\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 22, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/22\hfil Existence and decay of solutions] {Existence and decay of solutions to a viscoelastic plate equation} \author[S. A. Messaoudi, S. E. Mukiawa \hfil EJDE-2016/22\hfilneg] {Salim A. Messaoudi, Soh Edwin Mukiawa} \address{Salim A. Messaoudi \newline Department of Mathematics and Statistics\\ King Fahd University of Petroleum and Minerals\\ Dhahran 31261, Saudi Arabia} \email{messaoud@kfupm.edu.sa} \address{Soh Edwin Mukiawa \newline Department of Mathematics and Statistics\\ King Fahd University of Petroleum and Minerals\\ Dhahran 31261, Saudi Arabia} \email{g201206120@kfupm.edu.sa} \thanks{Submitted October 12, 2015. Published January 13, 2016.} \subjclass[2010]{35L35, 37B25, 34D20, 74H20, 74H25} \keywords{Existence; decay; plate viscoelastic; fourth order} \begin{abstract} In this article we study the fourth-order viscoelastic plate equation \[ u_{tt} + \Delta^2 u -\int_0^t g(t-\tau)\Delta^2u(\tau)d\tau = 0 \] in the bounded domain $\Omega = (0,\pi)\times(-\ell,\ell)\subset\mathbb{R}^2$ with non traditional boundary conditions. We establish the well-posedness and a decay result. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} This article is devoted to the well-posedness and the decay rate of the energy functional for the fourth-order viscoelastic plate problem \begin{equation} \label{p1} \begin{gathered} u_{tt} + \Delta^{2} u -\int_0^t g(t-\tau)\Delta^2u(\tau)d\tau = 0 ,\quad \Omega\times (0,T) \\ u(0,y,t) = u_{xx}(0, y, t) = 0 ,\quad\text{for } (y,t)\in (-\ell, \ell)\times (0, T) \\ u(\pi, y, t) = u_{xx}(\pi, y, t) = 0 ,\quad\text{for }(y,t)\in (-\ell, \ell)\times(0,T) \\ u_{yy}(x, \pm l, t) + \sigma u_{xx}(x, \pm l, t) = 0, \quad\text{for } (x,t)\in (0,\pi)\times (0,T) \\ u_{yyy}(x, \pm l, t) + (2-\sigma)u_{xxy}(x, \pm l, t) = 0 , \quad\text{for }(x,t)\in (0,\pi)\times (0,T)\\ u(x, y, 0) = u_0(x, y),\quad u_t(x, y, 0 )= u_1(x, y) , \quad\text{in } \Omega \end{gathered} \end{equation} where $\Omega =(0,\pi)\times(-\ell,\ell)$, $0 < \sigma < \frac{1}{2}$ and $g$ is a positive and nonincreasing function. This type of problems models the motion of a viscoelastic plate. The fundamental work of Ferrero and Gazzola \cite{Gaz} in $2013$, where they modeled a suspension bridge as a rectangular plate with the same boundary conditions as \eqref{p1}, suggests the investigation of the viscoelastic material used in construction. Al-Gwaiz et al \cite{gwa} also investigated the bending and stretching energies of the rectangular plate model suggested in \cite{Gaz}. Contributions on the analysis of a suspension bridge have also come from Mckenna and Walter \cite{mckenna}, Mckenna et al \cite{mckenna1}, Ma and Zhong \cite{maa2} and Bochicchio et al \cite{bo2}. The existence, decay and blow up properties of viscoelastic problems has attracted a lot of attention since the pioneer work by Dafermos \cite{da,daa} in $1970$. Hence, a considerable number of results for models similar to \eqref{p1}, for both second and fourth order have been established. We begin with the result of Messaoudi \cite{SA}, where he considered \begin{equation} \label{mm} u_{tt} - \Delta u + \int_0^t g(t-\tau)\Delta u(\tau)d\tau = 0, \quad\text{in } \Omega\times(0,+\infty) \end{equation} with general conditions on the relaxation function $g$, and proved a general decay result that is not necessarily of exponential or polynomial type. His result generalized and improved many results in literature such as \cite{raaaa,raaa,raa,ra,ma}. Rivera et al \cite{RI} considered the fourth-order equation \begin{equation} u_{tt} + \gamma\Delta u_{tt} + \Delta^{2} u -\int_0^t g(t-\tau)\Delta^2u(\tau)d\tau = 0,\quad\text{in } \Omega\times(0,T) \end{equation} together with initial and dynamical boundary conditions and proved that the sum of the first and second energies decays exponentially (polynomially) if the kernel $g$ decays exponentially (polynomially). Mustafa and Ghassan \cite{New5} considered the plate equation \begin{equation} u_{tt} + \Delta^{2} u = 0,\quad\text{in }\Omega\times(0,+\infty) \end{equation} with viscoelastic damping localized on a part of the boundary and established a decay result. For more results related to the plate equation, we refer the reader to Messaoudi \cite{edwin}, Kang \cite{tih}, Santos and Junior \cite{tip}, Lagnese \cite{jj}, Horn and Lasiecka \cite{hh}, Lasiecka \cite{rr}, and Lasiecka et al \cite{rr2}, Cabanillas et al \cite{raaaaa} Lasiecka et al \cite{lesi}. The aim of this work is to take advantage of the techniques used in \cite{SA} and the new model in \cite{Gaz} to establish a global