\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 23, pp. 1--21.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/23\hfil Well-posedness and decay of solutions] {Well-posedness and decay of solutions for a transmission problem with history and delay} \author[G. Li, D. Wang, B. Zhu \hfil EJDE-2016/23\hfilneg] {Gang Li, Danhua Wang, Biqing Zhu} \address{Gang Li \newline College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China} \email{ligang@nuist.edu.cn} \address{Danhua Wang \newline College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China} \email{matdhwang@yeah.net} \address{Biqing Zhu \newline College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China} \email{brucechu@163.com} \thanks{Submitted March 20, 2015. Published January 13, 2016.} \subjclass[2010]{35B37, 35L55, 74D05, 93D15, 93D20} \keywords{Wave equation; transmission problem; past history; delay term} \begin{abstract} In this article, we consider a transmission problem in the presence of history and delay terms. Under appropriate hypothesis on the relaxation function and the relationship between the weight of the damping and the weight of the delay, we prove well-posedness by using the semigroup theory. Also we establish a decay result by introducing a suitable Lyaponov functional. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{s1} In this article, we study the following transmission system with a past history and a delay term \begin{equation} \begin{gathered} \begin{aligned} &u_{tt}(x,t)-au_{xx}(x,t)+\int_0^{\infty}g(s)u_{xx}(x,t-s){\rm d}s\\ &+\mu_1u_{t}(x,t)+\mu_2u_{t}(x,t-\tau)=0, \quad(x,t)\in\Omega\times(0,+\infty), \end{aligned}\\ v_{tt}(x,t)-bv_{xx}(x,t)=0,\quad (x,t)\in(L_1,L_2)\times(0,+\infty), \end{gathered}\label{1.1} \end{equation} under the boundary and transmission conditions \begin{equation} \begin{gathered} u(0,t)=u(L_3,t)=0,\\ u(L_{i},t)=v(L_{i},t),\quad i=1,2,\\ au_{x}(L_{i},t)-\int_0^{\infty}g(s)u_{x}(L_{i},t-s){\rm d}s=bv_{x}(L_{i},t),\quad i=1,2, \end{gathered}\label{1.2} \end{equation} and the initial conditions \begin{equation} \begin{gathered} u(x,-t)=u_0(x,t),\quad u_{t}(x,0)=u_1(x), \quad x\in\Omega,\\ u_{t}(x,t-\tau)=f_0(x,t-\tau), \quad x\in\Omega,\; t\in(0,\tau),\\ v(x,0)=v_0(x),\quad v_{t}(x,0)=v_1(x), \quad x\in(L_1,L_2), \end{gathered}\label{1.3} \end{equation} where $00$ represents the delay. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig1} \caption{The configuration for problem \eqref{1.1}--\eqref{1.3}.} \label{figure1} \end{center} \end{figure} Transmission problems arise in several applications of physics and biology. We note that problem \eqref{1.1}-\eqref{1.3} is related to the wave propagation over a body which consists of two different type of materials: the elastic part and the viscoelastic part that has the past history and time delay effect. For wave equations with various dissipations, many results concerning stabilization of solutions have been proved. Recently, wave equations with viscoelastic damping have been investigated by many authors, see \cite{bm2006,c2001,cds2002,l2014,lc2014,ls2014,tp2013,w2013,w20132} and the references therein. It is showed that the dissipation produced by the viscoelastic part can produce the decay of the solution. For example, Cavalcanti et al \cite{cds2002} studied the equation $$ u_{tt}-\Delta u+\int_0^{t}g(t-\tau)\Delta u(\tau){\rm d}\tau +a(x)u_{t}+|u|^{\gamma}u=0,\quad \text{in } \Omega\times(0,\infty), $$ where $a: \Omega\to \mathbb{R}_{+}$. Under the conditions that $a(x)\geq a_0>0$ on $\omega\subset\Omega$, with $\omega$ satisfying some geometry restrictions and $$ -\xi_1g(t)\leq g'(t)\leq-\xi_2g(t),\quad t\geq 0, $$ the authors showed the exponential decay. Berrimi and Messaoudi \cite{bm2006} considered the equation $$ u_{tt}-\Delta u+\int_0^{t}g(t-\tau)\Delta u(\tau){\rm d}\tau =|u|^{\gamma}u,\quad \text{in } \Omega\times(0,\infty) $$ with only the viscoelastic dissipation and proved that the solution energy decays exponentially or polynomially depending on the rate of the decay of the relaxation function $g$. Guesmia \cite{g2011} considered the asymptotic behavior of solutions to an abstract linear dissipative integrodifferential equation with infinite memory (past history) and introduced a new approach which allows a larger class of past-history kernels and consequently a more general decay result for a class of hyperbolic problems with past history is obtained. For other past (infinite) history problems, see \cite{amq2013,gm2012, mma2013,qr2013,q2014} and the references therein. In recent years, the control of PDEs with time delay effects has become an active area of research. The presence of delay may be a source of instability. For example, it was proved in \cite{dl1986,l20132,np2006} that an arbitrarily small delay may destabilize a system which is uniformly asymptotically stable in the absence of delay unless additional conditions or control terms were used. Kirane and Said-Houari \cite{ks2011} considered the viscoelastic wave equation with a delay \begin{align*} &u_{tt}(x,t)-\Delta u(x,t)+\int_0^{t}g(t-s)\Delta u(x,t-s){\rm d}s\\ &+\mu_1u_{t}(x,t)+\mu_2u_{t}(x,t-\tau)=0,\quad \text{in } \Omega\times(0,\infty), \end{align*} where $\mu_1$ and $\mu_2$ are positive constants. They established an energy decay result under the condition that $0\le \mu_2\le \mu_1$. Later, Liu \cite{l2013} improved this result by considering the equation with a time-varying delay term, with not necessarily positive coefficient $\mu_2$ of the delay term. Transmission problems related to \eqref{1.1}-\eqref{1.3} have also been extensively studied. Bastos and Raposo \cite{br2007} investigated the transmission problem with frictional damping and showed the well-posedness and exponential stability of the total energy. Mu\~noz Rivera and Portillo Oquendo \cite{mp2000} considered the transmission problem of viscoelastic waves and proved that the dissipation produced by the viscoelastic part can produce exponential decay of the solution, no matter how small its size is. Bae \cite{b2010} studied the transmission problem, which one component is clamped and the other is in a viscoelastic fluid producing a dissipative mechanism on the boundary, and established a decay result which depends on the rate of the decay of the relaxation function. The effect of the delay in the stability of transmission system \eqref{1.1} in the absence of the past history term has been investigated by Benseghir in \cite{b2014}. In \cite{wlz2016}, the present authors studied the well-posedness and decay of solution for a transmission problem in a bounded domain with a viscoelastic term $\int_0^{t}g(t-s)u_{xx}(x,s){\rm d}s$ and a delay term. Motivated by the above results, we intend to study in this paper the well-posedness and the decay result of problem \eqref{1.1}-\eqref{1.3}, in which the infinite memory (past history) term $\int_0^{\infty}g(s)u_{xx}(x,t-s){\rm d}s$ is involved. The main difficulty we encounter here arises from the simultaneous appearance of the past history and the delay term. We need also pay more attention