*}
Since $\int_{\mathbb{R}^{N}}u_1\varphi ( x,0) \geq 0$ and
$\int_{\mathbb{R}^{N}}v_1\varphi ( x,0) \geq 0$, inequalities \eqref{4.10}
and \eqref{4.11} yield
\begin{gather}
I^{p}\leq CJ\big( R^{\theta _4/\widetilde{q}}
+R^{\theta _5//\widetilde{q}} \big) , \label{4.12}
\\
J^{P}\leq DI\big( R^{\delta _4/\widetilde{q}}
+R^{\delta _5/\widetilde{q}}\big) . \label{4.13}
\end{gather}
The constants $C$ and $D$ will be updated at each step of the calculation
and will not play a role. This implies that
\begin{equation*}
I^{pq}\leq CI( R^{\delta _4/\widetilde{p}}
+R^{\delta _5/\widetilde{p}}) ( R^{\theta _4/\widetilde{q}}+R^{
\frac{\theta _5}{\widetilde{q}}}) ^{q},\ J^{pq}\leq CJ( R^{
\frac{\theta _4}{\widetilde{q}}}+R^{\frac{\theta _5}{\widetilde{q}}
}) ( R^{\delta _4/\widetilde{p}}+R^{\delta _5/\widetilde{p}}) ^{p},
\end{equation*}
leading to
\begin{equation}
I^{pq-1}\leq C( R^{\delta _4/\widetilde{p}}+R^{\delta _5/\widetilde{p}})
( R^{\theta _4/\widetilde{q}}+R^{
\frac{\theta _5}{\widetilde{q}}}) ^{q},\ J^{pq-1}\leq C( R^{
\frac{\theta _4}{\widetilde{q}}}+R^{\frac{\theta _5}{\widetilde{q}}
}) ( R^{\delta _4/\widetilde{p}}+R^{\delta _5/\widetilde{p}}) ^{p}. \label{4.14}
\end{equation}
Now, let
\begin{equation*}
S_1=\frac{1}{\widetilde{p}}\max ( \delta _4,\delta _5) +
\frac{q}{\widetilde{q}}\max ( \theta _4,\theta _5) ,\quad
S_2= \frac{1}{\widetilde{q}}\max ( \theta _4,\theta _5) +\frac{p}{
\widetilde{p}}\max ( \delta _4,\delta _5) .
\end{equation*}
If
\begin{equation}
S_1<0,\quad\text{and}\quad S_2<0, \label{4.15}
\end{equation}
we have $( R^{\delta _4/\widetilde{p}}
+R^{\delta _5/\widetilde{p}})
( R^{\theta _4/\widetilde{q}}
+R^{\theta _5/\widetilde{q}}) ^{q}\to 0$ and
$( R^{\frac{ \theta _4}{\widetilde{q}}}
+R^{\theta _5/\widetilde{q}}) ( R^{\delta _4/\widetilde{p}}
+R^{\delta _5/\widetilde{p}}) ^{p}\to 0$ as $R\to \infty $. Hence,
by \eqref{4.14}, both $I$ and $J$ vanish as $R\to \infty $. This
implies that $J^{q}=\int_{Q_T}| u| ^{q}\varphi $
converges to $\int_{Q_{\infty }}| u| ^{q}\varphi =0$
and $I^{p}=\int_{Q_T}| v| ^{p}\varphi $ converges to
$\int_{Q_{\infty }}| v| ^{p}\varphi =0$. Consequently,
$u\equiv 0$ and $v\equiv 0$.
As $S_1<0$, then we have $\max ( \theta _4,\theta _5) <0$
or $\max ( \delta _4,\delta _5) <0$. Suppose that
$\max( \theta _4,\theta _5) <0$ and let again $R\to \infty$.
By \eqref{4.10}, we obtain $\int_{\mathbb{R}^{N}}u_1=0$, which
contradicts $\int_{\mathbb{R}^{N}}u_1>0$.
Now, we return to the condition \eqref{4.15} that lead to the contradiction.
Inequalities $S_1<0$ and $S_2<0$ are equivalent to
\begin{equation}
\begin{gathered}
S_1=-2\Big( q\min ( \beta _1,\frac{\ell _1}{\rho }) +\min
( \beta _2,\frac{\ell _2}{\rho }) \Big)
+( \frac{N}{ \rho }+2) \frac{pq-1}{p}<0 \\
S_2=-2\Big( p\min ( \beta _2,\frac{\ell _2}{\rho }) +\min
( \beta _1,\frac{\ell _1}{\rho }) \Big)
+( \frac{N}{ \rho }+2) \frac{pq-1}{q}<0.
\end{gathered}\label{4.15.5}
\end{equation}
Let us take $\rho =\overline{\rho }=\min ( \frac{\ell _1}{\beta _1},
\frac{\ell _2}{\beta _2}) $. We have
\begin{equation*}
\min \big( \beta _1,\frac{\ell _1}{\rho }\big) =\beta _1\quad\text{and}\quad
\min \big( \beta _2,\frac{\ell _2}{\rho }\big) =\beta _2.
\end{equation*}
The inequalities in \eqref{4.15.5} can now be written as
\begin{equation}
\begin{gathered}
S_1=-2( q\beta _1+\beta _2) \overline{\rho }+( N+2
\overline{\rho }) \frac{pq-1}{p}<0 \\
S_2=-2( p\beta _2+\beta _1) \overline{\rho }+( N+2
\overline{\rho }) \frac{pq-1}{p}<0,
\end{gathered} \label{4.16}
\end{equation}
which are equivalent to
\begin{equation*}
1