existence and general decay results for problem \eqref{p1}. We organize this work as follows. In section 2, we present some important and fundamental materials to be used in establishing our main results. In section 3, we state and prove the global existence result. Finally, in section 4 we state and prove the general decay result. \section{Preliminaries} In this section, we present some fundamental materials needed for the proof of our main results. For this, we assume the following conditions on the relaxation function $g$. \begin{itemize} \item[(A1)] $g:\mathbb{R_+}\to \mathbb{R_+}$ is a differentiable function such that \begin{equation} g(0) > 0, \quad 1 - \int_0^{+\infty}g(s)ds = l_0 > 0. \end{equation} \item[(A2)] There exists a differentiable function $\xi$ satisfying \begin{equation} \begin{gathered} g'(t)\leq -\xi(t)g(t),\quad t\geq 0\\ \xi(t)> 0,\quad \xi'(t)\leq 0,\quad \forall t > 0,\quad \int_0^{+\infty}\xi(s)ds = +\infty \end{gathered} \end{equation} \end{itemize} The following three functions satisfy (A1)--(A2). \begin{gather*} g_1(t)=\frac{ae^{-t}}{(1+t)}, \quad a>0, \\ g_2(t)= \frac{a}{(1+t)^p},\quad p>1, \; a>0, g_3(t)= ae^{-b(1+t)^p},\quad 00. \end{gather*} We introduce the space \begin{equation} H_{\ast}^{2}(\Omega) = \{w\in H^{2}(\Omega): w =0 \text{ on } \{0, \pi \} \times (-\ell,\ell) \}, \end{equation} with the inner product \begin{equation} \label{p2} (u,v)_{H_{\ast}^2}=\int_{\Omega}[(\Delta u\Delta v +(1-\sigma)(2u_{xy}v_{xy}-u_{xx}v_{yy}-u_{yy}v_{xx})]\,dx\,dy, \end{equation} and set $\mathcal{H}(\Omega) $ as the dual of $ H_{\ast}^2(\Omega)$. For completeness, we state some results from Ferrero and Gazzola \cite{Gaz}. \begin{lemma}[\cite{Gaz}] \label{p3} Assume $0 < \sigma <1/2$. Then the norm $\|\cdot\|_{H_{\ast}^2(\Omega)}$ given by $\|\cdot\|_{H_{\ast}^2(\Omega)}^2= (\cdot,\cdot)_{H_*^2}$ is equivalent to the usual $H^2(\Omega)$-norm. Moreover, $H_*^2(\Omega)$ is a Hilbert space when endowed with the scalar product $(u,v)_{H_*^2}$. \end{lemma} \begin{theorem}[\cite{Gaz}] Assume $0 < \sigma <1/2$ and let $f \in L^2(\Omega)$. Then there exists a unique function $u \in H_{\ast}^2(\Omega)$ such that \begin{equation}\label{555} \int_{\Omega} [\Delta u \Delta v +(1-\sigma)(2u_{xy} v_{xy} -u_{xx} v_{yy}-u_{yy} v_{xx} )]\,dx\,dy = \int_{\Omega} fv, \end{equation} for all $v\in H_*^2(\Omega)$. \end{theorem} The function $u \in H_{\ast}^2(\Omega)$ satisfying \eqref{555} is called the weak solution of the stationary problem \begin{equation} \label{pp} \begin{gathered} \Delta^2 u = f,\\ u(0,y)= u_{xx}(0,y)= u(\pi,y)= u_{xx}(\pi,y) = 0,\\ u_{yy}(x,\pm l) + \sigma u_{xx}(x,\pm l) = u_{yyy}(x,\pm l) + (2-\sigma)u_{xxy}(x,\pm l) = 0. \end{gathered} \end{equation} \begin{lemma}[\cite{wang}] \label{lem} Let $u \in H_{\ast}^2(\Omega)$ and assume $1 \leq p < +\infty$. Then, there exists a positive constant $C_e = C_e(\Omega,p)> 0$ such that $$ \|u\|_p^p \leq C_e\|u\|_{H_{\ast}^2(\Omega)}^p. $$ \end{lemma} Let us also introduce the energy functional associated to problem \eqref{p1}, \begin{equation} \label{p5} E(t)= \frac{1}{2}\int_{\Omega} u_t^2 + \frac{1}{2} \Big(1 - \int_0^t g(s)ds\Big)\|u\|_{H_{\ast}^2(\Omega)}^2 + \frac{1}{2}\int_0^t g(t-\tau)\|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau. \end{equation} \section{Well-posedness} In this section, we show that problem \eqref{p1} has a unique global weak solution. \begin{definition} \label{def3.1} \rm A function \begin{equation} u\in C( [0,T), H_{\ast}^2(\Omega))\cap C^1( [0,T), L^2(\Omega))\cap C^2([0,T),\mathcal{H}(\Omega)) \end{equation} is called a weak solution of \eqref{p1} if \begin{equation}\label{e1} \begin{gathered} \int_{\Omega} u_{tt}w + (u,w)_{H_{\ast}^2(\Omega)} -\int_0^t g(t-\tau)(u(\tau),w)_{H_{\ast}^2(\Omega)} d\tau = 0, \quad \forall w\in H_{\ast}^2(\Omega), \\ u(0) = u_0, \quad u_t(0) = u_1. \end{gathered} \end{equation} \end{definition} \begin{theorem} \label{thm3.1} Let $(u_0,u_1)\in H_{\ast}^2(\Omega)\times L^2(\Omega)$. Assume that {\rm (A1), (A2)} hold. Then problem \eqref{p1} has a unique weak global solution \begin{equation} u\in C( [0,T), H_{\ast}^2(\Omega)),\quad u_t\in C([0,T), L^2(\Omega)),\quad u_{tt}\in C([0,T),\mathcal{H}(\Omega)) \end{equation} \end{theorem} \begin{proof} We use the Galerkin approximation method. Let $\{ w_j\} _{j=1}^{\infty}$ be a basis of the separable space $H_{\ast}^2(\Omega)$ and $V_m = \operatorname{span}\{ w_1,w_2,\dots,w_m \} $ be a finite subspace of $H_{\ast}^2(\Omega)$ spanned by the first $m$ vectors. Let $$ u_0^m(x,y)= \sum_{j=1}^{m} a_jw_j(x,y)\quad\text{and}\quad u_1^m(x,y)= \sum_{j=1}^{m} b_jw_j(x,y) $$ be sequences in $ H_{\ast}^2(\Omega)$ and $L^2(\Omega)$ respectively, such that \begin{equation} \label{666} u_0^m \to u_0\text{ in }H_{\ast}^2(\Omega),\quad u_1^m\to u_1\text{ in }L^2(\Omega). \end{equation} We seek a solution of the form $$ u^m(x,y,t)=\sum_{j=1}^{m} c_j(t)w_j(x,y), $$ which satisfies the approximate problem \begin{equation} \label{e2} \begin{gathered} \begin{aligned} &\int_{\Omega} u_{tt}^m(x,y,t)w_j + (u^m(x,y,t),w_j)_{H_{\ast}^2(\Omega)} \\ & -\int_0^t g(t-\tau)(u^m(x,y,\tau),w_j)_{H_{\ast}^2(\Omega)} d\tau =0,\quad \forall w_j\in V_m,\; j=1,2,\dots,m. \end{aligned}\\ u^m(0) = u_0^m, \quad u_t^m(0) = u_1^m\,. \end{gathered} \end{equation} We note that \eqref{e2} leads to system of ODEs with $m$ unknown functions $c_j$, $j=1,2,\dots,m$. Thus, using ODE theory (see \cite{cavalcanti}), we obtain functions $$ c_j :[0,t_m)\to \mathbb{R}, \ j=1,2,\dots,m, $$ which satisfy \eqref{e2} for almost every $t\in (0, t_m),\ 0 < t_m < T$. Therefore, we obtain a local solution $u^m$ of $\eqref{e2}$ in a maximal interval $[0,t_m),t_m\in(0,T]$. Next, we show that $t_m = T$ and that the local solution is uniformly bounded independent of $m$ and $t$. For this, we multiply $\eqref{e2}$ by $c'_j(t)$ and sum over $j=1,2,\dots,m$, to obtain \begin{align*} &\frac{d}{dt}\Big[\frac{1}{2}\|u_t^m\|^2_{L^2(\Omega)} + \frac{1}{2}(1 - \int_0^t g(s)ds)\|u^m\|_{H_{\ast}^2(\Omega)}^2 \\ &\quad + \frac{1}{2}\int_0^t g(t-\tau) \|u^m(t)-u^m(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau \Big] \\ &= \frac{1}{2}\int_0^t g'(t-\tau)\|u^m(t)- u^m(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau - \frac{1}{2}g(t)\|u^m\|_{H_{\ast}^2(\Omega)}^2 \end{align*} It follows from \eqref{p5} that \begin{equation} \label{e3} \frac{d}{dt}E^m(t) = \frac{1}{2}\int_0^t g'(t-\tau)\|u^m(t)- u^m(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau - \frac{1}{2}g(t)\|u^m\|_{H_{\ast}^2(\Omega)}^2 \leq 0, \end{equation} by assumptions (A1) and (A2). Integrating \eqref{e3} over $(0,t)$, $t\in(0,t_m)$ and noting that $(u_0^m)$ and $(u_1^m)$ are bounded in $ H_{\ast}^2(\Omega)$ and $L^2(\Omega)$ respectively (as convergent sequences \eqref{666}), we obtain \begin{equation} E^m(t)\leq E^m(0)=\frac{1}{2}\|u_1^m\|^2_{L^2(\Omega)} + \frac{1}{2}\|u_0^m\|_{H_{\ast}^2(\Omega)}^2 \leq C \end{equation} where $C$ is a positive constant independent of $m$ and $t$. Therefore, \begin{align*} &\frac{1}{2}\|u_t^m\|^2_{L^2(\Omega)} + \frac{1}{2}(1 - \int_0^t g(s)ds)\|u^m\|_{H_{\ast}^2(\Omega)}^2 \\ &+ \frac{1}{2}\int_0^t g(t-\tau)\|u^m(t)-u^m(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau \leq C. \end{align*} This implies \begin{equation}\label{777} \frac{1}{2}\sup_{t\in (0,t_m)}\|u_t^m\|^2_{L^2(\Omega)} + \frac{l_0}{2}\sup_{t\in (0,t_m)}\|u^m\|_{H_{\ast}^2(\Omega)}^2 \leq C. \end{equation} So, the approximate solution is uniformly bounded independent of $m$ and $t$. Therefore, we can extend $t_m$ to $T$. Moreover, we obtain from \eqref{777} that \begin{equation} \label{e4} \begin{gathered} (u^m)\text{is a bounded sequence in } L^{\infty}((0,T),H_{\ast}^2(\Omega)),\\ (u^m_t)\text{ is a bounded sequence in } L^{\infty}((0,T),L^2(\Omega)). \end{gathered} \end{equation} Thus, there exists a subsequence $(u^k)$ of $(u^m)$ such that \begin{equation} \label{e5} \begin{gathered} u^k\rightharpoonup u \text{ weakly star in $L^{\infty}((0,T),H_{\ast}^2(\Omega))$ and weakly in } L^2((0,T),H_{\ast}^2(\Omega))\\ u_t^k\rightharpoonup u_t \text{ weakly star in $L^{\infty}((0,T),L^2(\Omega))$ and weakly in }L^2((0,T),L^2(\Omega)) \end{gathered} \end{equation} Using that $H_{\ast}^2(\Omega)$ is compactly embedded in $L^2(\Omega)$ (remember that $\Omega$ is bounded and $H_{\ast}^2(\Omega) \subset H^2(\Omega))$, we can extract a subsequence $(u^l)$ of $(u^k)$ such that \begin{gather*} u^l\to u\text{ strongly in } L^2((0,T),L^2(\Omega)), \\ u^l\to u\text{ a.e in }\Omega\times(0,T). \end{gather*} Now, replacing $(u^m)$ by $(u^l)$ in \eqref{e2} and integrating over $(0,t)$ we obtain \begin{equation} \label{e6} \begin{aligned} &\int_{\Omega} u_t^lw_j + \int_0^t(u^l,w_j)_{H_{\ast}^2(\Omega)}dt - \int_0^t\int_0^s g(s-\tau)(u^l(\tau),w_j)_{H_{\ast}^2(\Omega)} d\tau ds\\ & = \int_{\Omega} u_1^lw_j,\quad \forall j\leq l. \end{aligned} \end{equation} Letting $l\to +\infty$, we obtain \begin{equation}\label{e7} \begin{aligned} &\int_{\Omega} u_tw_j + \int_0^t(u,w_j)_{H_{\ast}^2(\Omega)}dt - \int_0^t\int_0^s g(s-\tau)(u(\tau),w_j)_{H_{\ast}^2(\Omega)} d\tau ds\\ & =\int_{\Omega} u_1 w_j,\quad \forall j\geq 1. \end{aligned} \end{equation} This implies \begin{equation}\label{e8} \begin{aligned} \int_{\Omega} u_tw &= - \int_0^t(u,w)_{H_{\ast}^2(\Omega)}dt + \int_0^t \int_0^s g(s-\tau)(u(\tau),w)_{H_{\ast}^2(\Omega)} d\tau