to the influence of the transmission boundary. To attain our goal, we use the semigroup theory to prove the well-posedness, and introduce a suitable Lyaponov functional to establish the decay result. This article is organized as follows. In Section \ref{s2}, we give some materials needed for our work and state our main results. In Section \ref{s3},we prove the well-posedness of the problem. The decay result is proved in Section \ref{s4}. \section{Preliminaries and statement of main results}\label{s2} In this section, we present some materials that shall be used for proving our main results. For the relaxation function $g$, we have the folloing assumptions: \begin{itemize} \item[(A1)] $g: \mathbb{R}_{+}\to\mathbb{R}_{+}$ is a $C^1$ function satisfying $$ g(0)>0,\quad a-\int_0^{\infty}g(s){\rm d}s=a-g_0=l>0. $$ (A2) There exists a non-increasing differentiable function $\xi(t): \mathbb{R}_{+}\to\mathbb{R}_{+}$ such that $$ g'(t)\leq -\xi(t) g(t), \quad \forall t\geq 0 \quad \text{and}\quad \int_0^{\infty}\xi(t){\rm d}t=+\infty. $$ \end{itemize} As in \cite{np2006}, we introduce the variable $$ z(x,\rho,t)=u_{t}(x,t-\tau\rho),\quad (x,\rho,t)\in\Omega\times(0,1)\times(0,\infty). $$ Then $$ \tau z_{t}(x,\rho,t)+z_{\rho}(x,\rho,t)=0, \quad (x,\rho,t)\in\Omega\times(0,1)\times(0,\infty). $$ Following the ideal in \cite{d19701}, we set \begin{equation}\label{1.10} \eta^{t}(x,s)=u(x,t)-u(x,t-s),\quad (x,t,s)\in\Omega\times\mathbb{R}_{+} \times\mathbb{R}_{+}. \end{equation} Then $$ \eta^{t}_{t}(x,s)+\eta^{t}_{s}(x,s)=u_{t}(x,t), \quad (x,t,s)\in\Omega\times\mathbb{R}_{+}\times\mathbb{R}_{+}. $$ Thus, system \eqref{1.1} becomes \begin{equation} \begin{gathered} \begin{aligned} &u_{tt}(x,t)-lu_{xx}(x,t)-\int_0^{\infty}g(s)\eta_{xx}^{t}(x,s){\rm d}s\\ &+\mu_1u_{t}(x,t)+\mu_2z(x,1,t)=0,\quad (x,t)\in\Omega\times(0,+\infty), \end{aligned}\\ v_{tt}(x,t)-bv_{xx}(x,t)=0,\quad (x,t)\in(L_1,L_2)\times(0,+\infty), \\ \tau z_{t}(x,\rho,t)+z_{\rho}(x,\rho,t)=0,\quad (x,\rho,t)\in\Omega\times(0,1)\times(0,+\infty),\\ \eta^{t}_{t}(x,s)+\eta^{t}_{s}(x,s)=u_{t}(x,t),\quad (x,s,t)\in\Omega\times(0,+\infty)\times(0,+\infty), \end{gathered}\label{2.5} \end{equation} the boundary and transmission conditions \eqref{1.2} become \begin{equation} \begin{gathered} u(0,t)=u(L_3,t)=0,\\ u(L_{i},t)=v(L_{i},t),\quad i=1,2,\; t\in(0,+\infty),\\ l u_{x}(L_{i},t)+\int_0^{\infty}g(s)\eta_{x}^{t}(L_{i},s){\rm d}s=bv_{x}(L_{i},t), \quad i=1,2,\; t\in(0,+\infty), \end{gathered}\label{2.6} \end{equation} and the initial conditions \eqref{1.3} become \begin{equation} \begin{gathered} u(x,-t)=u_0(x,t),\quad u_{t}(x,0)=u_1(x),\; x\in\Omega,\\ z(x,0,t)=u_{t}(x,t),\quad z(x,1,t)=f_0(x,t-\tau),\quad (x,t)\in\Omega\times(0,+\infty),\\ v(x,0)=v_0(x),\quad v_{t}(x,0)=v_1(x),\quad x\in(L_1,L_2), \end{gathered} \end{equation} It is clear that \begin{equation} \begin{gathered} \eta^{t}(x,0)=0,\quad \text{for all } x>0,\\ \eta^{t}(0,s)=\eta^{t}(L_3,s)=0,\quad \text{for all } s> 0,\\ \eta^{0}(x,s)=\eta_0(s),\quad \text{for all } s> 0. \end{gathered} \end{equation} Let $V:=(u,v,\varphi,\psi,z,\eta^{t})^T$, then $V$ satisfies the problem \begin{equation} \begin{gathered} V_{t}=\mathscr{A}V(t),\quad t>0,\\ V(0)=V_0, \end{gathered}\label{2.7} \end{equation} where $V_0:=(u_0(\cdot,0),v_0,u_1,v_1,f_0(\cdot,-\tau),\eta_0)^T$ and the operator $\mathscr{A}$ is defined by \[ \mathscr{A}=\begin{pmatrix} u\\ v\\ \varphi\\ \psi\\ z\\ w\\ \end{pmatrix}= \begin{pmatrix} \varphi\\ \psi\\ lu_{xx} +\int_0^{+\infty}g(s)w_{xx}(s){\rm d}s-\mu_1\varphi-\mu_2z(.,1)\\ bv_{xx}\\ -\frac{1}{\tau}z_{\rho}\\ -w_{s}+\varphi\\ \end{pmatrix}. \] where \begin{align*} X_{*}=\Big\{&(u,v)\in H^1(\Omega)\cap H^1(L_1,L_2): u(0,t)=u(L_3,t)=0, u(L_{i},t)=v(L_{i},t),\\ &l u_{x}(L_{i},t)+\int_0^{\infty}g(s)\eta_{x}^{t}(L_{i},s){\rm d}s =bv_{x}(L_{i},t),i=1,2\Big\} \end{align*} and $L_{g}^2(\mathbb{R}_{+},H^1(\Omega))$ denotes the Hilbert space of $H^1$-valued functions on $\mathbb{R}_{+}$, endowed with the inner product $$ (\phi,\vartheta)_{L_{g}^2\left(\mathbb{R}_{+},H^1(\Omega)\right)} =\int_{\Omega}\int_0^{+\infty}g(s)\phi_{x}(s)\vartheta_{x}(s){\rm d}s{\rm d}x. $$ Set $$ V=(u,v,\varphi,\psi,z,w)^T,\quad \bar{V}=(\bar{u},\bar{v},\bar{\varphi},\bar{\psi},\bar{z},\bar{w})^T. $$ We define the inner product in $\mathscr{H}$, \begin{align*} \langle V,\bar{V}\rangle_{\mathscr{H}} &=\int_{\Omega}\varphi\bar{\varphi}{\rm d}x+\int_{L_1}^{L_2}\psi\bar{\psi}{\rm d}x+ \int_{\Omega}lu_{x}\bar{u}_{x}{\rm d}x+\int_{L_1}^{L_2}bv_{x}\bar{v}_{x}{\rm d}x\\ &\quad +\int_{\Omega}\int_0^{+\infty}g(s)w_{x}(s)\bar{w}_{x}(s){\rm d}s{\rm d}x +\zeta\int_{\Omega}\int_0^1z\bar{z}{\rm d}\rho{\rm d}x. \end{align*} The domain of $\mathscr{A}$ is \begin{align*} D(\mathscr{A})=\Big\{ &(u,v,\varphi,\psi,z,w)^T\in\mathscr{H}: u\in H^{2}(\Omega)\cap H^1(\Omega),\\ &v\in H^2(L_1,L_2)\cap H^1(L_1,L_2),\varphi\in H^1(\Omega),\psi\in H^1(L_1,L_2),\\ &w\in L_{g}^2\left(\mathbb{R}_{+},H^{2}(\Omega)\cap H^1(\Omega)\right), w_{s}\in\left(\mathbb{R}_{+},H^1(\Omega)\right),\\ &z_{\rho}\in L^2((0,1),L^2(\Omega)),w(x,0)=0,z(x,0)=\varphi(x) \Big\}. \end{align*} The well-posedness of problem \eqref{2.5}-\eqref{2.6} is ensured by the following theorem. \begin{theorem}\label{th2.1} Assume that $\mu_2\leq\mu_1$, {\rm (A1)} and {\rm (A2)} hold. Let $V_0\in \mathscr{H}$, then there exists a unique weak solution $V\in C\left(\mathbb{R}_{+},\mathscr{H}\right)$ of problem \eqref{2.7}. Moreover, if $V_0\in D(\mathscr{A})$, then $$ V\in C\left(\mathbb{R}_{+},D(\mathscr{A})\right) \cap C^1\left(\mathbb{R}_{+},\mathscr{H}\right). $$ \end{theorem} For a solution $u$ of \eqref{1.1}-\eqref{1.3}, we define the energy \begin{equation} \label{3.1} \begin{aligned} E(t)&=\frac{1}{2}\int_{\Omega}[u_{t}^2(x,t)+lu_{x}^2(x,t)]{\rm d}x +\frac{1}{2}\int_{L_1}^{L_2}[v_{t}^2(x,t)+bv_{x}^2(x,t)]{\rm d}x \\ &+\frac{1}{2}\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x+\frac{\zeta}{2}\int_{\Omega}\int_0^1z^2(x,\rho,t){\rm d}\rho{\rm d}x, \end{aligned} \end{equation} where $\zeta$ is the positive constant satisfying \begin{equation} \begin{gathered} \zeta \mu_2<\zeta<\tau(2\mu_1-\mu_2), \quad \mu_2<\mu_1, \\ \zeta=\tau \mu_2, \quad \mu_2=\mu_1. \end{gathered} \label{2.9} \end{equation} Our decay result reads as follows. \begin{theorem}\label{th3.1} Let $(u,v)$ be the solution of \eqref{1.1}-\eqref{1.3}. Assume that {\rm (A1), (A2)} hold, that $\mu_2\leq\mu_1$, that for some $m_0\geq0$, \begin{equation}\label{3.40} \int_{\Omega}u_{0x}^2(x,s){\rm d}x\leq m_0,\quad \forall s >0 \end{equation} and that \begin{equation}\label{3.30} a>\frac{8(L_2-L_1)}{L_1+L_3-L_2}l,\quad b>\frac{8(L_2-L_1)}{L_1+L_3-L_2}l \end{equation} hold, then there exists constants $\gamma_0,\gamma_2>0$ such that, for all $t\in\mathbb{R}_{+}$ and for all $\gamma_1\in(0,\gamma_0)$, \begin{equation}\label{3.26} E(t)\leq \gamma_2\Big(1+\int_0^{t}(g(s))^{1-\gamma_1}{\rm d}s\Big) e^{-\gamma_1\int_0^{t}\xi(s){\rm d}s}+\gamma_2\int_{t}^{+\infty}g(s){\rm d}s. \end{equation} \end{theorem} \begin{remark} \label{rmk2.3} \rm Here we consider some examples to illustrate our estimate \eqref{3.26}. (1) Let $$ g(t)=k_1e^{-k_2(1+t)^{q}}, \quad 00,\; k_2>0, $$ then it is clear that (A2) holds for $\xi(t)=k_2q(1+t)^{q-1}$. Consequently, applying \eqref{3.26}, we obtain the decay result $$ E(t)\leq\tilde{c_1}e^{-\tilde{c_2}k_2(1+t)^{q}}, $$ where $\tilde{c_1}$ and $\tilde{c_2}$ are positive constants. (2) Let $$ g(t)=k_3e^{-k_4[\ln(1+t)]^{p}},\quad k_3>0,\; k_4>0, $$ then our assumption (A2) holds with $\xi(t)=\frac{k_4p[\ln(1+t)]^{p-1}}{1+t}$. \eqref{3.26} gives us $$ E(t)\leq\tilde{c_3}e^{-\tilde{c_4}k_4[\ln(1+t)]^{p}}, $$ where $\tilde{c_3}$ and $\tilde{c_4}$ are positive constants. \end{remark} \section{Well-posedness of the problem}\label{s3} In this section, by combining the frameworks of \cite{b2014} with some necessary modifications due to the problem treated here, we use the semigroup approach and the Hille-Yosida theorem to prove the existence and uniqueness of problem \eqref{1.1}-\eqref{1.3}. \begin{proof}[Proof of Theorem \ref{th2.1}] First, we prove that the operator $\mathscr{A}$ is dissipative. In fact, for $(u,v,\varphi,\psi,z,w)^T\in D(\mathscr{A})$, where $\varphi(L_{i})=\psi(L_{i}),i=1,2$ and $\zeta$ is a positive constant satisfying \eqref{2.9}, we have \begin{equation} \label{2.8} \begin{aligned} \langle\mathscr{A}V,V\rangle_{\mathscr{H}} &=\int_{\Omega}lu_{xx}\varphi{\rm d}x+\int_{\Omega} \Big(\int_0^{+\infty}g(s)w_{xx}(s){\rm d}s-\mu_1\varphi-\mu_2z(.,1)\Big) \varphi{\rm d}x \\ &\quad+\int_{\Omega}lu_{x}\varphi_{x}{\rm d}x+\int_{L_1}^{L_2}bv_{x}\psi_{x}{\rm d}x +\int_{L_1}^{L_2}bv_{xx}\psi{\rm d}x \\ &\quad+\int_{\Omega}\int_0^{+\infty}g(s)w_{x}(s)(-w_{s}+\varphi)_{x}{\rm d}s{\rm d}x \\ &\quad-\frac{\zeta}{\tau}\int_{\Omega}\int_0^1zz_{\rho}(x,\rho){\rm d}\rho{\rm d}x. \end{aligned} \end{equation} For the last term of the right side of \eqref{2.8}, we obtain \begin{align*} \zeta\int_{\Omega}\int_0^1zz_{\rho}(x,\rho){\rm d}\rho{\rm d}x = \zeta\int_{\Omega}\int_0^1\frac{1}{2}\frac{\partial}{\partial\rho}z^2(x,\rho) {\rm d}\rho{\rm d}x = \frac{\zeta}{2}\int_{\Omega}(z^2(x,1)-z^2(x,0)){\rm d}x. \end{align*} Noticing that $z(x,0,t)=\varphi(x,t)$, $w(x,0)=0$ and $\varphi(L_{i})=\psi(L_{i}),i=1,2$, we obtain \begin{align*} \langle\mathscr{A}V,V\rangle_{\mathscr{H}} &= \Big[lu_{x}\varphi+\int_0^{+\infty}g(s)w_{x}(s){\rm d}s\varphi \Big]_{\partial\Omega}+[bv_{x}\psi]_{L_1}^{L{2}} \\ &\quad +\int_{\Omega} (-\mu_1\varphi-\mu_2z(.,1))\varphi{\rm d}x -\Big[\frac{1}{2}\int_0^{+\infty}g(s)|w_{x}(x,s)|^2{\rm d}s\Big]_{\partial\Omega} \\ &\quad +\frac{1}{2}\int_{\Omega}\int_0^{+\infty}g'(s)|w_{x}(x,s)|^2{\rm d}s{\rm d}x -\frac{\zeta}{\tau}\int_{\Omega}\int_0^1zz_{\rho}{\rm d}\rho{\rm d}x \\ &\leq -\big(\mu_1-\frac{\zeta}{2\tau}\big)\int_{\Omega}\varphi^2(x){\rm d}x -\frac{\zeta}{2\tau}\int_0^1z^2(x,1){\rm d}x \\ &-\mu_2\int_{\Omega}z(x,1)\varphi(x){\rm d}x +\frac{1}{2}\int_{\Omega}\int_0^{+\infty}g'(s)|w_{x}(x,s)|^2{\rm d}s{\rm d}x, \end{align*} where we have used that \begin{align*} &[lu_{x}\varphi+\int_0^{+\infty}g(s)w_{x}(s){\rm d}s\varphi]_{\partial\Omega} \\ &=\Big(lu_{x}(L_1,t)+\int_0^{+\infty}g(s)w_{x}(L_1,s){\rm d}s\Big)\varphi(L_1,t) \\ &\quad -\Big(lu_{x}(L_2,t)+\int_0^{+\infty}g(s)w_{x}(L_2,s){\rm d}s\Big) \varphi(L_2,t) \\ &=-[bv_{x}\psi]_{L_1}^{L{2}} \end{align*} Using Young's inequality, we have \begin{align*} \langle\mathscr{A}V,V\rangle_{\mathscr{H}} &=-\Big(\mu_1-\frac{\zeta}{2\tau}-\frac{\mu_2}{2}\Big) \int_{\Omega}\varphi^2(x){\rm d}x -\Big(\frac{\zeta}{2\tau}-\frac{\mu_2}{2}\Big)\int_0^1z^2(x,1){\rm d}x \\ &\quad +\frac{1}{2}\int_{\Omega}\int_0^{+\infty}g'(s)|w_{x}(x,s)|^2{\rm d}s{\rm d}x. \end{align*} Consequently, taking \eqref{2.9} and (A2) into account, we conclude that \begin{align*} \langle\mathscr{A}V,V\rangle_{\mathscr{H}}\leq 0; \end{align*} that is, $\mathscr{A}$ is dissipative. Next, we prove that $-\mathscr{A}$ is maximal. Actually, let $F=(f_1,f_2,f_3,f_4,f_5,f_6)^T\in \mathscr{H}$, we prove that there exists $V=(u,v,\varphi,\psi,z,w)^T\in D(\mathscr{A})$ satisfying \begin{equation}\label{2.10} (\lambda I-\mathscr{A})V=F, \end{equation} which is equivalent to \begin{equation} \begin{gathered} \lambda u-\varphi=f_1,\\ \lambda v-\psi=f_2,\\ \lambda\varphi-lu_{xx}-\int_0^{\infty}g(s)w_{xx}(s){\rm d}s +\mu_1\varphi+\mu_2z(.,t)=f_3,\\ \lambda\psi-bv_{xx}=f_4,\\ \lambda z+\frac{1}{\tau}z_{\rho}=f_5,\\ \lambda w+w_{s}-\varphi=f_6. \end{gathered}\label{2.11} \end{equation} Assume that with the suitable regularity we have found $u$ and $v$, then \begin{equation} \begin{gathered} \varphi=\lambda u-f_1,\\ \psi=\lambda v-f_2. \end{gathered}\label{2.12} \end{equation} So we have $\varphi\in H^1(\Omega)$ and $\psi\in H^1(L_1,L_2)$. Moreover, we can find $z$ with $$ z(x,0)=\varphi(x),\quad \text{for } x\in \Omega. $$ Following the same approach in \cite{np2006} and using the equation in \eqref{2.11}, we obtain $$ z(x,\rho)=\varphi(x)e^{-\lambda\rho\tau} +\tau e^{-\lambda\rho\tau}\int_0^{\rho}f_5(x,\sigma) e^{\lambda\sigma\tau}{\rm d}\sigma. $$ From \eqref{2.12}, we obtain \begin{equation}\label{2.14} z(x,\rho)=\lambda ue^{-\lambda\rho\tau}-f_1e^{-\lambda\rho\tau}\tau +\tau e^{-\lambda\rho\tau}\int_0^{\rho}f_5(x,\sigma) e^{\lambda\sigma\tau}{\rm d}\sigma. \end{equation} It is easy to see that the last equation in \eqref{2.11} with $w(x,0)=0$ has a unique solution \begin{align}\label{2.15} w(x,s) &=\Big(\int_0^{s}e^{\lambda y}(f_6(x,y)+\varphi(x)){\rm d}y\Big)e^{-\lambda s} \\ &=\Big(\int_0^{s}e^{\lambda y}(f_6(x,y)+\lambda u(x)-f_1(x)){\rm d}y\Big) e^{-\lambda s}. \end{align} By using \eqref{2.11}, \eqref{2.12} and \eqref{2.15}, the functions $u$ and $v$ satisfy \begin{equation} \begin{gathered} \left(\lambda^2+\mu_1\lambda+\mu_2\lambda e^{-\lambda\tau}\right)u -\tilde{l}u_{xx}=\tilde{f},\\ \lambda^2v-bv_{xx}=f_4+\lambda f_2, \end{gathered}\label{2.16} \end{equation} where $$ \tilde{l}=l+\lambda\int_0^{\infty}g(s)e^{-\lambda s} \Big(\int_0^{s}e^{\lambda y}{\rm d}y\Big){\rm d}s $$ and \begin{align*} \tilde{f} &= \int_0^{\infty}g(s)e^{-\lambda s}\Big(\int_0^{s}e^{\lambda y} (f_6(x,y)-f_1(x,y))_{xx}{\rm d}y\Big){\rm d}s\\ &\quad -\mu_2\tau e^{-\lambda\tau} \int_0^1f_5(x,\sigma)e^{\lambda\sigma\tau}{\rm d}\sigma +\left(\lambda+\mu_1+\mu_2e^{-\lambda\tau}\right)f_1+f_3. \end{align*} We just need to prove that \eqref{2.16} has a solution $(u,v)\in X_{*}$ and replace in \eqref{2.12}, \eqref{2.14} and \eqref{2.15} to get $V=(u,v,\varphi,\psi,z,w)^T\in D(\mathscr{A})$ satisfying \eqref{2.10}. Consequently, problem \eqref{2.16} is equivalent to the problem \begin{equation}\label{2.17} \Phi((u,v),(\omega_1,\omega_2))=l(\omega_1,\omega_2), \end{equation} where the bilinear form $\Phi: \left(X_{*},X_{*}\right)\to\mathbb{R}$ and the linear form $l: X_{*}\to\mathbb{R}$ are defined by \begin{align*} \Phi((u,v),(\omega_1,\omega_2)) &=\int_{\Omega} \big[\left(\lambda^2+\mu_1\lambda+\mu_2\lambda e^{-\lambda\tau}\right) u\omega_1+\tilde{l}u_{x}(\omega)_{x}\big]{\rm d}x -[\tilde{l}u_{x}\omega_1]_{\partial\Omega}\\ &\quad +\int_{L_1}^{L_2}\left(\lambda^2v\omega_2 +bv_{x}(\omega_2)_{x}\right){\rm d}x-[bv_{x}\omega_2]_{L_1}^{L_2} \end{align*} and $$ l(\omega_1,\omega_2)=\int_{\Omega}\tilde{f}\omega_1{\rm d}x +\int_{L_1}^{L_2}(f_4+\lambda f_2)\omega_2{\rm d}x. $$ Using the properties of the space $X_{*}$, it is easy to see that $\Phi$ is continuous and coercive, and $l$ is continuous. Applying the Lax-Milgram theorem, we infer that for all $(\omega_1,\omega_2)\in X_{*}$, problem \eqref{2.17} has a unique solution $(u,v)\in X_{*}$. It follows from \eqref{2.16} that $(u,v)\in \left\{\left(H^{2}(\Omega)\times H^{2}(L_1,L_2)\right)\cap X_{*}\right\}$. Thence, the operator $\lambda I-\mathscr{A}$ is surjective for any $\lambda>0$. At last, the result of Theorem \ref{th2.1} follows from the Hille-Yosida theorem. \end{proof} \section{Decay of the solution}\label{s4} In this section, we consider a decay result of problem \eqref{1.1}-\eqref{1.3}. We will discuss two cases, the case $\mu_2<\mu_1$ and $\mu_2=\mu_1$. We will separate two cases since the proof are slightly different. \subsection{The case $\mu_2<\mu_1$} For the proof of Theorem \ref{th3.1}, we need some lemmas. \begin{lemma}\label{le3.1} Let $(u,v,z)$ be the solution of \eqref{2.5}-\eqref{2.6}. Assume that $\mu_2<\mu_1$ and $E(t)$ satisfies \eqref{3.1}. Then we have the inequality \begin{equation}\label{3.1'} \begin{aligned} \frac{d}{dt}E(t) &\leq-c_1\Big[\int_{\Omega}u_{t}^2(x,t){\rm d}x +\int_{\Omega}z^2(x,1,t){\rm d}x\Big] \\ &\quad +\frac{1}{2}\int_{\Omega}\int_0^{\infty}g'(s)|\eta_{x}^{t}(x,s)|^2 {\rm d}s{\rm d}x. \end{aligned} \end{equation} \end{lemma} \begin{proof} Multiplying the first equation in \eqref{2.5} by $u_{t}$, the second equation by $v_{t}$, using the fourth equation in \eqref{2.5}, integrating by parts and using \eqref{2.6}, we obtain \begin{equation} \label{3.2} \begin{aligned} &\int_{\Omega}\Big(u_{t}u_{tt}+lu_{x}u_{xt} +\int_0^{\infty}g(s)\eta_{x}^{t}(x,s)u_{xt}{\rm d}s +\mu_1u_{t}^2+\mu_2z(x,1,t)u_{t}\Big){\rm d}x \\ &-\Big[\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s \Big) u_{t} \Big]_{\partial\Omega}-[bv_{x}v_{t}]_{L_1}^{L_2} +\int_{L_1}^{L_2}(v_{t}v_{tt}+bv_{x}v_{xt}){\rm d}x \\ &=\frac{1}{2}\frac{d}{dt}\Big[\int_{\Omega}[u_{t}^2(x,t)+lu_{x}^2(x,t)] {\rm d}x\Big]+\frac{1}{2}\frac{d}{dt} \Big[\int_{L_1}^{L_2}[v_{t}^2(x,t)+bv_{x}^2(x,t)]{\rm d}x\Big] \\ &\quad +\frac{1}{2}\frac{d}{dt}\int_{\Omega}\int_0^{\infty}g(s) |\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x +\Big[\frac{1}{2}\int_{\Omega}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}x\Big]_0^{\infty} \\ &\quad +\mu_1\int_{\Omega}u_{t}^2(x,t){\rm d}x+\mu_2\int_{\Omega}u_{t}(x,t)z(x,1,t) {\rm d}x\\ &\quad -\frac{1}{2}\int_{\Omega}\int_0^{\infty}g'(s) |\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x =0, \end{aligned} \end{equation} where we have used that \begin{align*} &-\Big[\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s \Big) u_{t}\Big]_{\partial\Omega} \\ &=\Big(lu_{x}(L_2,t)+\int_0^{\infty}g(s)\eta_{x}^{t}(L_2,s){\rm d}s \Big) u_{t}(L_2,t) \\ &\quad -\Big(lu_{x}(L_1,t)+\int_0^{\infty}g(s)\eta_{x}^{t}(L_1,s){\rm d}s \Big) u_{t}(L_1,t) \\ &=[bv_{x}v_{t}]_{L_1}^{L_2}, \end{align*} and $$ \Big[\frac{1}{2}\int_{\Omega}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}x\Big]_0^{\infty}=0. $$ Multiplying the third equation in \eqref{2.5} by $\zeta z/\tau$, integrating the result over $\Omega\times(0,1)$ with respect to $x$ and $\rho$ respectively, we have \begin{equation}\label{3.3} \frac{\zeta}{2}\frac{d}{dt}\int_{\Omega}\int_0^1z^2(x,\rho,t){\rm d}\rho{\rm d}x =-\frac{\zeta}{2\tau}\int_{\Omega}(z^2(x,1)-z^2(x,0)){\rm d}x. \end{equation} From \eqref{3.1}, \eqref{3.2} and \eqref{3.3}, we arrive at \begin{equation} \label{3.4} \begin{aligned} \frac{d}{dt}E(t) &=-\Big(\mu_1-\frac{\zeta}{2\tau}\Big)\int_{\Omega}u_{t}^2(x,t){\rm d}x -\frac{\zeta}{2\tau}\int_{\Omega}z^2(x,1,t){\rm d}x \\ &-\mu_2\int_{\Omega}u_{t}(x,t)z(x,1,t){\rm d}x +\frac{1}{2}\int_{\Omega}\int_0^{\infty}g'(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{equation} Young's inequality gives us \begin{align*} \frac{d}{dt}E(t) &\leq-\Big(\mu_1-\frac{\zeta}{2\tau}-\frac{\mu_2}{2}\Big) \int_{\Omega}u_{t}^2(x,t){\rm d}x -\Big(\frac{\zeta}{2\tau}-\frac{\mu_2}{2}\Big)\int_{\Omega}z^2(x,1,t){\rm d}x \\ &\quad +\frac{1}{2}\int_{\Omega}\int_0^{\infty}g'(s)|\eta_{x}^{t} (x,s)|^2{\rm d}s{\rm d}x. \end{align*} Thanks to \eqref{2.9} and \eqref{3.1}, our conclusion holds. The proof is complete. \end{proof} Now we define the functional $$ \mathscr{D}(t)=\int_{\Omega}uu_{t}{\rm d}x +\frac{\mu_1}{2}\int_{\Omega}u^2{\rm d}x+\int_{L_1}^{L_2}vv_{t}{\rm d}x. $$ Then we have the following lemma. \begin{lemma} The functional $\mathscr{D}(t)$ satisfies \begin{equation} \label{3.5} \begin{aligned} \frac{d}{dt}\mathscr{D}(t) &\leq\int_{\Omega}u_{t}^2{\rm d}x+\int_{L_1}^{L_2}v_{t}^2{\rm d}x +(L^2\varepsilon+\varepsilon-l)\int_{\Omega}u_{x}^2{\rm d}x -\int_{L_1}^{L_2}bv_{x}^2{\rm d}x \\ &\quad+\frac{g_0}{4\varepsilon}\int_{\Omega}\int_0^{\infty}g(s) |\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x +\frac{\mu_2^2}{4\varepsilon}\int_{\Omega}z^2(x,1,t){\rm d}x. \end{aligned} \end{equation} \end{lemma} \begin{proof} Taking the derivative of $\mathscr{D}(t)$ with respect to $t$ and using \eqref{2.5}, we have \begin{equation} \label{3.6} \begin{aligned} \frac{d}{dt}\mathscr{D}(t) &=\int_{\Omega}u_{t}^2{\rm d}x-l\int_{\Omega}u_{x}^2{\rm d}x -\mu_2\int_{\Omega}z(x,1,t)u{\rm d}x+[bv_{x}v]_{L_1}^{L_2} +\int_{L_1}^{L_2}v_{t}^2{\rm d}x \\ &\quad +\Big[\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s \Big)u\Big]_{\partial\Omega}\\ &\quad -\int_{\Omega}u_{x}(x,t)\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s{\rm d}x -\int_{L_1}^{L_2}bv_{x}^2{\rm d}x \\ &=\int_{\Omega}u_{t}^2{\rm d}x-l\int_{\Omega}u_{x}^2{\rm d}x -\mu_2\int_{\Omega}z(x,1,t)u{\rm d}x+\int_{L_1}^{L_2}v_{t}^2{\rm d}x\\ &\quad -\int_{L_1}^{L_2}bv_{x}^2{\rm d}x -\int_{\Omega}u_{x}(x,t)\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s{\rm d}x, \end{aligned} \end{equation} where we used that \begin{align*} \Big[\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big)u \Big]_{\partial\Omega} &=\Big(lu_{x}(L_1,t)+\int_0^{\infty}g(s)\eta_{x}^{t}(L_1,s){\rm d}s \Big) u(L_1,t) \\ &\quad -\Big(lu_{x}(L_2,t)+\int_0^{\infty}g(s)\eta_{x}^{t}(L_2,s){\rm d}s \Big) u(L_2,t) \\ &=-[bv_{x}v_{t}]_{L_1}^{L_2}. \end{align*} By the boundary condition \eqref{1.2}, we have \begin{gather*} u^2(x,t)=\Big(\int_0^{x}u_{x}(x,t){\rm d}x\Big)^2 \leq L_1\int_0^{L_1}u_{x}^2(x,t){\rm d}x,\quad x\in [0,L_1], \\ u^2(x,t)\leq (L_3-L_2)\int_{L_2}^{L_3}u_{x}^2(x,t){\rm d}x,\quad x\in [L_2,L_3], \end{gather*} which implies \begin{equation}\label{1.6} \int_{\Omega}u^2(x,t){\rm d}x\leq L^2\int_{\Omega}u_{x}^2{\rm d}x,\quad x\in\Omega, \end{equation} where $L=\max\{L_1,L_3-L_2\}$. By making use of Young's inequality and \eqref{1.6}, for any $\varepsilon>0$, we obtain \begin{equation}\label{3.7} \mu_2\int_{\Omega}z(x,1,t)u{\rm d}x \leq\frac{\mu_2^2}{4\varepsilon}\int_{\Omega}z^2(x,1,t){\rm d}x +L^2\varepsilon\int_{\Omega}u_{x}^2{\rm d}x. \end{equation} Young's inequality, H$\ddot{o}$lder's inequality and (A2) imply that \begin{equation}\label{3.8} \int_{\Omega}u_{x}(x,t)\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s{\rm d}x \leq\varepsilon\int_{\Omega}u_{x}^2(x,t){\rm d}x+\frac{g_0}{4\varepsilon} \int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{equation} Inserting the estimates \eqref{3.7} and \eqref{3.8} into \eqref{3.6}, then \eqref{3.5} is fulfilled. \end{proof} Next, enlightened by \cite{mmn2002}, we introduce the functional \[ q(x)=\begin{cases} x-\frac{L_1}{2},& x\in[0,L_1],\\ \frac{L_1}{2}-\frac{L_1+L_3-L_2}{2(L_2-L_1)}(x-L_1),&x\in(L_1,L_2),\\ x-\frac{L_2+L_3}{2},&x\in[L_2,L_3].