\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 31, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/31\hfil Trace formula for an even-order differential operator] {Regularized trace formula for higher order differential operators with unbounded coefficients} \author[E. \c{S}en, A. Bayramov, K. Oru\c{c}o\u{g}lu \hfil EJDE-2016/31\hfilneg] {Erdo\u{g}an \c{S}en, Azad Bayramov, Kamil Oru\c{c}o\u{g}lu} \address{Erdo\u{g}an \c{S}en \newline Department of Mathematics, Faculty of Arts and Science, Nam\i kKemal University, 59030, Tekirda\u{g}, Turkey} \email{erdogan.math@gmail.com} \address{Azad Bayramov \newline Department of Mathematics Education, Faculty of Education, Recep Tayyip Erdogan University, Rize, Turkey} \email{azadbay@gmail.com} \address{Kamil Oru\c{c}o\u{g}lu \newline Department of Mathematics Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey} \email{koruc@itu.edu.tr} \thanks{Submitted April 1, 2015. Published January 20, 2016.} \subjclass[2010]{47A10, 47A55} \keywords{Hilbert space; self-adjoint operator; spectrum; trace class operator; \hfill\break\indent regularized trace} \begin{abstract} In this work we obtain the regularized trace formula for an even-order differential operator with unbounded operator coefficient. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} The first work about the theory of regularized traces of differential operators belongs to Gelfand and Levitan \cite{bib1}. They considered the Sturm-Liouville operator \[ -y''+[ q(x)-\lambda ] y=0, \] with boundary conditions \[ y'(0)=y'(\pi) =0, \] where $q(x)\in C^{1}[ 0,\pi ] $. Under the condition $\int_0^{\pi }q(x) dx=0$ they obtained the formula \[ \sum_{n=0}^{\infty }(\mu _n-\lambda _n) =\frac{1}{4}( q(0) +q(\pi)) . \] Gul \cite{bib2} obtained the formula \[ \lim_{m\to \infty }\sum_{k=1}^{n_{m}}(\lambda _{k}-\mu _{k}) =\frac{1}{4}[ \operatorname{tr}Q(\pi )-\operatorname{tr}Q(0) ] \] for the regularized trace of the second order differential operator \[ l[ y] =-y''(x) +Ay(x)+Q(x)y(x) \] with unbounded operator coefficient and with the boundary conditions $y(0) =y'(\pi) =0$. Here $\lambda_{k}$ and $\mu_{k}$ are the eigen-elements of the operators \begin{gather*} l_0[ y] =-y''(x) +Ay(x) \\ l[ y] =-y''(x) +Ay(x)+Q(x)y(x) \end{gather*} with the same boundary conditions $y(0) =y'(\pi) =0$ respectively. Ad\i g\"{u}zelov and Sezer \cite{bib3} obtained a regularized trace formula for a self-adjoint differential operator of higher order with unbounded operator coefficient. Articles \cite{bib4, bib5, bib6, bib7, bib8} are devoted to study of regularized trace formulas of differential operators with bounded operator coefficient. Bayramov et al \cite{bib9} obtained the second regularized trace formula for the differential operator equation with the semi-periodic boundary conditions. Makin \cite{bib10} established a formula for the first regularized trace of the Sturm-Liouville equation with a complex-valued potential and with irregular boundary conditions. Let $H$ be a separable Hilbert space and let $H_1=L_2(H;[0,\pi]) $ denote the set of all strongly measurable functions $ f$ with values in $H$ and such that \[ \int_0^{\pi}\| f(t) \| _H^2dt<\infty. \] and the scalar function $(f(t),g) $ is Lebesgue measurable for every $g\in H$ in the interval $[ 0,\pi] $. Here $(\cdot,\cdot) $ denotes the inner product in $H$ and $\|\cdot\| $ denotes the norm in $H$. If the inner