ds\\ &\quad + \int_{\Omega} u_1w,\quad \forall w\in H_{\ast}^2(\Omega). \end{aligned} \end{equation} Now, observe that the terms in the right-hand side of \eqref{e8} are absolutely continuous since they are functions of $t$ defined by integrals over $(0,t)$, hence differentiable almost everywhere. Thus, differentiating \eqref{e8}, we obtain that for a.e $t\in (0,T)$, \begin{equation} \label{e9} \int_{\Omega} u_{tt}w + (u,w)_{H_{\ast}^2(\Omega)} - \int_0^t g(t-\tau)(u(\tau),w)_{H_{\ast}^2(\Omega)} d\tau = 0 \end{equation} for all $w\in L^2((0,T), H_{\ast}^2(\Omega))$. To handle the initial conditions, we note that \begin{equation} \begin{gathered} u^l\rightharpoonup u \text{ weakly in }L^2((0,T),H_{\ast}^2(\Omega))\\ u_t^l\rightharpoonup u_t \text{ weakly in }L^2((0,T),L^2(\Omega)) \end{gathered} \end{equation} Thus, using Lions' Lemma \cite{jean}, we obtain \begin{equation} u^l \to u \quad\text{in } C([0,T),L^2(\Omega)). \end{equation} Therefore, $u^l(x,y,0)$ makes sense and $u^l(x,y,0)\to u(x,y,0)$ in $L^2(\Omega)$. Also we have that $$ u^l(x,y,0)=u_0^l(x,y)\to u_0(x,y) \quad\text{in }H_*^2(\Omega). $$ Hence \begin{equation}\label{ic1} u(x,y,0) = u_0(x,y). \end{equation} As in \cite{Gaz,marie}, let $\phi\in C_0^{\infty}(0,T)$ and replacing $(u^m)$ by $(u^l)$, we obtain from $\eqref{e2}$ and for any $j\leq l$ that \begin{equation} \begin{aligned} &-\int_0^T( u^l_t(t),w_j)_{L^2(\Omega)}\phi'(t)dt \\ &= -\int_0^T(u^l(t),w_j )_{H_*^2(\Omega)}\phi(t)dt + \int_0^T\int_0^t g(t-\tau)(u^l(\tau),w_j)_{H_{\ast}^2(\Omega)} \phi(t)d\tau dt. \end{aligned} \end{equation} As $l\to +\infty$, we obtain that \begin{align*} &-\int_0^T( u_t(t),w_j)_{L^2(\Omega)}\phi'(t)dt \\ &= -\int_0^T(u(t),w_j )_{H_*^2(\Omega)}\phi(t)dt + \int_0^T\int_0^t g(t-\tau)(u(\tau),w_j)_{H_{\ast}^2(\Omega)} \phi(t)d\tau dt, \end{align*} for all $j\geq 1$. This implies \begin{align*} &-\int_0^T( u_t(t),w)_{L^2(\Omega)}\phi'(t)dt \\ &= -\int_0^T(u(t),w )_{H_*^2(\Omega)}\phi(t)dt + \int_0^T\int_0^t g(t-\tau)(u(\tau),w)_{H_{\ast}^2(\Omega)} \phi(t)d\tau dt, \end{align*} for all $w\in H_*^2(\Omega)$. This means $u_{tt}\in L^2([0,T),\mathcal{H}(\Omega))$. Thus, \begin{equation} u_t \in L^2([0,T),L^2(\Omega)),\quad u_{tt}\in L^2([0,T),\mathcal{H}(\Omega))\Longrightarrow u_t \in C([0,T),\mathcal{H}(\Omega)). \end{equation} So, $u_t^l(x,y,0)$ makes sense (see \cite[p.116]{marie}). It follows that $$ u_t^l(x,y,0)\to u_t(x,y,0)\quad\text{in } \mathcal{H}(\Omega). $$ But $$ u_t^l(x,y,0)=u_1^l(x,y)\to u_1(x,y)\quad\text{in }L^2(\Omega). $$ Hence \begin{equation} \label{ic2} u_t(x,y,0) = u_1(x,y). \end{equation} For the uniqueness, suppose $u$ and $\bar{u}$ satisfy \eqref{e9}, \eqref{ic1} and \eqref{ic2}. Then $v = u-\bar{u}$ satisfies \begin{equation} \label{e11} \begin{gathered} \int_{\Omega} v_{tt}w + (v,w)_{H_{\ast}^2(\Omega)} - \int_0^t g(t-\tau)(v(\tau),w)_{H_{\ast}^2(\Omega)} d\tau = 0 ,\\ \forall w\in L^2((0,T), H_{\ast}^2(\Omega)),\\ v(0) = v_t(0) = 0. \end{gathered} \end{equation} Replacing $w$ by $v_t$ in \eqref{e11}, we obtain \begin{equation} \label{e12} \frac{d}{dt}\Big[\frac{1}{2}\int_{\Omega} v_t^2 + \frac{1}{2}\|v\|_{H_{\ast}^2(\Omega)}^2 \Big] -\int_0^t g(t-\tau)(v(\tau),v_t(t))_{H_{\ast}^2(\Omega)}d\tau = 0. \end{equation} We have that \begin{equation} \label{p11} \begin{aligned} J_1 &= -\int_0^t g(t-\tau)(v(\tau),v_t(t))_{H_{\ast}^2(\Omega)}d\tau\\ &= \int_0^t g(t-\tau)(v_t(t),v(t)-v(\tau))_{H_{\ast}^2(\Omega)}d\tau - \int_0^t g(s)ds(v_t(t),v(t))_{H_{\ast}^2(\Omega)}\\ &= \int_0^t g(t-\tau)\frac{d}{dt}\frac{1}{2}\|v(t) - v(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau - \int_0^t g(s)ds\frac{d}{dt}\frac{1}{2}\|v(t)\|_{H_{\ast}^2(\Omega)}^2 \\ &= \frac{d}{dt}\frac{1}{2} \int_0^t g(t-\tau)\|v(t)- v(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau \\ &\quad -\frac{1}{2} \int_0^t g'(t-\tau)\|v(t)- v(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau\\ &\quad -\frac{d}{dt}\frac{1}{2}\int_0^t g(s)ds\|v(t)\|_{H_{\ast}^2(\Omega)}^2 + \frac{1}{2}g(t)\|v(t)\|_{H_{\ast}^2(\Omega)}^2. \end{aligned} \end{equation} Inserting \eqref{p11} into \eqref{e12} and taking note of \eqref{p5}, we obtain \begin{equation}\label{p12} \frac{d\tilde{E}(t)}{dt} = \frac{1}{2} \int_0^t g'(t-\tau)\|v(t)- v(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau - \frac{1}{2}g(t)\|v(t)\|_{H_{\ast}^2(\Omega)}^2 \leq 0, \end{equation} by (A1) and (A2). Integrating \eqref{p12} over $(0,t)$, we obtain \begin{equation} \tilde{E}(t)\leq \tilde{E}(0)= 0. \end{equation} This implies $$ \|v_t\|^2_{L^2(\Omega)} + \|v\|_{H_{\ast}^2(\Omega)}^2 = 0. $$ Therefore, $u = \bar{u}$. The proof is complete. \end{proof} \section{Decay of