\\ \end{cases} \] It is easy to see that $q(x)$ is bounded: $|q(x)|\leq M$, where $ M=\max\{\frac{L_1}{2},\frac{L_3-L_2}{2}\}$. We define the functionals $$ \mathscr{F}_1(t)=-\int_{\Omega}q(x)u_{t} \Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big){\rm d}x,\quad \mathscr{F}_2(t)=-\int_{L_1}^{L_2}q(x)v_{x}v_{t}{\rm d}x. $$ Then we have the following results. \begin{lemma}\label{le3.5} The functionals $\mathscr{F}_1(t)$ and $\mathscr{F}_2(t)$ satisfy \begin{equation} \label{3.9} \begin{aligned} &\frac{d}{dt}\mathscr{F}_1(t)\\ &\leq \Big(\frac{l+g_0}{2}+\frac{M^2\mu_1^2}{4\varepsilon_1} +\varepsilon_1M^2\Big)\int_{\Omega}u_{t}^2{\rm d}x +\left(l^2+2l^2\varepsilon_1\right)\int_{\Omega}u_{x}^2{\rm d}x \\ &\quad +\frac{M^2\mu_2^2}{4\varepsilon_1}\int_{\Omega}z^2(x,1,t){\rm d}x +\left(g_0+2g_0\varepsilon_1\right) \int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \\ &-\frac{g(0)}{4\varepsilon_1}\int_{\Omega}\int_0^{\infty}g'(s) |\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x -\Big[\frac{l+g_0}{2}q(x)u_{t}^2\Big]_{\partial\Omega} \\ &-\Big[\frac{q(x)}{2}\Big(lu_{x}(x,t)+\int_0^{\infty}g(s) \eta_{x}^{t}(x,s){\rm d}s\Big)^2\Big]_{\partial\Omega} \end{aligned} \end{equation} and \begin{equation} \label{3.10} \begin{aligned} \frac{d}{dt}\mathscr{F}_2(t) &\leq -\frac{L_1+L_3-L_2}{4(L_2-L_1)} \Big(\int_{L_1}^{L_2}v_{t}^2{\rm d}x+\int_{L_1}^{L_2}bv_{x}^2{\rm d}x\Big) +\frac{L_1}{4}v_{t}^2(L_1) \\ &\quad +\frac{L_3-L_2}{4}v_{t}^2(L_2)+\frac{b}{4} \left((L_3-L_2)v_{x}^2(L_2,t)+L_1v_{x}^2(L_1,t)\right). \end{aligned} \end{equation} \end{lemma} \begin{proof} Taking the derivative of $\mathscr{F}_1(t)$ with respect to $t$ and using \eqref{2.5}, we obtain \begin{equation} \label{3.11} \begin{aligned} &\frac{d}{dt}\mathscr{F}_1(t)\\ &=-\int_{\Omega}q(x)u_{tt}\Big(lu_{x} +\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big){\rm d}x \\ &\quad -\int_{\Omega}q(x)u_{t}\Big(lu_{xt}+\int_0^{\infty}g(s) \eta_{xt}^{t}(x,s){\rm d}s\Big){\rm d}x \\ &=-\int_{\Omega}q(x)\Big(lu_{xx}+\int_0^{\infty}g(s)\eta_{xx}^{t}(x,s){\rm d}s \Big)\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big){\rm d}x \\ &\quad +\int_{\Omega}q(x)(\mu_1u_{t}(x,t)+\mu_2z(x,1,t)) \Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big){\rm d}x \\ &\quad -\int_{\Omega}q(x)u_{t} \Big(lu_{xt}+\int_0^{\infty}g(s)\eta_{xt}^{t}(x,s){\rm d}s\Big){\rm d}x. \end{aligned} \end{equation} We pay attention to \begin{equation} \label{3.12} \begin{aligned} &-\int_{\Omega}q(x)\Big(lu_{xx}+\int_0^{\infty}g(s)\eta_{xx}^{t}(x,s){\rm d}s\Big) \Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big){\rm d}x \\ &=\frac{1}{2}\int_{\Omega}q'(x) \Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big)^2{\rm d}x \\ &\quad-\Big[\frac{q(x)}{2}\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s) {\rm d}s\Big)^2\Big]_{\partial\Omega}. \end{aligned} \end{equation} The last term in \eqref{3.11} can be treated as follows \begin{equation} \label{3.13} \begin{aligned} &-\int_{\Omega}q(x)u_{t} \Big(lu_{xt}+\int_0^{\infty}g(s)\eta_{xt}^{t}(x,s){\rm d}s\Big){\rm d}x \\ &= -l\int_{\Omega}q(x)u_{t}u_{xt}{\rm d}x -\int_{\Omega}q(x)u_{t} \int_0^{\infty}g(s)\eta_{xt}^{t}(x,s){\rm d}s{\rm d}x \\ &= \Big[-\frac{l}{2}q(x)u_{t}^2\Big]_{\partial\Omega} +\frac{l}{2}\int_{\Omega}q'(x)u_{t}^2{\rm d}x\\ &\quad -\int_{\Omega}q(x)u_{t}\int_0^{\infty}g(s)\left(u_{t}-\eta_{s}^{t}\right)_{x}{\rm d}s{\rm d}x \\ &= \Big[-\frac{l}{2}q(x)u_{t}^2\Big]_{\partial\Omega} +\frac{l}{2}\int_{\Omega}q'(x)u_{t}^2{\rm d}x -g_0\int_{\Omega}q(x)u_{t}u_{tx}{\rm d}x \\ &\quad +\int_{\Omega}q(x)u_{t}\int_0^{\infty}g(s)\eta_{sx}^{t}(x,s){\rm d}s{\rm d}x \\ &= \Big[-\frac{l+g_0}{2}q(x)u_{t}^2\Big]_{\partial\Omega} +\frac{l+g_0}{2}\int_{\Omega}q'(x)u_{t}^2{\rm d}x\\ &\quad -\int_{\Omega}q(x)u_{t}\int_0^{\infty}g'(s)\eta_{x}^{t}{\rm d}s{\rm d}x, \end{aligned} \end{equation} where we used that $$ -\Big[\int_{\Omega}q(x)u_{t}g(s)\eta_{x}^{t}(x,s){\rm d}x\Big]_0^{\infty}=0. $$ Inserting \eqref{3.12} and \eqref{3.13} in \eqref{3.11}, we arrive at \begin{equation} \label{3.14} \begin{aligned} &\frac{d}{dt}\mathscr{F}_1(t)\\ &= -\Big[\frac{q(x)}{2}\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s) {\rm d}s\Big)^2\Big]_{\partial\Omega} -\Big[\frac{l+g_0}{2}q(x)u_{t}^2\Big]_{\partial\Omega} \\ &\quad +\frac{1}{2}\int_{\Omega}q'(x) \Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big)^2{\rm d}x +\int_{\Omega}q(x)(\mu_1u_{t}(x,t) \\ &\quad +\mu_2z(x,1,t))\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big) {\rm d}x \\ &\quad +\frac{l+g_0}{2}\int_{\Omega}q'(x)u_{t}^2{\rm d}x -\int_{\Omega}q(x)u_{t}\int_0^{\infty}g'(s)\eta_{x}^{t}{\rm d}s{\rm d}x. \end{aligned} \end{equation} Using Minkowski and Young's inequalities, we have \begin{equation}\label{3.15} \begin{aligned} &\frac{1}{2}\int_{\Omega}\Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s) {\rm d}s\Big)^2{\rm d}x \\ & \leq l^2\int_{\Omega}u_{x}^2{\rm d}x +g_0\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{equation} Young's inequality gives us that for any $\varepsilon_1>0$, \begin{equation} \label{3.16} \begin{aligned} &\Big|\mu_1\int_{\Omega}q(x)u_{t}(x,t) \Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big){\rm d}x\Big| \\ &\leq \frac{M^2\mu_1^2}{4\varepsilon_1}\int_{\Omega}u_{t}^2(x,t){\rm d}x +l^2\varepsilon_1\int_{\Omega}u_{x}^2(x,t){\rm d}x \\ &\quad +g_0\varepsilon_1\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \end{aligned} \end{equation} and \begin{equation} \label{3.17} \begin{aligned} &\Big|\mu_2\int_{\Omega}q(x)z(x,1,t) \Big(lu_{x}+\int_0^{\infty}g(s)\eta_{x}^{t}(x,s){\rm d}s\Big){\rm d}x\Big| \\ &\leq \frac{M^2\mu_2^2}{4\varepsilon_1}\int_{\Omega}z^2(x,1,t){\rm d}x +l^2\varepsilon_1\int_{\Omega}u_{x}^2(x,t){\rm d}x \\ &\quad +g_0\varepsilon_1\int_{\Omega}\int_0^{\infty}g(s) |\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{equation} It is clear that \begin{equation} \label{3.18} \begin{aligned} &\left|\int_{\Omega}q(x)u_{t}\int_0^{\infty}g'(s) \eta_{x}^{t}{\rm d}s{\rm d}x\right| \\ &\leq \varepsilon_1M^2\int_{\Omega}u_{t}^2{\rm d}x -\frac{g(0)}{4\varepsilon_1}\int_{\Omega} \int_0^{\infty}g'(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{equation} Inserting \eqref{3.15}-\eqref{3.18} into \eqref{3.14}, we obtain \eqref{3.9}. By the same method, taking the derivative of $\mathscr{F}_1(t)$ with respect to $t$, we obtain \begin{align*} \frac{d}{dt}\mathscr{F}_2(t) &= -\int_{L_1}^{L_2}q(x)v_{xt}v_{t}{\rm d}x -\int_{L_1}^{L_2}q(x)v_{x}v_{tt}{\rm d}x\\ &= \Big[-\frac{1}{2}q(x)v_{t}^2\Big]_{L_1}^{L_2} +\frac{1}{2}\int_{L_1}^{L_2}q'(x)v_{t}^2{\rm