solutions} In this section, we discuss the stability of solution of problem \eqref{p1}. Let us begin by defining the Lyapunov functional \begin{equation} \label{p6} F(t)= E(t) + \epsilon_1\Psi(t) + \epsilon_2\chi(t), \end{equation} where $\epsilon_1$ and $\epsilon_2$ are positive constants to be specified later and \begin{equation} \label{p7} \begin{gathered} \Psi(t)= \int_{\Omega} uu_t,\\ \chi(t)= -\int_{\Omega} u_t\int_0^t g(t-\tau)(u(t)-u(\tau))d\tau \,dx\,dy. \end{gathered} \end{equation} \begin{lemma} \label{lem4.1} Assume {\rm (A1), (A2)} hold. Then the energy functional, defined in \eqref{p5}, satisfies \begin{equation} \label{p8} \frac{dE(t)}{dt} = \frac{1}{2}\int_0^t g'(t-\tau)\|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau - \frac{1}{2}g(t)\|u\|_{H_{\ast}^2(\Omega)}^2 \leq 0. \end{equation} \end{lemma} \begin{proof} By using $\eqref{e9}$ and the density of $H_{\ast}^2(\Omega)$ in $L^2(\Omega)$ we obtain \begin{equation} \label{f2} \int_{\Omega} u_{tt}w + (u,w)_{H_{\ast}^2(\Omega)} - \int_0^t g(t-\tau)(u(\tau),w)_{H_{\ast}^2(\Omega)} d\tau = 0 \end{equation} for all $w\in L^2([0,T), L^2(\Omega))$. Repeating exactly the same arguments as in \eqref{e12}-\eqref{p12}, we obtain the result. \end{proof} \begin{lemma} \label{p13} For every $u\in H_{\ast}^2(\Omega)$, we have \begin{equation}\label{p14} \begin{aligned} &\int_{\Omega}\Big( \int_0^t g(t-\tau)(u(t)-u(\tau))d\tau\Big)^2 \,dx\,dy \\ &\leq C_e(1-l_0) \int_0^t g(t-\tau)\|u(t)- u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau, \end{aligned} \end{equation} where $C_e >0$ is the embedding constant introduced in Lemma \ref{lem}. \end{lemma} \begin{proof} Since $g$ is positive, we have \[ \int_{\Omega}\Big( \int_0^t g(t-\tau)(u(t)-u(\tau))d\tau\Big)^2 =\int_{\Omega}\Big( \int_0^t \sqrt{ g(t-\tau)}\sqrt{ g(t-\tau)}(u(t)-u(\tau))d\tau \Big)^2 \] By applying Cauchy-Schwarz, (A1) and Lemma \ref{lem}, we obtain \begin{align*} &\int_{\Omega}( \int_0^t g(t-\tau)(u(t)-u(\tau))d\tau)^2\\ &\leq \int_{\Omega}( \int_0^t g(s)ds)( \int_0^t g(t-\tau)(u(t)- u(\tau))^2 d\tau)\\ &\leq C_e(1-l_0) \int_0^t g(t-\tau)\|u(t)- u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau . \end{align*} \end{proof} \begin{lemma} For $\epsilon_1$ and $\epsilon_2$ small enough, there exists two positive constants $\alpha_1$ and $\alpha_2$ such that \begin{equation} \label{p15} \alpha_1 F(t)\leq E(t)\leq \alpha_2 F(t) \end{equation} \end{lemma} The proof of the above lemma uses similar techniques as in \cite[Lemma 3.3]{SA}; we omit it here. \begin{lemma} \label{p18} Under assumptions {\rm (A1), (A2)}, the functional $$ \Psi(t)= \int_{\Omega} uu_t $$ satisfies, along the solution of \eqref{p1}, \begin{equation} \label{p19} \Psi'(t)\leq \int_{\Omega}u_t^2 - \frac{l_0}{2}\|u\|_{H_{\ast}^2(\Omega)}^2 + \frac{1-l_0}{2l_0}\int_0^t g(t-\tau)\| u(t) - u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau. \end{equation} \end{lemma} \begin{proof} By using \eqref{e9} and replacing $w$ by $u$, direct differentiations yield \begin{equation} \label{p20} \Psi'(t)= \int_{\Omega}u_t^2 - \|u\|_{H_{\ast}^2(\Omega)}^2 + \int_0^t g(t-\tau)( u(t), u(\tau))_{H_{\ast}^2(\Omega)}d\tau. \end{equation} By using Cauchy-Schwarz and Young's inequalities, we estimate the third term $$ J_2 =\int_0^t g(t-\tau)( u(t),u(\tau))_{H_{\ast}^2(\Omega)}d\tau, $$ for any $\eta>0$, as follows \begin{align*} J_2 &\leq \int_0^t g(t-\tau)\|u(t)\|_{H_{\ast}^2(\Omega)} \|u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau\\ &\leq \frac{1}{2}\|u(t)\|_{H_{\ast}^2(\Omega)}^2 + \frac{1}{2}\Big(\int_0^t g(t-\tau)(\|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)} +\|u(t)\|_{H_{\ast}^2(\Omega)})d\tau\Big)^2\\ &= \frac{1}{2}\|u(t)\|_{H_{\ast}^2(\Omega)}^2 + \frac{1}{2}\Big(\int_0^t g(t-\tau)\|u(t)- u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau\Big)^2\\ &\quad +\frac{1}{2}(\int_0^t g(t-\tau)\|u(t)\|_{H_{\ast}^2(\Omega)})d\tau)^2\\ &\quad +\Big(\int_0^t g(t-\tau)\|u(t)- u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau\Big) \Big(\int_0^t g(t-\tau)\|u(t)\|_{H_{\ast}^2(\Omega)}d\tau\Big). \end{align*} By using Lemma \ref{p13}, we obtain \begin{equation} \label{p21} \begin{aligned} J_2 &\leq \frac{1}{2}(1 +(1-l_0)^2 )\|u\|_{H_{\ast}^2(\Omega)}^2 + \frac{1}{2}(1-l_0)\int_0^t g(t-\tau)\|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau\\ &\quad +\frac{\eta}{2}(\int_0^t g(t-\tau)\|u(t)\|_{H_{\ast}^2(\Omega)}d\tau)^2 + \frac{1}{2\eta}(\int_0^t g(t-\tau)\|u(t)- u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau)^2\\ &\leq \frac{1}{2}(1 +(1-l_0)^2(1+\eta))\|u\|_{H_{\ast}^2(\Omega)}^2 \\ &\quad +\frac{1}{2}(1-l_0)(1+\frac{1}{\eta})\int_0^t