d}x+\frac{1}{2}\int_{L_1}^{L_2}bq'(x)v_{x}^2{\rm d}x\\ &\quad +\Big[-\frac{b}{2}q(x)v_{x}^2\Big]_{L_1}^{L_2}\\ &\leq -\frac{L_1+L_3-L_2}{4(L_2-L_1)} \Big(\int_{L_1}^{L_2}v_{t}^2{\rm d}x +\int_{L_1}^{L_2}bv_{x}^2{\rm d}x\Big)+\frac{L_1}{4}v_{t}^2(L_1)\\ &\quad +\frac{L_3-L_2}{4}v_{t}^2(L_2) +\frac{b}{4}\left((L_3-L_2)v_{x}^2(L_2,t)+L_1v_{x}^2(L_1,t)\right). \end{align*} Thus, the proof of Lemma \ref{le3.5} is complete. As in \cite{amm2012}, we define the functional $$ \mathscr{F}_3(t)=\tau\int_{\Omega}\int_0^1e^{-\tau\rho}z^2(x,\rho,t){\rm d}\rho{\rm d}x, $$ then we have the following estimate. \begin{lemma}[\cite{amm2012}] The functionals $\mathscr{F}_3(t)$ satisfies $$ \frac{d}{dt}\mathscr{F}_3(t)\leq-c_2 \Big(\int_{\Omega}z^2(x,1,t){\rm d}x +\tau\int_{\Omega}\int_0^1z^2(x,\rho,t){\rm d}\rho{\rm d}x\Big) +\int_{\Omega}u_{t}^2(x,t){\rm d}x. $$ \end{lemma} \begin{proof}[Proof of Theorem \ref{th3.1}] We define the Lyapunov functional \begin{equation}\label{3.20} L(t)=N_1E(t)+N_2\mathscr{D}(t)+\mathscr{F}_1(t)+N_4\mathscr{F}_2(t)+\mathscr{F}_3(t), \end{equation} where $N_1, N_2, N_4$ are positive constants that will be fixed later. Taking the derivative of \eqref{3.20} with respect to $t$ and taking advantage of the above lemmas, we have \begin{equation} \label{3.21} \begin{aligned} \frac{d}{dt}L(t) &\leq -\Big\{N_1c_1-1-N_2-\Big(\frac{l+g_0}{2}+\frac{M^2\mu_1^2}{4\varepsilon_1} +\varepsilon_1M^2\Big)\Big\} \int_{\Omega}u_{t}^2{\rm d}x \\ &\quad -\Big\{N_1c_1+c_2-\frac{\mu_2^2N_2}{4\varepsilon} -\frac{M^2\mu_2^2 }{4\varepsilon_1}\Big\} \int_{\Omega}z^2(x,1,t){\rm d}x \\ &\quad -\big\{N_2(l-L^2\varepsilon-\varepsilon) -(l^2+2l^2\varepsilon_1)\big\}\int_{\Omega}u_{x}^2{\rm d}x \\ &\quad -\Big\{\frac{b(L_1+L_3-L_2)}{4(L_2-L_1)}N_4+N_2b\Big\} \int_{L_1}^{L_2}v_{x}^2{\rm d}x \\ &\quad -\Big\{\frac{L_1+L_3-L_2}{4(L_2-L_1)}N_4-N_2\Big\} \int_{L_1}^{L_2}v_{t}^2{\rm d}x \\ &\quad -(b-N_4)\frac{b}{4}\left((L_3-L_2)v_{x}^2(L_2,t)+L_1v_{x}^2(L_1,t)\right) \\ &\quad -(a-N_4)\Big[\frac{L_1}{4}v_{t}^2(L_1,t) +\frac{L_3-L_2}{4}v_{t}^2(L_2,t)\Big] \\ &\quad +c(N_2)\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \\ &\quad +\big(\frac{N_1}{2}-\frac{g(0)}{4\varepsilon_1}\big) \int_{\Omega}\int_0^{\infty}g'(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{equation} At this moment, we wish all coefficients except the last two in \eqref{3.21} will be negative. We want to choose $N_2$ and $N_4$ to ensure that \begin{gather*} a-N_4\geq0,\quad b-N_4\geq0,\\ \frac{L_1+L_3-L_2}{4(L_2-L_1)}N_4-N_2>0. \end{gather*} For this purpose, since $\frac{8l(L_2-L_1)}{L_1+L_3-L_2}<\min\{a,b\}$ we first choose $N_4$ satisfying \[ \frac{8l(L_2-L_1)}{L_1+L_3-L_2}0. $$ Finally, choosing $N_1$ large enough such that the last coefficient in \eqref{3.21} is positive. From the above, we deduce that there exists two positive constants $\alpha_1$ and $\alpha_2$ such that \eqref{3.21} becomes \begin{equation}\label{3.41} \frac{d}{dt}L(t)\leq-\alpha_1E(t) +\alpha_2\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{equation} On the other hand, by the definition of the functionals $\mathscr{D}(t)$, $\mathscr{F}_1(t)$, $\mathscr{F}_2(t)$, $\mathscr{F}_3(t)$ and $E(t)$, for $N_1$ large enough, there exists a positive constant $\beta$ satisfying $$ |N_2\mathscr{D}(t)+\mathscr{F}_1(t)+N_4\mathscr{F}_2(t)+\mathscr{F}_3(t)|\leq\beta E(t), $$ which implies $$ (N_1-\beta)E(t)\leq L(t)\leq(N_1+\beta)E(t). $$ To finish the proof of the stability estimates, we need to estimate the last term in \eqref{3.41}. For the convenience of reading, we briefly repeat the process of \cite{gm2014}. Using (A2) and \eqref{3.1'}, we have \begin{equation} \label{3.42} \begin{aligned} \xi(t)\int_{\Omega}\int_0^{t}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x &\leq \int_{\Omega}\int_0^{t}\xi(s)g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \\ &\leq -\int_{\Omega}\int_0^{t}g'(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \\ &\leq -\int_{\Omega}\int_0^{+\infty}g'(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \\ &\leq -2\frac{d}{dt}E(t). \end{aligned} \end{equation} Moreover, (A2) and the definition of $E(t)$ give us $$ \int_{\Omega}u_{x}^2(x,t){\rm d}x\leq\frac{2}{l}E(t) \leq\frac{2}{l}E(0),\quad \forall t\in\mathbb{R}_{+}. $$ Using \eqref{1.10}, \eqref{3.1}, \eqref{3.40} and \eqref{3.1'}, we arrive at \begin{align*} \xi(t)\int_{\Omega}|\eta_{x}^{t}(x,s)|^2{\rm d}x &= \xi(t)\int_{\Omega}(u_{x}(x,t)-u_{x}(x,t-s))^2{\rm d}x\\ &\leq 2 \xi(t)\int_{\Omega}u_{x}^2(x,t){\rm d}x +2 \xi(t)\int_{\Omega}u_{x}^2(x,t-s){\rm d}x\\ &\leq \frac{8}{l}E(0) \xi(t)+2m_0 \xi(t),\quad \forall t,s\in\mathbb{R}_{+}. \end{align*} Then, we infer that for all $t\in\mathbb{R}_{+}$, \begin{equation}\label{3.43} \xi(t)\int_{\Omega}\int_{t}^{+\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \leq\big(\frac{8}{l}E(0)+2m_0\big)\xi(t)\int_{t}^{+\infty}g(s){\rm d}s. \end{equation} Multiplying \eqref{3.41} by $\xi(t)$ and using \eqref{3.42} and \eqref{3.43}, we obtain \begin{equation}\label{3.60} \xi(t)\frac{d}{dt}L(t)+\beta_1\frac{d}{dt}E(t) \leq-\alpha_1\xi(t)E(t)+\beta_2\xi(t)\int_{t}^{+\infty}g(s){\rm d}s, \end{equation} where $\beta_1=2\alpha_2$ and $\beta_2=\alpha_2\big(\frac{8}{l}E(0)+2m_0\big)$. Now, we define functionals $\mathscr{L}(t)$ and $h(t)$ as $$ \mathscr{L}(t)=\xi(t)L(t)+\beta_1E(t)\quad \text{and}\quad h(t)=\xi(t)\int_{t}^{+\infty}g(s){\rm d}s. $$ The fact that $L(t)$ and $E(t)$ are equivalent and (A2) imply that for some positive constants $\eta_1$ and $\eta_2$, \begin{equation}\label{3.44} \eta_1E(t)\leq\mathscr{L}(t)\leq\eta_2E(t)\,. \end{equation} Using \eqref{3.60}, \eqref{3.44} and (A2), we obtain $$ \frac{d}{dt}\mathscr{L}(t)\leq-\gamma_0\xi(t)\mathscr{L}(t)+\beta_2h(t), $$ where $\gamma_0=\alpha_1/\eta_2$. We conclude that, for any $\gamma_1\in(0,\gamma_0)$, $$ \frac{d}{dt}\mathscr{L}(t)\leq-\gamma_1\xi(t)\mathscr{L}(t)+\beta_2h(t). $$ By integrating over $[0,T]$ with $T\geq 0$, we obtain $$ \mathscr{L}(T)\leq e^{-\gamma_1\int_0^T\xi(s){\rm d}s} \Big(\mathscr{L}(0)+\beta_2\int_0^Te^{\gamma_1 \int_0^{t}\xi(s){\rm d}s}h(t){\rm d}t\Big). $$ Using \eqref{3.44}, we have \begin{equation}\label{3.46} E(T)\leq\frac{1}{\eta_1}e^{-\gamma_1\int_0^T\xi(s){\rm d}s} \Big(\mathscr{L}(0)+\beta_2\int_0^Te^{\gamma_1\int_0^{t}\xi(s){\rm d}s}h(t){\rm d}t \Big). \end{equation} We notice that $$ e^{\gamma_1\int_0^{t}\xi(s){\rm d}s}h(t)=\frac{1}{\gamma_1} \Big(e^{\gamma_1\int_0^{t}\xi(s){\rm d}s}\Big)'\int_{t}^{+\infty}g(s){\rm d}s. $$ So integration by parts gives us \begin{align*} &\int_0^Te^{\gamma_1\int_0^{t}\xi(s){\rm d}s}h(t){\rm d}t\\ &= \frac{1}{\gamma_1}\Big(e^{\gamma_1\int_0^T\xi(s){\rm d}s} \int_{T}^{+\infty}g(s){\rm d}s-\int_0^{+\infty}g(s){\rm d}s +\int_0^Te^{\gamma_1\int_0^{t}\xi(s){\rm d}s}g(t){\rm d}t\Big). \end{align*} Consequently, combining with \eqref{3.46}, we have \begin{equation}\label{3.47} \begin{aligned} E(T)&\leq \frac{1}{\eta_1} \Big(\mathscr{L}(0)e^{-\gamma_1\int_0^T\xi(s){\rm d}s} +\frac{\beta_2}{\gamma_1}\int_{T}^{+\infty}g(s){\rm d}s\Big) \\ &\quad +\frac{\beta_2}{\eta_2\gamma_1}e^{-\gamma_1\int_0^T\xi(s){\rm d}s} \int_0^Te^{\gamma_1\int_0^{t}\xi(s){\rm d}s}g(t){\rm d}t. \end{aligned} \end{equation} On the other hand, thanks to (A2), we have $$ \Big(e^{\gamma_1\int_0^{t}\xi(s){\rm d}s}(g(t))^{\gamma_1}\Big)' \leq 0,\quad \forall t\in\mathbb{R}_{+}; $$ then $$ e^{\gamma_1\int_0^{t}\xi(s){\rm d}s}(g(t))^{\gamma_1}\leq(g(0))^{\gamma_1}. $$ Thus \begin{equation}\label{3.48} \int_0^Te^{\gamma_1\int_0^{t}\xi(s){\rm d}s}g(t){\rm d}t \leq(g(0))^{\gamma_1}\int_0^T(g(t))^{1-\gamma_1}{\rm d}t. \end{equation} Finally, \eqref{3.47} and \eqref{3.48} imply that for the solution of \eqref{1.1}-\eqref{1.3} with $$ \gamma_2=\frac{1}{\eta_1}\max \Big\{\mathscr{L}(0),\frac{\beta_2}{\gamma_1}, \frac{\beta_2}{\gamma_1}(g(0))^{\gamma_1}\Big\}, $$ \eqref{3.26} holds. The proof is complete. \end{proof} \subsection{Case $\mu_2=\mu_1$} In this subsection, we assume that $\mu_1=\mu_2=\mu$ and prove the decay result of problem \eqref{1.1}-\eqref{1.3}. By \eqref{2.9}, we choose $\zeta=\tau\mu$, then we obtain the following consequence of Lemma \ref{le3.1}. \begin{lemma} Let $(u,v,z)$ be the solution of \eqref{2.5}-\eqref{2.6}. Assume that $\mu_1=\mu_2=\mu$ and $E(t)$ satisfies \eqref{3.1}. Then we have the inequality \begin{equation}\label{5.4'} \frac{d}{dt}E(t)\leq\frac{1}{2}\int_{\Omega}\int_0^{\infty} g'(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{equation} \end{lemma} When $\mu_1=\mu_2=\mu$, we need negative term $-\int_{\Omega}u_{t}^2{\rm d}x$ to get $-cE(t)$. For this purpose, we define the functional $$ \mathscr{F}_4(t)=-\int_{\Omega}u_{t}\int_0^{\infty}g(s)(u(t) -u(t-s)){\rm d}s{\rm d}x. $$ Then we have the following estimate. \begin{lemma}\label{le5.6} The functional $\mathscr{F}_4(t)$ satisfies \begin{equation} \label{5.19} \begin{aligned} \frac{d}{dt}\mathscr{F}_4(t) &\leq -(g_0-\delta_2-\delta_2\mu)\int_{\Omega}u_{t}^2{\rm d}x +\delta_2l^2\int_{\Omega}u_{x}^2{\rm d}x +\delta_2\mu\int_{\Omega}z^2(x,1,t){\rm d}x \\ &\quad +\Big(g_0+\frac{g_0}{4\delta_2}+\frac{\mu g_0L^2}{2\delta_2}\Big) \int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \\ &\quad -\frac{g(0)L^2}{\delta_2}\int_{\Omega}\int_0^{\infty}g'(s) |\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{equation} \end{lemma} \begin{proof} Taking the derivative of $\mathscr{F}_4(t)$ with respect to $t$ and using \eqref{2.5}, we have \begin{align} &\frac{d}{dt}\mathscr{F}_4(t) \nonumber \\ &= -\int_{\Omega}\Big(lu_{xx}+\int_0^{\infty}g(s)\eta_{xx}^{t}(x,s){\rm d}s -\mu u_{t}-\mu z(x,1,t)\Big) \nonumber \\ &\quad \times\int_0^{\infty}g(s)(u(t)-u(t-s)){\rm d}s{\rm d}x -\int_{\Omega}u_{t}\int_0^{\infty}g(s)(u_{t}(t)-u_{t}(t-s)){\rm d}s{\rm d}x \nonumber \\ &= \int_{\Omega}lu_{x}\int_0^{\infty}g(s)(u_{x}(t)-u_{x}(t-s)){\rm d}s{\rm d}x -g_0\int_{\Omega}u_{t}^2{\rm d}x \nonumber \\ &\quad +\int_{\Omega}u_{t}\int_0^{\infty}g(s)\eta_{s}^{t}(s){\rm d}s{\rm d}x +\int_{\Omega}\Big(\int_0^{\infty}g(s)(u_{x}(t)-u_{x}(t-s)){\rm d}s\Big)^2{\rm d}x \nonumber\\ &\quad +\int_{\Omega}\mu u_{t}\int_0^{\infty}g(s)(u(t)-u(t-s)){\rm d}s{\rm d}x \nonumber \\ &\quad +\int_{\Omega}\mu z(x,1,t)\int_0^{\infty}g(s)(u(t)-u(t-s)){\rm d}s{\rm d}x. \label{5.191} \end{align} Using Young's inequality and \eqref{1.6}, we obtain for any $\delta_2>0$, \begin{gather} \label{5.192} \begin{aligned} &\int_{\Omega}lu_{x}\int_0^{\infty}g(s)(u_{x}(t)-u_{x}(t-s)){\rm d}s{\rm d}x \\ &\leq \delta_2l^2\int_{\Omega}u_{x}^2{\rm d}x+\frac{g_0}{4\delta_2} \int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x, \end{aligned} \\ \label{5.193} \begin{aligned} &\int_{\Omega}\mu u_{t}\int_0^{\infty}g(s)(u(t)-u(t-s)){\rm d}s{\rm d}x \\ &\leq \delta_2\mu\int_{\Omega}u_{t}^2{\rm d}x +\frac{\mu g_0L^2}{4\delta_2}\int_{\Omega}\int_0^{\infty}g(s) |\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x, \end{aligned} \\ \label{5.196} \begin{aligned} &\int_{\Omega}\mu z(x,1,t)\int_0^{\infty}g(s)(u(t)-u(t-s)){\rm d}s{\rm d}x \\ &\leq \delta_2\mu\int_{\Omega}z^2(x,1,t){\rm d}x +\frac{\mu g_0L^2}{4\delta_2}\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{gather} We notice that \begin{equation} \label{5.194} \begin{aligned} &\int_{\Omega}\Big(\int_0^{\infty}g(s)(u_{x}(t)-u_{x}(t-s)){\rm d}s\Big)^2{\rm d}x \\ &\leq \int_{\Omega}\int_0^{\infty}g(s){\rm d}s \Big(\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s\Big){\rm d}x \\ &\leq g_0\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \end{aligned} \end{equation} and \begin{equation} \label{5.195} \begin{aligned} \int_{\Omega}u_{t}\int_0^{\infty}g(s)\eta_{s}^{t}(s){\rm d}s{\rm d}x &= -\int_{\Omega}u_{t}\int_0^{\infty}g'(s)\eta^{t}(s){\rm d}s{\rm d}x \\ &\leq \delta_2\int_{\Omega}u_{t}{\rm d}x -\frac{g(0)L^2}{4\delta_2}\int_0^{\infty}g'(s)\eta_{x}^{t}(s){\rm d}s{\rm d}x. \end{aligned} \end{equation} Inserting the estimates \eqref{5.192}-\eqref{5.195} into \eqref{5.191}, we obtain \eqref{5.19}. The proof is complete. \end{proof} Now, we define the Lyapunov functional \begin{equation}\label{5.20} G(t)=N_1E(t)+N_2\mathscr{D}(t)+\mathscr{F}_1(t)+N_4\mathscr{F}_2(t) +N_5\mathscr{F}_3(t)+N_6\mathscr{F}_4(t), \end{equation} where $N_1, N_2, N_4, N_5$ and $N_6$ are positive constants that will be fixed later. Taking the derivative of \eqref{5.20} with respect to $t$ and taking advantage of the above lemmas, we have \begin{equation} \label{5.21} \begin{aligned} \frac{d}{dt}G(t) &\leq -\Big\{N_6(g_0-\delta_2-\delta_2\mu)-N_2 -\Big(\frac{l+g_0}{2}+\frac{M^2\mu^2}{4\varepsilon_1} +\varepsilon_1M^2\Big)\\ &\quad -N_5\Big\}\int_{\Omega}u_{t}^2{\rm d}x \\ &\quad -\Big\{N_5c_2-\frac{N_2\mu^2}{4\varepsilon}-\frac{M^2\mu^2 }{4\varepsilon_1} -N_6\delta_2\mu\Big\} \int_{\Omega}z^2(x,1,t){\rm d}x \\ &-\big\{N_2(l-L^2\varepsilon-\varepsilon)-\big(l^2+2l^2\varepsilon_1\big) -N_6\delta_2l^2\big\}\int_{\Omega}u_{x}^2{\rm d}x \\ &\quad -\big\{\frac{b(L_1+L_3-L_2)}{4(L_2-L_1)}N_4+N_2b\big\} \int_{L_1}^{L_2}v_{x}^2{\rm d}x \\ &\quad -\Big\{\frac{L_1+L_3-L_2}{4(L_2-L_1)}N_4-N_2\Big\} \int_{L_1}^{L_2}v_{t}^2{\rm d}x \\ &\quad -(b-N_4)\frac{b}{4}\left((L_3-L_2)v_{x}^2(L_2,t)+L_1v_{x}^2(L_1,t)\right) \\ &\quad -(a-N_4)\big[\frac{L_1}{4}v_{t}^2(L_1,t) +\frac{L_3-L_2}{4}v_{t}^2(L_2,t)\big] \\ &\quad +c(N_2,N_6)\int_{\Omega}\int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x \\ &+\Big(\frac{N_1}{2}-\frac{g(0)}{4\varepsilon_1}-\frac{N_6g(0)L^2}{4\delta_2}\Big) \int_{\Omega}\int_0^{\infty}g'(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{aligned} \end{equation} At this moment, we wish all coefficients except the last two in \eqref{5.21} will be negative. We want to choose $N_2$ and $N_4$ to ensure that \begin{gather*} a-N_4\geq0,\quad b-N_4\geq0,\\ \frac{L_1+L_3-L_2}{4(L_2-L_1)}N_4-N_2>0. \end{gather*}. For this purpose, since $\frac{8l(L_2-L_1)}{L_1+L_3-L_2}<\min\{a,b\}$ we first choose $N_4$ satisfying \begin{align*} \frac{8l(L_2-L_1)}{L_1+L_3-L_2}\frac{3}{2}l^2. $$ Once $\varepsilon$ and $\varepsilon_1$ are fixed, we take $N_5$ satisfying $$ N_5>\max\Big\{\frac{2N_2\mu^2}{\varepsilon c_2}, \frac{2M^2\mu^2}{\varepsilon_1 c_2}\Big\} $$ such that $$ N_5c_2-\frac{N_2\mu^2}{4\varepsilon}-\frac{M^2\mu^2 }{4\varepsilon_1} >\frac{3}{4}N_5c_2. $$ Further, we choose $N_6$ satisfying $$ N_6>\max\Big\{\frac{8N_2}{g_0},\frac{4(l+g_0)}{g_0} +\frac{2M^2\mu^2}{\varepsilon_1g_0}+\frac{8\varepsilon_1M^2}{g_0}, \frac{8N_5}{g_0}\Big\} $$ such that $$ \frac{7}{8}N_6g_0-N_2-\Big(\frac{l+g_0}{2}+\frac{M^2\mu^2}{4\varepsilon_1} +\varepsilon_1M^2\Big)-N_5>\frac{N_6g_0}{2}. $$ Then, we pick $\delta_2$ satisfying $$ \delta_2<\min\Big\{\frac{g_0}{8(1+\mu)},\frac{N_5c_2}{8N_6\mu},\frac{1}{4N_6}\Big\} $$ such that $$ \frac{3}{4}N_5c_2-N_6\delta_2\mu>\frac{5}{8}N_5c_2,\quad \frac{1}{8}N_6g_0-\delta_2-\delta_2\mu>0,\quad \frac{l^2}{2}-N_6\delta_2l^2>\frac{l^2}{4}. $$ Finally, choosing $N_1$ large enough such that the first two coefficients in \eqref{5.21} are negative and the last coefficient in \eqref{5.21} is positive. From the above, we deduce that there exists two positive constants $\alpha_3$ and $\alpha_4$ such that \eqref{5.21} becomes \begin{equation}\label{5.41} \frac{d}{dt}G(t)\leq-\alpha_3E(t)+\alpha_4\int_{\Omega} \int_0^{\infty}g(s)|\eta_{x}^{t}(x,s)|^2{\rm d}s{\rm d}x. \end{equation} The remaining part of the proof of Theorem \ref{th3.1} can be finished, following the same steps as in the previous proof. \end{proof} \subsection*{Acknowledgments} The authors express sincere thanks to Dr. Wenjun Liu, the editors and anonymous reviewers for their constructive comments and suggestions that helped to improve this article. This work was supported by the project of Chinese Ministry of Finance (Grant No. GYHY200906006), the National Natural Science Foundation of China (Grant No. 11301277), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20151523). \begin{thebibliography}{00} \bibitem{amm2012} T. A. Apalara, S. A. Messaoudi, M. I. Mustafa; \emph{Energy decay in thermoelasticity type III with viscoelastic damping and delay term}, Electron. J. Differential Equations, \textbf{2012}, No. 128, 15 pp. \bibitem{amq2013} R. O. Ara\'ujo, T. F. Ma, Y. Qin; \emph{Long-time behavior of a quasilinear viscoelastic equation with past history}, J. Differential Equations, \textbf{254} (2013), no.~10, 4066--4087. \bibitem{b2010} J. J. Bae; \emph{Nonlinear transmission problem for wave equation with boundary condition of memory type}, Acta Appl. Math., \textbf{110} (2010), no.~2, 907--919. \bibitem{br2007} W. D. Bastos, C. A. Raposo; \emph{Transmission problem for waves with frictional damping}, Electron. J. Differential Equations, \textbf{2007}, No. 60, 10 pp. \bibitem{b2014} A. Benseghir; \emph{Existence and exponential decay of solutions for transmission problem with delay}, Electron. J. Differential Equations, \textbf{2014} (2014), no. 212, 1-11. \bibitem{bm2006} S. Berrimi, S. A. Messaoudi; \emph{Existence and decay of solutions of a viscoelastic equation with a nonlinear source}, Nonlinear Anal., \textbf{64} (2006), no.~10, 2314--2331. \bibitem{c2001} M. M. Cavalcanti et al.; \emph{Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping}, Differential Integral Equations, \textbf{14} (2001), no.~1, 85--116. \bibitem{cds2002} M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano; \emph{Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping}, Electron. J. Differential Equations, \textbf{2002}, No.\ 44, 14 pp. \bibitem{d19701} C. M. Dafermos; \emph{Asymptotic stability in viscoelasticity}, Arch. Rational Mech. Anal., \textbf{37} (1970), 297--308. \bibitem{dl1986} R. Datko, J. Lagnese, M. P. Polis; \emph{An example on the effect of time delays in boundary feedback stabilization of wave equations}, SIAM J. Control Optim., \textbf{24} (1986), no.~1, 152--156. \bibitem{g2011} A. Guesmia; \emph{Asymptotic stability of abstract dissipative systems with infinite memory}, J. Math. Anal. Appl., \textbf{382} (2011), no.~2, 748--760. \bibitem{gm2012} A. Guesmia, S. A. Messaoudi; \emph{A general decay result for a viscoelastic equation in the presence of past and finite history memories}, Nonlinear Anal. Real World Appl., \textbf{13} (2012), no.~1, 476--485. \bibitem{gm2014} A. Guesmia, S. A. Messaoudi; \emph{A general stability result in a Timoshenko system with infinite memory: a new approach}, Math. Methods Appl. Sci., \textbf{37} (2014), no.~3, 384--392. \bibitem{ks2011} M. Kirane, B. Said-Houari; \emph{Existence and asymptotic stability of a viscoelastic wave equation with a delay}, Z. Angew. Math. Phys., \textbf{62} (2011), no.~6, 1065--1082. \bibitem{l2013} W. J. Liu; \emph{General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback}, J. Math. Phys., \textbf{54} (2013), no.~4, 043504, 9 pp. \bibitem{l20132} W. J. Liu; \emph{General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term}, Taiwanese J. Math., \textbf{17} (2013), 2101-2115. \bibitem{l2014} W. J. Liu; \emph{Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions}, Appl. Math. Lett., \textbf{38} (2014), 155--161. \bibitem{lc2014} W. J. Liu, K. W. Chen; \emph{Existence and general decay for nondissipative distributed systems with boundary frictional and memory dampings and acoustic boundary conditions}, Z. Angew. Math. Phys., \textbf{66} (2015), no.~4, 1595--1614. \bibitem{ls2014} W. J. Liu, Y. Sun; \emph{General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions}, Z. Angew. Math. Phys., \textbf{65} (2014), no.~1, 125--134. \bibitem{mmn2002} A. Marzocchi, J. E. Mu\~noz Rivera, M. G. Naso; \emph{Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity}, Math. Methods Appl. Sci., \textbf{25} (2002), no.~11, 955--980. \bibitem{mma2013} S. A. Messaoudi, M. M. Al-Gharabli; \emph{A general stability result for a nonlinear wave equation with infinite memory}, Appl. Math. Lett., \textbf{26} (2013), no.~11, 1082--1086. \bibitem{mp2000} J. E. Mu\~noz Rivera, H. Portillo Oquendo; \emph{The transmission problem of viscoelastic waves}, Acta Appl. Math., \textbf{62} (2000), no.~1, 1--21. \bibitem{np2006} S. Nicaise, C. Pignotti; \emph{Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks}, SIAM J. Control Optim., \textbf{45} (2006), no.~5, 1561--1585 \bibitem{qr2013} Y. M. Qin, J. Ren; \emph{Global existence, asymptotic behavior, and uniform attractor for a nonautonomous equation}, Math. Methods Appl. Sci., \textbf{36} (2013), no.~18, 2540--2553. \bibitem{q2014} Y. M. Qin, B. W. Feng, M. Zhang; \emph{Uniform attractors for a non-autonomous viscoelastic equation with a past history}, Nonlinear Anal., \textbf{101} (2014), 1--15. \bibitem{tp2013} F. Tahamtani, A. Peyravi; \emph{Asymptotic behavior and blow-up of solutions for a nonlinear viscoelastic wave equation with boundary dissipation}, Taiwanese J. Math., \textbf{17} (2013), no.~6, 1921--1943. \bibitem{wlz2016} D. H. Wang, G. Li, B. Q. Zhu, \emph{Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay}, J. Nonlinear Sci. Appl., \textbf{9} (2016), no.~3, 1202-1215. \bibitem{w2013} S.-T. Wu; \emph{Asymptotic behavior for a viscoelastic wave equation with a delay term}, Taiwanese J. Math., \textbf{17} (2013), no.~3, 765--784. \bibitem{w20132} S.-T. Wu; \emph{General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms}, J. Math. Anal. Appl., \textbf{406} (2013), no.~1, 34--48. \end{thebibliography} \end{document}