g(t-\tau) \|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau. \end{aligned} \end{equation} Now, substituting \eqref{p21} in \eqref{p20}, we obtain \begin{equation} \label{p22} \begin{aligned} \Psi'(t)&\leq \int_{\Omega}u_t^2 + \frac{1}{2}((1-l_0)^2(1+\eta) - 1 ) \|u\|_{H_{\ast}^2(\Omega)}^2\\ &\quad +\frac{1}{2}(1-l_0)(1+\frac{1}{\eta})\int_0^t g(t-\tau) \|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau,\quad \forall \eta >0. \end{aligned} \end{equation} We choose $\eta = \frac{l_0}{1-l_0}$ and obtain the result. \end{proof} \begin{lemma} \label{p23} Assume conditions $(A1)$ and $(A2)$ hold. Then the functional \begin{equation} \label{p24} \chi(t)= -\int_{\Omega} u_t\int_0^t g(t-\tau)(u(t)-u(\tau))d\tau \,dx\,dy \end{equation} satisfies, along the solution of \eqref{p1}, \begin{equation} \label{p25} \begin{aligned} \chi'(t)&\leq \Big(\frac{\delta}{2} -\int_0^t g(s)ds \Big) \int_{\Omega}u_t^2 + \frac{\delta}{2}( 1+2(1-l_0)^2)\|u\|_{H_{\ast}^2(\Omega)}^2\\ &\quad - \frac{C_eg(0)}{2\delta}\int_0^t g'(t-\tau) \|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau \\ &\quad + (1-l_0)(\delta + \frac{1}{\delta})\int_0^t g(t-\tau)\|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}^2 d\tau,\quad \forall \delta >0. \end{aligned} \end{equation} \end{lemma} \begin{proof} By differentiating \eqref{p24} and using \eqref{e9}, with $u$ instead of $w$, we obtain \begin{equation} \label{p26} \begin{aligned} \chi'(t)&= -\Big( \int_0^t g(s)ds\Big)\int_{\Omega}u_t^2 - \int_{\Omega} u_t\int_0^t g'(t-\tau)(u(t)-u(\tau))\,d\tau \,dx\,dy\\ &\quad - \int_{\Omega} u_{tt}\int_0^t g(t-\tau)(u(t)-u(\tau))\,d\tau \,dx\,dy\\ &= -\Big( \int_0^t g(s)ds\Big)\int_{\Omega}u_t^2 - \int_{\Omega} u_t\int_0^t g'(t-\tau)(u(t)-u(\tau))d\tau \,dx\,dy\\ &\quad + \Big( u(t),\int_0^t g(t-\tau)(u(t)-u(\tau))d\tau\Big)_{H_{\ast}^2(\Omega)} \\ &\quad - \int_0^t g(t-\tau)\Big(u(\tau), \int_0^t g(t-\tau)(u(t)-u(\tau))d\tau \Big)_{H_{\ast}^2(\Omega)}d\tau. \end{aligned} \end{equation} By using Cauchy-Schwarz inequality, Young's inequality and Lemma \ref{p13} for $-g'$ instead of $g$, we estimate the terms in the right-hand side of \eqref{p26}. Thus, for the term $$ J_3 =- \int_{\Omega} u_t\int_0^t g'(t-\tau)(u(t)-u(\tau))d\tau \,dx\,dy , $$ we have that for any $\delta > 0$, \begin{equation} \label{p27} \begin{aligned} J_3&\leq \frac{\delta}{2}\int_{\Omega}u_t^2 + \frac{1}{2\delta}\int_{\Omega} \Big(\int_0^t -g'(t-\tau)(u(t)-u(\tau))d\tau \Big)^2\,dx\,dy \\ &\leq \frac{\delta}{2}\int_{\Omega}u_t^2 + \frac{1}{2\delta}\int_{\Omega}\Big( \int_0^t -g'(s)ds\Big) \Big(\int_0^t -g'(t-\tau)(u(t)-u(\tau))^2d\tau \Big)\,dx\,dy\\ &\leq \frac{\delta}{2}\int_{\Omega}u_t^2 - \frac{C_eg(0)}{2\delta}\int_0^t g'(t-\tau) \|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau . \end{aligned} \end{equation} For the term $$ J_4 =( u(t),\int_0^t g(t-\tau)(u(t)-u(\tau)d\tau)_{H_{\ast}^2(\Omega)}, $$ we have \begin{equation} \label{p28} \begin{aligned} J_4&\leq \|u(t)\|_{H_{\ast}^2(\Omega)}\int_0^t g(t-\tau) \|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau\\ &\leq \frac{\delta}{2}\|u(t)\|_{H_{\ast}^2(\Omega)}^2 + \frac{1}{2\delta}( \int_0^t g(t-\tau) \| u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau ) ^2\\ &\leq \frac{\delta}{2}\|u(t)\|_{H_{\ast}^2(\Omega)}^2 + \frac{(1-l_0)}{2\delta}\int_0^t g(t-\tau) \| u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau. \end{aligned} \end{equation} Similarly, for the term $$ J_5 =-\int_0^t g(t-\tau)(u(\tau), \int_0^t g(t-\tau) (u(t)-u(\tau))d\tau)_{H_{\ast}^2(\Omega)}d\tau, $$ we obtain \begin{equation} \label{p29} \begin{aligned} J_5 &\leq \Big(\int_0^t g(t-\tau)\|u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau \Big) \Big(\int_0^t g(t-\tau)\| u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau \Big) \\ &\leq \frac{\delta}{2}\Big(\int_0^t g(t-\tau)( \|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)} + \|u(t)\|_{H_{\ast}^2(\Omega)}) d\tau\Big)^2 \\ &\quad +\frac{1}{2\delta}\Big(\int_0^t g(t-\tau) \|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)}d\tau \Big)^2\\ &\leq \frac{\delta}{2}\Big(\int_0^t g(t-\tau)\|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)} d\tau\Big)^2 \\ &\quad +\frac{\delta}{2}\Big(\int_0^t g(t-\tau)\|u(t)\|_{H_{\ast}^2(\Omega)}d\tau\Big)^2\\ &\quad + \delta (\int_0^t g(t-\tau)\|u(t)-u(\tau)\|_{H_{\ast}^2(\Omega)} d\tau) \Big(\int_0^t g(t-\tau)\|u(t)\|_{H_{\ast}^2(\Omega)}d\tau\Big)\\ &\quad +\frac{(1-l_0)}{2\delta}\int_0^t g(t-\tau)\|u(t)-u(\tau) \|^2_{H_{\ast}^2(\Omega)}d\tau\\ &\leq (\delta + \frac{1}{2\delta})(1-l_0) \int_0^t g(t-\tau)\|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau \\ &\quad +\delta (1- l_0)^2 \|u\|_{H_{\ast}^2(\Omega)}^2. \end{aligned} \end{equation} By substituting \eqref{p27}--\eqref{p29} in \eqref{p26}, we obtain \eqref{p25}, for any $\delta >0$. \end{proof} \begin{theorem} \label{thm4.1} Let $(u_0 , u_1)\in H_{\ast}^2(\Omega)\times L^2(\Omega)$. Assume $g$ and $\xi$ satisfy {\rm (A1)} and {\rm (A2)}. Then, for any $t_0>0$, there exist positive constants $K$ and $\lambda$ such that the solution of \eqref{p1} satisfies \begin{equation}\label{p30} E(t)\leq Ke^{-\lambda\int_{t_0}^t \xi(s)ds}, \quad \forall t\geq t_0. \end{equation} \end{theorem} \begin{proof} Since $g$ is positive, continuous, and $g(0)>0$, then for any $t\geq t_0$ we have $$ \int_0^t g(s)ds \geq \int_0^{t_0} g(s)ds = g_0 >0 . $$ Combination of \eqref{p8}, \eqref{p19} and \eqref{p25}, gives that for any $t\geq t_0$, \begin{equation} \label{p31} \begin{aligned} &F'(t)\\ &\leq -\Big( \epsilon_2( g_0 -\frac{\delta}{2})-\epsilon_1\Big) \int_{\Omega} u_t^2 - \Big( \frac{\epsilon_1l_0}{2}- \epsilon_2 \frac{\delta}{2}(1+2(1-l_0)^2)\Big) \|u\|_{H_{\ast}^2(\Omega)}^2\\ &\quad +\Big( \frac{1}{2}- \epsilon_2\frac{C_eg(0)}{2\delta}\Big) \int_0^t g'(t-\tau)\|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau\\ &\quad + \Big( \frac{\epsilon_1(1-l_0)}{2l_0}+ \epsilon_2(\delta + \frac{1}{\delta})(1-l_0)\Big) \int_0^t g(t-\tau)\|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau. \end{aligned} \end{equation} Now, we choose $\delta$ small enough such that \begin{equation} \label{p32} g_0 -\frac{\delta}{2} > \frac{g_0}{2}, \quad \frac{4\delta}{l_0}(1 + 2(1-l_0 )^2 ) < \frac{g_0}{4}. \end{equation} By using \eqref{p32}, we easily check that any $\epsilon_1$ and $\epsilon_2$, satisfying \begin{equation} \label{p34} \frac{\epsilon_2g_0}{16} < \epsilon_1 < \frac{\epsilon_2g_0}{2}, \end{equation} will make $$ \beta_1 = \Big( \epsilon_2( g_0 -\frac{\delta}{2})-\epsilon_1\Big)>0,\quad \beta_2 = \Big( \frac{\epsilon_1l_0}{2}- \epsilon_2 \frac{\delta}{2}(1+2(1-l_0)^2)\Big)>0. $$ Next, we pick $\epsilon_1$ and $\epsilon_2$ small enough such that \eqref{p15} and \eqref{p34} remain valid and further we have $$ \frac{1}{2}- \epsilon_2\frac{C_eg(0)}{2\delta}>0,\quad \frac{\epsilon_1(1-l_0)}{2l_0}+ \epsilon_2(\delta + \frac{1}{\delta})(1-l_0)>0. $$ Thus, \eqref{p31} becomes \begin{equation} \label{p35} \begin{aligned} F'(t) &\leq-\beta_1 \int_{\Omega} u_t^2 -\beta_2\|u\|_{H_{\ast}^2(\Omega)}^2 + \tilde{C}\int_0^t g(t-\tau)\|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau \\ &\leq -\beta E(t) + C\int_0^t g(t-\tau)\|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)} d\tau,\quad\forall t\geq t_0. \end{aligned} \end{equation} Multiplying \eqref{p35} by $\xi(t)$ and using the facts that $\xi$ is decreasing and \begin{equation} g'(t)\leq -\xi(t)g(t),\quad E'(t)\leq \frac{1}{2}\int_0^t g'(t-\tau)\|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau, \end{equation} we arrive at \begin{align*} \xi(t)F'(t) &\leq-\beta\xi(t) E(t) + C\xi(t)\int_0^t g(t-\tau) \|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau\\ &\leq -\beta\xi(t) E(t) + C\int_0^t \xi(t-\tau) g(t-\tau)\|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau\\ &\leq -\beta\xi(t) E(t) + C\int_0^t -g'(t-\tau) \|u(t)-u(\tau)\|^2_{H_{\ast}^2(\Omega)}d\tau\\ &\leq-\beta\xi(t) E(t) - CE'(t), \quad \forall t\geq t_0. \end{align*} This gives $$ (\xi(t)F(t) + CE(t) )' -\xi'(t)F(t) \leq -\beta\xi(t) E(t),\,\,\,\, \forall t\geq t_0. $$ Consequently, \begin{equation} \label{p37} ( \xi(t)F(t) + CE(t) )'\leq -\beta\xi(t) E(t),\quad \forall t\geq t_0. \end{equation} Let \begin{equation} \label{p39} L = \xi F + CE \sim E, \end{equation} since $F\sim E$ and $0\leq \xi(t)\leq \xi(0)$. Then \eqref{p37} and \eqref{p39} lead to \begin{equation} L'(t)\leq -\lambda\xi(t)L(t),\quad \forall t\geq t_0. \end{equation} A simple integration in $(t_0,t)$ yields \begin{equation} \label{p40} L(t)\leq L(t_0) e^{-\lambda\int_{t_0}^t \xi(s)ds} ,\quad \forall t\geq t_0. \end{equation} Again, recalling \eqref{p39}, we obtain \begin{equation} E(t)\leq Ke^{-\lambda\int_{t_0}^t \xi(s)ds} ,\quad \forall t\geq t_0. \end{equation} This completes the proof. \end{proof} \subsection*{Acknowledgements} The authors thank KFUPM for its continuous support and also thank Prof. Kirane for his careful reading and precious suggestions. \begin{thebibliography}{00} \bibitem{gwa} Al-Gwaiz, M.; Benci, V.; Gazzola, F.; \emph{Bending and stretching energies in a rectangular plate modeling suspension bridges}. Nonlinear Anal., 106 (2014), 18-34. \bibitem{raa} Barreto, R.; Mu\~noz Rivera, J. E; \emph{Uniform rates of decay in nonlinear viscoelasticity for polynomial decaying kernels}, Appl. Anal., 60 (1996), 263-283. \bibitem{ra} Barreto, R.; Lapa, E. C.; Mu\~nnoz Rivera, J. E; \emph{Decay rates for viscoelastic plates with memory}, J. Elasticity, 44 no.1 (1996), 61-87. \bibitem{raaaa} Berrimi, S.; Messaoudi, S. A.; \emph{Existence and decay of solutions of a viscoelastic equation with a nonlinear source}, Nonlinear Anal., 64 (2006), 2314-2331. \bibitem{raaa} Berrimi, S.; Messaoudi, S. A.; \emph{Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping}, Electron. J. Differential Equations, 88 (2004), 1-10. \bibitem{bo2} Bochicchio, I.; Giorgi, C.; Vuk, E.; \emph{Asymptotic dynamics of nonlinear coupled suspension bridge equations}, Journal of Math. Anal. Appl., 402 (2013), 319-333. \bibitem{Ha} Brezis, H.; \emph{Functional Analysis, Sobolev Spaces and Partial Differential Equations}, Math. Sci., springer 2010. \bibitem{raaaaa} Cabanillas, E. L.; Mu\~oz Rivera, J. E.; \emph{Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels}, Comm. Math. Phys., 177 (1996), 583-602. \bibitem{lesi} Cavalcanti, M. M.; Cavalcanti, A. D. D.; Lasiecka, I.; Wang, X.J.; \emph{Existence and sharp decay rate estimates for a von Karman system with long memory}, Nonlinear Anal.: Real world Applications, 22 (2015), 289-306. \bibitem{ma} Cavalcanti, M. M.; Cavalcanti, Domingos V. N.; Ferreira. J.; \emph{Existence and uniform decay for nonlinear viscoelastic equation with strong damping}, Math. Methods Appl. Sci. 24 (2001), 1043-1053. \bibitem{cavalcanti} Cavalcanti, M. M.; Cavalcanti, Domingos V. N.; Ferreira, J.; \emph{Existence and uniform decay for nonlinear viscoelastic equation with strong damping}, Math. Methods Appl. Sci., 24 (2001), 1043-1053. \bibitem{da} Dafermos, C. M.; \emph{Asymptotic stability in viscoelasticity}, Arch. Ration. Mech. Anal., 37 (1970), 297-308. \bibitem{daa} Dafermos, C. M.; \emph{On abstract Volterra equations with applications to linear viscoelasticity}, J. Differential Equations 7 (1970), 554-569. \bibitem{Gaz} Ferrero, A.; Gazzola, F.; \emph{A partially hinged rectangular plate as a model for suspension bridges}, Discrete and continuous dynamical systems 35 no.12 (2015), 5879-5908. \bibitem{mckenna1} Glover, J.; Lazer, A. C.; Mckenna, P.J.; \emph{Existence and stability of of large scale nonlinear oscillation in suspension bridges}, Z. Angew. Math. Phys., 40 (1989), 172-200. \bibitem{hh} Horn, M. A.; Lasiecka, I.; \emph{Asymptotic behavior with respect to thickness of boundary stabilizing feedback for the Kirchoff plate}, J. Differential Equations, 114, no.2 (1994), 396-433. \bibitem{tih} Kang, J. R.; \emph{General decay for Kirchoff plates with a boundary condition of memory type}, Bound. Value Probl., 129 (2012), 1687-2770. \bibitem{marie} Marie-Therese Lacroix-Sonrier; \emph{Distrubutions Espace de Sobolev Application}, Ellipses/Edition Marketing S.A, (1998). \bibitem{jj} Lagnese, J.; \emph{Boundary Stabilization of Thin Plates}, SIAM, (1989). \bibitem{rr} Lasiecka, I.; \emph{Stabilization of waves and plate like equations with nonlinear dissipation on the boundary}, J. Differ. Equat., 79 (1989), 340-381. \bibitem{rr2} Lasiecka, I.; Wilke, M.; \emph{Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system}, Discrete Contin. Dyn. Syst., 33 no. 11-12 (2013), 5189-5202. \bibitem{jean} Lions, J. L.; \emph{Quelques methodes de resolution des problemes aux limites non lineaires}, second Edition, Dunod, Paris 2002. \bibitem{maa2} Ma, Q.; Zhong, C.; \emph{Existence of strong solution and global attractors for the coupled suspension bridge equations}, Journal of Diff. Equ. 246 (2009), 1003-1014. \bibitem{mckenna} Mckenna, P. J.; Walter, W.; \emph{Nonlinear oscillation in suspension bridge}, Arch. Ration. Mech. Anal. 98 (1987), 167-177. \bibitem{SA} Messaoudi, S. A.; \emph{General decay of solutions of a viscoelastic equation}, J. Math. Anal. Appl., 341 (2008), 1457-1467. \bibitem{edwin} Messaoudi, S. A.; \emph{Global existence and nonexistence in a system of Petrovsky}, Journal of Mathematical Analysis and Applications, 265 no. 2 (2002), 296-308. \bibitem{RI} Mu\~noz Rivera, J. E.; Lapa, E. C.; Barreto, R.; \emph{Decay rates for viscoelastic plates with memory}, J. Elasticity, 44 no. 1 (1996), 61-87. \bibitem{New5} Mustafa, M. I.; Abusharkh, G. A.; \emph{Plate equations with viscoelastic boundary damping}, Indagationes Mathematicae, 26 (2015), 307-323. \bibitem{tip} Santos, M. L.; Junior, F.; \emph{A boundary condition with memory for Kirchoff plates equations}, Appl. Math. Comput., 148 (2004), 475-496. \bibitem{wang} Wang, Y.; \emph{Finite time blow-up and global solutions for fourth order damped wave equations}, Journal of Mathematical Analysis and Applications, 418 no. 2 (2014), 713-733. \end{thebibliography} \end{document}