product of two arbitrary elements $f$ and $g$ of the space $H_1$ is defined by \[ (f,g) _{H_1}=\int_0^{\pi }(f(t),g(t)) _Hdt,\quad f,g\in H_1 \] then $H_1$ becomes a separable Hilbert space \cite{bib11}. $\sigma_{\infty }(H) $ denotes the set of all compact operators from $H$ into $H$. If $A\in \sigma _{\infty }(H) $, then $AA^{\ast }$ is a nonnegative self-adjoint operator and $(A^{\ast }A) ^{1/2}\in \sigma _{\infty }(H)$. Let the non-zero eigen-elements of the operator $(A^{\ast }A) ^{1/2}$ be $s_1\geq s_2\geq \dots\geq s_q$ $(0\leq q\leq \infty)$. Here, each eigen-element is counted according to its own multiplicity. The numbers $s_1,s_2,\dots,s_q$ are called $s$-numbers of the the operator $A$. $\sigma _1(H) $ is the set of all the operators $A\in \sigma _{\infty }(H) $ such that the $s$-numbers of which satisfy the condition $\sum_{q=1}^{\infty}s_q<\infty $. An operator is called a trace class operator if it belongs to $\sigma _1(H) $. Let us consider the operators $l_0$ and $l$ in $H_1$ defined by \begin{gather} l_0[ u] =(-1) ^{m}u^{(2m)}(t) +Au(t), \label{e1} \\ l[ u] =(-1) ^{m}u^{(2m)}(t) +Au(t)+Q(t)u(t) \label{e2} \end{gather} with the same boundary conditions $y^{(2i-2) }(0)=y^{(2i-1) }(\pi) =0$ $(i=1,2,\dots,m) $ respectively. Here $A:\Omega (A) \to H$ is a densely defined self-adjoint operator in $H$ with $A=A^{\ast }\geq E$ where $E:H\to H$ is identity operator and $A^{-1}\in \sigma _{\infty }(H) $. We also should note that our problem's boundary conditions are different from the considered problem's boundary conditions in \cite{bib3} which arise new difficulties. Let $\eta_1\leq\eta_2\leq\dots\leq\eta_n\leq\dots$ be the eigen-elements of the operator $A$ and $\varphi_1,\varphi_2,\dots,\varphi_n,\dots$ be the orthonormal eigenvectors corresponding to these eigen-elements. Here, each eigenvalue is counted according to its own multiplicity number. Let $ \Omega(L_0') $ denote the set of the functions $u(t)$ of the space $H_1$ satisfying the following conditions: \begin{itemize} \item[(a)] $u(t)$ has continuous derivative of the $2m$ order with respect to the norm in the space $H$ in the interval $[ 0,\pi] $; \item[(b)] $u(t)\in\Omega(A) $ for every $t\in[ 0,\pi] $ and $Au(t)$ is continuous with respect to the norm in the space $H$. \item[(c)] $y^{(2i-2) }(0)=y^{(2i-1) }(\pi) =0$ $(i=1,2,\dots,m) $. \end{itemize} Here $\overline{\Omega (L_0') }=H_1$. Let us consider the linear operator $L_0'u=l_0u$ from $D(L_0)$ to $H_1$. $L_0'$ is a symmetric operator. The eigen-elements of $L_0'$ are $(\frac{1}{2}+k) ^{2m}+\eta _j$ $(k=0,1,2,\dots;j=1,2,\dots) $. and the orthonormal eigenvectors corresponding to these eigen-elements are \[ \sqrt{\frac{2}{\pi }}\sin \big((\frac{1}{2}+k) t\big) \varphi _j(k=0,1,2,\dots ;j=1,2,\dots) . \] \section{Some relations about the eigen-elements and resolvents} Let the eigenvalues of the operators $L_0$ and $L$ be $\mu _1\leq \mu_2\leq \dots\leq \mu _n\leq \dots$ and $\lambda _1\leq \lambda _2\leq \dots\leq \lambda _n\leq \dots$ respectively. Let $N(\mu )$ be the number of eigen-elements of operator $L_0$ which is not greater than a positive number $\mu $. If $\eta _j\sim aj^{\alpha }$ as $j\to \infty $ $(a>0,\alpha >\frac{2m}{2m-1}) $ that is, if \[ \lim_{j\to \infty }\frac{\eta _j}{aj^{\alpha }}=1 \] then using the same method in \cite{bib12} it can be found that $N(\mu) \sim d\mu ^{\frac{2m+\alpha }{2m\alpha }}$, where \[ d=\frac{2}{\alpha a^{1/a}}\int_0^{\pi /2}(\sin \tau) ^{\frac{2 }{\alpha }-1}(\cos \tau) ^{1+\frac{1}{m}}d\tau \] and hence \begin{equation} \mu _n\sim d_0n^{\frac{2m\alpha }{2m+\alpha }}\quad \text{as } j\to \infty \quad (d_0=d^{\frac{2m\alpha }{2m+\alpha } }) . \label{e3} \end{equation} Let $Q(t)$ be an operator function satisfying the following conditions: \begin{enumerate} \item $Q(t):H\to H$ is a self-adjoint operator for every $t\in[ 0,\pi] $; \item $Q(t)$ is weakly measurable in the interval $[ 0,\pi] $; \item The norm function $\| Q(t)\| $ is bounded in the interval $[ 0,\pi] $; \item $Q(t)$ has weak derivative of the second order in the interval $[ 0,\pi] $; \item The function $(Q'(t)f,g) $ is continuous for every $ f,g\in H$; \item $Q^{(i)}(t):H\to H$ $(i=0,1,2)$ are self-adjoint trace class operators and the functions $\| Q^{(i)}(t)\| _{\sigma _1(H)}$ $(i=0,1,2) $ are bounded and measurable in the interval $[ 0,\pi ] $. \end{enumerate} Since $Q$ is a self-adjoint operator from $H_1$ to $H_1$ for every $y\in H_1$ we have \[ | (Qy,y) _{H_1}| \leq \|Qy\| _{H_1}\| y\| _{H_1} \leq \|Q\| _{H_1}\| y\| _{H_1}^2 \] or \[ (-\| Q\| y,y) _{H_1}\leq (Qy,y)_{H_1}\leq (\| Q\| y,y) _{H_1}. \] This means that \[ -\| Q\| _{H_1}E\leq Q\leq \| Q\|_{H_1}E. \] And so \[ L_0-\| Q\| _{H_1}E\leq L=L_0+Q\leq L_0+\|Q\| _{H_1}E. \] In this situation, it is well-known that (Smirnov, \cite{bib13}) \[ \mu _n-\| Q\| _{H_1}\leq \lambda _n\leq \mu_n+\| Q\| _{H_1}\,. \] According to this, we can write \[ 1-\frac{\| Q\| _{H_1}}{\mu _n}\leq \frac{\lambda _n}{ \mu _n}\leq 1+\frac{\| Q\| _{H_1}}{\mu _n}. \] By applying limit to each side of this inequality and by considering the equality \[ \lim_{n\to \infty }\frac{\mu _n}{d_0n^{\frac{2m\alpha }{ 2m+\alpha }}}, \] we get $\lim_{n\to \infty }\lambda _n/ \mu _n=1$. Thus we have \[ \lim_{n\to \infty }\frac{\lambda _n}{d_0n^{\frac{2m\alpha }{ 2m+\alpha }}}=\lim_{n\to \infty }\frac{\lambda _n}{\mu _n}\frac{ \mu _n}{d_0n^{\frac{2m\alpha }{2m+\alpha }}}=\lim_{n\to \infty } \frac{\lambda _n}{\mu _n}\lim_{n\to \infty }\frac{\mu _n}{ d_0n^{\frac{2m\alpha }{2m+\alpha }}}=1 \] or as $n\to \infty $, \begin{equation} \lambda _n\sim d_0n^{\frac{2m\alpha }{2m+\alpha }}. \label{e4} \end{equation} By using the formula \eqref{e3}, it is easily seen that the sequence $\{ \mu_n\} $ has a subsequence $\mu _{n_1}<\mu _{n_2}<\dots<\mu_{n_p}<\dots$ such that \begin{equation} \mu _q-\mu _{n_p}>d_0\big(q^{\frac{2m\alpha }{2m+\alpha }}-n_p^{ \frac{2m\alpha }{2m+\alpha }}\big) \quad \big( q=n_p+1,n_p+2,\dots;d_0=d^{\frac{2m\alpha }{2m+\alpha }}\big) . \label{e5} \end{equation} Let $R_{\lambda }^0=(L_0-\lambda E) ^{-1}$, $R_{\lambda}=(L-\lambda E) ^{-1}$ be the resolvents of the operators $L_0$ and $L$ respectively. If $\alpha >\frac{2m}{2m-1}$ then, by the formulas \eqref{e3} and \eqref{e4}, $R_{\lambda }^0$ and\ $R_{\lambda }$ are trace class operators for $\lambda \neq \lambda _q,\mu _q$ $(q=1,2,\dots) $. In this situation \begin{equation} \operatorname{tr}(R_{\lambda }-R_{\lambda }^0) =trR_{\lambda }-trR_{\lambda }^0=\sum_{q=1}^{\infty }(\frac{1}{\lambda _q-\lambda }-\frac{1}{ \mu _q-\lambda }) , \label{e6} \end{equation} see Cohberg and Krein \cite{bib14}. Let $| \lambda | =d_p=2^{-1}(\mu _{n_p+1}+\mu_{n_p}) $. It is easy to see that for large values of $p$ the inequalities $\mu _{n_p}0,\alpha>\frac{2m}{2m-1}) $ then $\| R_{\lambda}^0\|_{\sigma_1(H_1)}<2d_0^{-1}\frac{(2\delta +1) }{\delta n_p^{\delta-1}}$ $(\delta=\frac{2m\alpha }{2m+\alpha}-1) $ on the circle $| \lambda| =d_p$. \end{lemma} \begin{proof} For $\lambda \notin \{ \mu _q\} _{q=1}^{\infty }$, since $R_{\lambda }^0$ is a normal operator we have $\| R_{\lambda}^0\| _{\sigma _1(H_1)}=\sum_{q=1}^{\infty }\frac{1}{ | \mu _q-\lambda | }$ \cite{bib14}. On the circle $| \lambda | =d_p$ we have \begin{equation} \label{e8} \begin{aligned} &\| R_{\lambda }^0\| _{\sigma _1(H_1)}\\ & \leq \sum_{q=1}^{\infty }\frac{1}{| | \lambda | -\mu _q| }=\sum_{q=1}^{n_p}\frac{2}{\mu _{n_p}+\mu _{n_p+1}-2\mu _q}+\sum_{q=n_p+1}^{\infty }\frac{2}{2\mu _q-\mu _{n_p}-\mu _{n_p+1}} \\ & \leq \sum_{q=1}^{n_p}\frac{2}{\mu _{n_p+1}-\mu _q} +\sum_{q=n_p+1}^{\infty }\frac{2}{2\mu _q-\mu _{n_p}} =\sum_{q=1}^{n_p}\frac{2}{\mu _{n_p+1}-\mu _q}+2D_p, \end{aligned} \end{equation} where $D_p=\sum_{k=n_p+1}^{\infty }(\mu _{k}-\mu _{n_p})^{-1}$ $(p=1,2,\dots) $. By using the inequality \eqref{e5} we obtain \begin{equation} \label{e9} \begin{aligned} \sum_{q=1}^{n_p}\frac{2}{\mu _{n_p+1}-\mu _q} &<\frac{n_p}{\mu _{n_p+1}-\mu _{n_p}} <\frac{n_p}{d_0((n_p+1)^{1+\delta }-n_p^{1+\delta }) }\\ &<\frac{n_p}{d_0(n_p+1) ^{\delta }}<\frac{n_p^{1-\delta }}{d_0}, \end{aligned} \end{equation} \begin{equation} \begin{aligned} D_p& =\sum_{k=n_p+1}^{\infty }(\mu _{k}-\mu _{n_p}) ^{-1}< \frac{1}{d_0}\sum_{k=n_p+1}^{\infty }\frac{1}{k^{1+\delta }-n_p^{1+\delta }} \\ & =d_0^{-1}[ \frac{1}{((n_p+1) ^{1+\delta }-n_p^{1+\delta }) }+\sum_{k=n_p+2}^{\infty }\frac{1}{k^{1+\delta }-n_p^{1+\delta }}] . \end{aligned} \label{e10} \end{equation} It is easy to see that \begin{gather*} \sum_{k=n_p+2}^{\infty }\frac{1}{k^{1+\delta }-n_p^{1+\delta }} \leq\int_{n_p+1}^{\infty }\frac{dt}{t^{1+\delta }-n_p^{1+\delta }}, \\ \int_{n_p+1}^{\infty }\frac{dt}{t^{1+\delta }-n_p^{1+\delta }} <\frac{1}{\delta [ ((n_p+1) ^{1+\delta }-n_p^{1+\delta }) ] ^{\frac{\delta }{1+\delta }}}. \end{gather*} Taking into account the inequality \eqref{e10} we obtain \begin{equation} D_p0,\alpha>\frac {2m}{2m-1}) $, then for $| \lambda| =d_p$ and large values of $p$, \[ \| R_{\lambda}\| _{H_1}<4d_0^{-1}n_p^{-\delta}. \] \end{lemma} \begin{proof} Since the $s$-numbers of the trace class operator $R_{\lambda }$ are $\{\frac{1}{\lambda _1-\lambda },\frac{1}{\lambda _2-\lambda },\dots,\\ \frac{1}{ \lambda _q-\lambda },\dots\} $, it follows that \begin{equation} \| R_{\lambda }\| _{H_1}=\max \{ \frac{1}{\lambda _1-\lambda },\frac{1}{\lambda _2-\lambda },\dots,\frac{1}{\lambda _q-\lambda },\dots\} . \label{e12} \end{equation} On the circle $| \lambda | =d_p$, \begin{equation} \big| | \lambda _q| -| \lambda| \big| =\big| | \lambda _q|-2^{-1}(\mu _{n_p}+\mu _{n_p+1}) \big| =2^{-1}\big| \mu _{n_p}+\mu _{n_p+1}-2| \lambda _q| \big| . \label{e13} \end{equation} Using the inequality $q\leq n_p$ and for the large values of $p$, since $| \lambda _q| \leq \lambda _{n_p}$, we have \begin{equation} \label{e14} \begin{aligned} &\mu _{n_p}+\mu _{n_p+1}-2| \lambda _q| \\ & \geq \mu _{n_p}+\mu _{n_p+1}-2\lambda _{n_p}=\mu _{n_p+1}-\mu _{n_p}+2(\mu _{n_p}-\lambda _{n_p}) \\ & \geq \mu _{n_p+1}-\mu _{n_p}-2| \mu _{n_p}-\lambda_{n_p}| . \end{aligned} \end{equation} Considering $| \mu _q-\lambda _q| \leq \|Q\| _{H_1}$ $(q=1,2,\dots) $ by \eqref{e14} we obtain \begin{equation} \mu _{n_p}+\mu _{n_p+1}-2| \lambda _q| \geq \mu _{n_p+1}-\mu _{n_p}-2\| Q\| _{H_1}\text{ \ }( q\leq n_p) . \label{e15} \end{equation} With the help of inequality $q\geq n_p+1$ and for the large values of $p$, since $| \lambda _q| =\lambda _q\geq \lambda _{n_p+1}$ then \begin{align*} 2| \lambda _q| -\mu _{n_p}-\mu _{n_p+1} & \geq 2\lambda _{n_p+1}-\mu _{n_p}-\mu _{n_p+1}\\ &=2(\lambda_{n_p+1}-\mu _{n_p+1}) +\mu _{n_p+1}-\mu _{n_p} \\ & \geq \mu _{n_p+1}-\mu _{n_p}-2| \lambda _{n_p+1}-\mu _{n_p+1}| . \end{align*} Using the above inequality, \begin{equation} 2| \lambda _q| -\mu _{n_p}-\mu _{n_p+1} \geq \mu _{n_p+1}-\mu _{n_p}-2\| Q\| _{H_1}\quad (q\geq n_p+1) . \label{e16} \end{equation} Taking into account that $\lim_{p\to \infty }(\mu _{n_p+1}-\mu _{n_p}) =\infty $ and by \eqref{e13}, \eqref{e15} and \eqref{e16}, on the circle $| \lambda | =d_p$ we have \begin{equation} \big| | \lambda _q| -| \lambda | \big| >4^{-1}(\mu _{n_p+1}-\mu _{n_p}) . \label{e17} \end{equation} By \eqref{e5} and \eqref{e17} we obtain \[ \big| | \lambda _q| -| \lambda| \big| >4^{-1}d_0((n_p+1) ^{1+\delta }-n_p^{1+\delta }) >4^{-1}d_0(n_p+1) ^{\delta }. \] From the above inequality and $| \lambda | =d_p$ for the sufficiently large values of $p$, we have \[ | \lambda _q-\lambda | >4^{-1}d_0n_p^{\delta }. \] From \eqref{e12} and the above inequality we have $4d_0^{-1}n_p^{-\delta }$. \end{proof} \section{Regularized trace formula} We know from operator theory that for the resolvents of the operators $L_0$ and $L$ the following formula holds: \[ R_{\lambda }=R_{\lambda }^0-R_{\lambda }QR_{\lambda }^0\quad (\lambda \in \rho (L_0) \cap \rho (L)) . \] Using the above formula and \eqref{e7}, it can be easily shown that \begin{equation} \sum_{q=1}^{n_p}(\lambda _q-\mu _q) =\sum_{j=1}^{s}U_{pj}+U_p^{(s) }, \label{e18} \end{equation} where \begin{gather} U_{pj}=\frac{(-1) ^{j}}{2\pi ij}\int_{| \lambda | =d_p}tr[ (QR_{\lambda }^0) ^{j}] d\lambda \text{ \ }(i^2=-1;j=1,2,\dots), \label{e19} \\ U_p^{(s) }=\frac{(-1) ^{s}}{2\pi i} \int_{| \lambda | =d_p}\lambda tr[ R_{\lambda }(QR_{\lambda }^0) ^{s+1}] d\lambda \text{ \ }( i^2=-1) . \label{e20} \end{gather} \begin{theorem} \label{thm3.1} If the operator function $Q(t)$ satisfies the the conditions {\rm(1)--(3)} and $\eta_j\sim aj^{\alpha}$ as $j\to\infty$ $(a>0,\alpha >\frac{2m(1+\sqrt{2}) }{2\sqrt{2}m-\sqrt{2}-1}) $ then \[ \lim_{p\to\infty}U_{pj}=0\quad (j=2,3,4,\dots) . \] \end{theorem} \begin{proof} According to \eqref{e19} for $U_{p2}$ we have the equality \begin{equation} U_{p2}=\frac{1}{2\pi i}\sum_{j=1}^{n_p}\sum_{k=n_p+1}^{\infty }\Big[ \int_{| \lambda | =d_p}\frac{d\lambda }{(\lambda -\mu _j) (\lambda -\mu _{k}) }\Big] (Q\psi _j,\psi _{k}) _{H_1}(Q\psi _{k},\psi _j) _{H_1}. \label{e21} \end{equation} Therefore, \begin{equation} | U_{p2}| \leq \| Q\| _{H_1}^2D_p.\label{e22} \end{equation} By \eqref{e11} and \eqref{e22} we obtain \begin{equation} \lim_{p\to \infty }U_{p2}=0\quad (\alpha >\frac{2m}{2m-1}) . \label{e23} \end{equation} Let us show that \begin{equation} \lim_{p\to \infty }U_{p3}=0. \label{e24} \end{equation} By using \eqref{e19} it follows that \begin{equation} \label{e25} \begin{aligned} U_{p3}& =\sum_{J=1}^{n_p}\sum_{k=1}^{n_p}\sum_{s=n_p+1}^{\infty }[ G(j,k,s) +G(s,k,j)+G(j,s,k] \\ &\quad +\sum_{J=1}^{n_p}\sum_{k=n_p+1}^{\infty }\sum_{s=n_p+1}^{\infty } [ G(j,k,s) +G(s,k,j)+G(k,j,s] , \end{aligned} \end{equation} where \begin{gather*} G(j,k,s) =g(j,k,s)(Q\psi _j,\psi _{k}) _{H_1}(Q\psi _{k},\psi _{s}) _{H_1}(Q\psi _{s},\psi _j) _{H_1}, \\ g(j,k,s) =\frac{1}{6\pi i}\int_{| \lambda | =d_p}\frac{d\lambda }{(\lambda -\mu _j) (\lambda -\mu _{k}) (\lambda -\mu _{s}) }. \end{gather*} Taking into account $g(j,k,s) =\overline{g(j,k,s) }$ and $Q=Q^{\ast }$ we obtain \begin{equation} G(s,k,j) =\overline{G(j,k,s) },\quad G(k,j,s) =\overline{G(j,k,s) },\quad G(j,s,k) =\overline{G(j,k,s) }. \label{e26} \end{equation} With the help of \eqref{e25} and \eqref{e26} we obtain \[ U_{p3}=E_1+E_2 \] with \begin{gather*} E_1 =\sum_{J=1}^{n_p}\sum_{k=1}^{n_p}\sum_{s=n_p+1}^{\infty }( G(j,k,s) +2\overline{G(j,k,s) }) , \\ E_2 =\sum_{J=1}^{n_p}\sum_{k=n_p+1}^{\infty }\sum_{s=n_p+1}^{\infty }(G(j,k,s) +2\overline{G(j,k,s) }) \end{gather*} and \begin{equation} E_1=E_{11}+\overline{E_{11}},\quad E_2=E_{21}+\overline{E_{21}}, \label{e27} \end{equation} with \begin{gather*} E_{11}=\sum_{J=1}^{n_p}\sum_{k=1}^{n_p}\sum_{s=n_p+1}^{\infty }G(j,k,s), \\ E_{21}=\sum_{J=1}^{n_p}\sum_{k=n_p+1}^{\infty }\sum_{s=n_p+1}^{\infty}G(j,k,s) . \end{gather*} It is not hard to see that the following inequalities hold: \begin{gather} | E_{11}| \leq \frac{1+\delta }{d_0^2\delta } \| Q\| _{H_1}^{3}n_p^{\frac{1-2\delta ^2}{1+\delta }}, \label{e28} \\ | E_{21}| \leq (\frac{1+\delta }{d_0\delta } ) ^2\| Q\| _{H_1}^{3}n_p^{\frac{-2\delta ^2}{ 1+\delta }}. \label{e29} \end{gather} It follows that \[ \lim_{p\to \infty }U_{p3}=0. \] Now, let us show that the equality $\lim_{p\to \infty }U_{pj}=0$ $(j=4,5,\dots) $ holds. According to \eqref{e19}, \begin{equation} \label{e30} \begin{aligned} | U_{pj}| & \leq \frac{1}{2\pi j}\int_{| \lambda | =d_p}| \operatorname{tr}(QR_{\lambda }^0)^{j}| | d\lambda | \\ &\leq \int_{|\lambda | =d_p}\| (QR_{\lambda }^0) ^{j}\| _{\sigma _1(H_1)}| d\lambda | \\ & \leq \int_{| \lambda | =d_p}\| ( QR_{\lambda }^0) \| _{\sigma _1(H_1)}\| ( QR_{\lambda }^0) ^{j-1}\| _{H_1}| d\lambda| \\ & \leq \int_{| \lambda | =d_p}\| Q\| _{H_1}\| R_{\lambda }^0\| _{\sigma _1(H_1)}\| (QR_{\lambda }^0) ^{j-1}\| _{H_1}| d\lambda | \\ & \leq \| Q\| _{H_1}\int_{| \lambda | =d_p}\| R_{\lambda }^0\| _{\sigma _1(H_1)}\| (QR_{\lambda }^0) \| _{H_1}^{j-1}| d\lambda | \\ & \leq const.\int_{| \lambda | =d_p}\| R_{\lambda }^0\| _{\sigma _1(H_1)}\| R_{\lambda }^0\| _{H_1}^{j-1}| d\lambda | . \end{aligned} \end{equation} Since $R_{\lambda }=R_{\lambda }^0$ for $Q(t) \equiv 0$ according to Lemma \ref{lem2.2}, on the circle $| \lambda | =d_p$, \begin{equation} \| R_{\lambda }^0\| _{H_1}<4d_0^{-1}n_p^{-\delta } \quad (\delta =\frac{2m\alpha }{2m+\alpha }-1) . \label{e31} \end{equation} Using Lemma \ref{lem2.1} and the inequalities \eqref{e30} and \eqref{e31} one obtains \[ | U_{pj}| \frac{2}{3}$ or $\alpha >\frac{10m}{6m-5}$, then \begin{equation} \lim_{p\to \infty }U_{pj}=0\quad (j=4,5,\dots) . \label{e32} \end{equation} However, if \[ \frac{2m(1+\sqrt{2}) }{2\sqrt{2}m-\sqrt{2}-1}>\frac{10m}{6m-5}, \] considering \eqref{e23} and \eqref{e24} as $\alpha >\frac{2m(1+ \sqrt{2}) }{2\sqrt{2}m-\sqrt{2}-1}$ one obtains $\lim_{p\to \infty }U_{pj}=0$ $(j=2,3,\dots)$. \end{proof} Since the eigen-elements of the operator $L_0$ are \[ \big(k+\frac{1}{2}\big) ^{2m}+\eta _j\quad (k=0,1,2,\dots;j=1,2,\dots) , \] then for $q=1,2,\dots$, \begin{equation} \mu _q=\big(k_q+\frac{1}{2}\big) ^{2m}+\eta _{j_q}. \label{e34} \end{equation} \begin{theorem} \label{thm3.2} If the operator function $Q(t)$ satisfies the conditions {\rm(4)--(6)}and $\eta_j\sim aj^{\alpha}$ as $j\to\infty$ $(a>0,\alpha >\frac{ 2m(1+\sqrt{2}) }{2\sqrt{2}m-\sqrt{2}-1}) $ then \[ \lim_{p\to\infty}\sum_{q=1}^{n_p}\Big[ \lambda_q-\mu_q- \pi^{-1}\int_0^{\pi}(Q(t)\varphi_{j_q},\varphi_{j_q}) dt \Big] =4^{-1}[ \operatorname{tr}Q(\pi) -\operatorname{tr}Q(0) ] \] where $\{ j_q\} _{q=1}^{\infty}$ is a set of natural numbers satisfying \eqref{e34}. \end{theorem} \begin{proof} From \eqref{e19}, \begin{equation} U_{p1}=-\frac{1}{2\pi i}\int_{| \lambda | =d_p}\operatorname{tr}( QR_{\lambda }^0) d\lambda . \label{e35} \end{equation} Since $QR_{\lambda }^0$ is a trace class operator for each $\lambda \in \rho (L_0) $ and $\{ \Psi _1(t) ,\Psi_2(t) ,\dots\} $ is an orthonormal basis of the space $H_1$, then \[ \operatorname{tr}(QR_{\lambda }^0) =\sum_{q=1}^{\infty }(QR_{\lambda }^0\Psi _q,\Psi _q) _{H_1}. \] By putting $\operatorname{tr}(QR_{\lambda }^0) $ into \eqref{e35} and considering \[ R_{\lambda }^0\Psi _q=(L_0-\lambda E) ^{-1}\Psi _q=(\mu _q-\lambda) ^{-1}\Psi _q, \] one obtains \begin{equation} \label{e36} \begin{aligned} U_{p1}& =-\frac{1}{2\pi i}\int_{| \lambda | =d_p}[ \sum_{q=1}^{\infty }(QR_{\lambda }^0\Psi _q,\Psi _q) _{H_1}] d\lambda \\ & =-\frac{1}{2\pi i}\int_{| \lambda | =d_p}[ \sum_{q=1}^{\infty }(\mu _q-\lambda) ^{-1}(Q\Psi _q,\Psi _q) _{H_1}] d\lambda \\ & =[ \sum_{q=1}^{\infty }(Q\Psi _q,\Psi _q) _{H_1} ] \frac{1}{2\pi i}\int_{| \lambda | =d_p}( \lambda -\mu _q) ^{-1}d\lambda . \end{aligned} \end{equation} Since the orthonormal eigenvectors according to the eigen-elements $(k+\frac{1}{2}) ^{2m}+\eta _j$ $(k=0,1,2,\dots;j=1,2,\dots) $ of the operator $L_0$ are $\sqrt{\frac{2}{\pi }}\sin ((k+\frac{ 1}{2}) t) \varphi _j$ ($k=0,1,2,\dots$; $j=1,2,\dots$), it follows that \begin{equation} \Psi _q(t) =\sqrt{\frac{2}{\pi }}\sin \big((k+\frac{1}{ 2}) t\big) \varphi _{j_q}\quad q=1,2,\dots. \label{e37} \end{equation} Further, \begin{equation} \frac{1}{2\pi i}\int_{| \lambda | =d_p}(\lambda-\mu _q) ^{-1}d\lambda =\begin{cases} 1, & q\leq n_p, \\ 0, & q>n_p \end{cases} \label{e38} \end{equation} and by using \eqref{e36}--\eqref{e38} we find that \begin{align*} U_{p1} & =\sum_{q=1}^{n_p}(Q\Psi _q,\Psi _q)_{H_1} =\sum_{q=1}^{n_p}\int_0^{\pi }(Q(t) \Psi_q(t) ,\Psi _q(t)) \\ & =\sum_{q=1}^{n_p}\int_0^{\pi }\Big(Q(t) \sqrt{\frac{2}{ \pi }} \sin \big((k_q+\frac{1}{2}) t\big) \varphi _{j_q}, \sqrt{\frac{2}{\pi }} \sin \big((k_q+\frac{1}{2}) t\big) \varphi _{j_q}\Big) dt \\ & =\frac{2}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }\sin ^2\big(( k_q+\frac{1}{2}) t\big) (Q(t)\varphi _{j_q},\varphi_{j_q}) dt \\ & =\frac{1}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }\big(1-\cos \big( (2k_q+1) t\big)\big) \big(Q(t)\varphi _{j_q},\varphi _{j_q}\big) dt \\ &=\frac{1}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }(Q(t)\varphi _{j_q},\varphi _{j_q}) dt-\frac{1}{\pi }\sum_{q=1}^{n_p} \int_0^{\pi }\cos ((2k_q+1) t) ( Q(t)\varphi _{j_q},\varphi _{j_q}) dt. \end{align*} By subtracting and adding the expression $(Q(t)\varphi_{j_q},\varphi _{j_q}) \cos (2k_qt) $ into the second integral on the right side of last equality one obtains \begin{align*} U_{p1} & =\frac{1}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }(Q(t)\varphi _{j_q}, \varphi _{j_q}) dt+\frac{1}{\pi }\sum_{q=1}^{n_p} \int_0^{\pi }\cos (2k_qt) (Q(t)\varphi _{j_q},\varphi _{j_q}) dt \\ & -\frac{1}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }[ \cos (( 2k_q+1) t) +\cos (2k_qt) ] ( Q(t)\varphi _{j_q},\varphi _{j_q}) dt \end{align*} We can write the expresssion \[ -\frac{1}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }\cos (r_qt) (Q(t)\varphi _{j_q},\varphi _{j_q}) dt, \] instead of first term in the right-hand side of the above equality. Thus, we have \begin{align*} U_{p1} & =\frac{1}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }(Q(t)\varphi _{j_q},\varphi _{j_q}) dt+\frac{1}{\pi }\sum_{q=1}^{n_p} \int_0^{\pi }\cos (2k_qt) (Q(t)\varphi _{j_q},\varphi _{j_q}) dt \\ &\quad -\frac{1}{\pi }\sum_{q=1}^{n_p}\int_0^{\pi }\cos (r_qt) (Q(t)\varphi _{j_q},\varphi _{j_q}) dt. \end{align*} We can write this equation in the form \begin{align*} \lim_{p\to \infty }U_{p1} & =\frac{1}{\pi }\sum_{j=1}^{\infty }\int_0^{\pi }(Q(t)\varphi _j,\varphi _j) dt-\frac{1}{\pi } \sum_{j=1}^{\infty }\sum_{r=1}^{\infty }\int_0^{\pi }\cos (rt) (Q(t)\varphi _j,\varphi _j) dt \\ &\quad +\frac{1}{2\pi }\sum_{j=1}^{\infty }\sum_{k=1}^{\infty }\Big[ \int_0^{\pi }\cos (kt) (Q(t)\varphi _j,\varphi _j) dt\\ &\quad +(-1) ^{k}\int_0^{\pi }\cos (kt) (Q(t)\varphi _j,\varphi _j) dt\Big] \end{align*} and so we have \begin{equation} \label{e39} \begin{aligned} \lim_{p\to \infty }U_{p1} & =\frac{1}{\pi }\sum_{j=1}^{\infty }\int_0^{\pi }(Q(t)\varphi _j,\varphi _j) dt\\ &\quad -\frac{1}{2} \sum_{j=1}^{\infty }\Big\{ \sum_{r=1}^{\infty }\Big[ \frac{2}{\pi } \int_0^{\pi }(Q(t)\varphi _j,\varphi _j) \cos rt\,dt\Big] \cos r0\Big\} \\ &\quad +\frac{1}{4}\sum_{j=1}^{\infty }\Big\{ \sum_{k=1}^{\infty }\Big[ \frac{2 }{\pi }\int_0^{\pi }(Q(t)\varphi _j,\varphi _j) \cos ktdt \Big] \cos k0 \\ & \quad +\sum_{k=1}^{\infty }\Big[ \frac{2}{\pi }\int_0^{\pi }( Q(t)\varphi _j,\varphi _j) \cos kt\,dt\Big] \cos k\pi \Big\} . \end{aligned} \end{equation} The sum with respect to $r$ in the first term on the right side of this expression in the value at $0$ of Fourier series according to functions $\{ \cos rx\} _{r=0}^{\infty }$ in the interval $[ 0,\pi] $ of the function $\int_0^{\pi }(Q(t)\varphi _j,\varphi_j) _H$ having the derivative of second order. Analogically, the sums in the second term with respect to $k$ are the values at the points $0$ and $\pi $ respectively of Fourier series with respect to the functions $\{ \cos kx\}_{k=0}^{\infty }$ in the same interval of that function. Also \begin{equation} \big| \sum_{j=1}^{p}(Q(t)\varphi_j,\varphi_j)\big| \leq\sum_{j=1}^{p}| (Q(t)\varphi_j,\varphi_j) | \leq\| Q(t) \|_{\sigma_1(H) },\quad (p=1,2,\dots) . \label{e40} \end{equation} Since the norm function $\| Q(t) \|_{\sigma_1(H) }$ is bounded and measurable in the interval $[ 0,\pi] $, we have \begin{equation} \int_0^{\pi}\| Q(t) \| _{\sigma_1(H) }dt<\infty. \label{e41} \end{equation} By using \eqref{e40}, \eqref{e41} and Lebesgue theorem we obtain \begin{equation} \sum_{j=1}^{\infty }\int_0^{\pi }(Q(t)\varphi _j,\varphi _j) dt=\int_0^{\pi }\Big[ \sum_{j=1}^{\infty }(Q(t)\varphi _j,\varphi _j) \Big] dt=\int_0^{\pi }\operatorname{tr}Q(t) dt. \label{e42} \end{equation} Furthermore, as in the proof of \eqref{e32} by Lemma \ref{lem2.1} and Lemma \ref{lem2.2}, we can show that \begin{equation} \lim_{p\to \infty }U_p^{(s) }=0\quad (s>\frac{3}{\delta })\,. \label{e43} \end{equation} Therefore by \eqref{e18}, \eqref{e39}, \eqref{e42} and \eqref{e43}, we obtain \begin{equation} \lim_{p\to \infty }\sum_{q=1}^{n_p}\Big[ \lambda _q-\mu _q-\pi ^{-1}\int_0^{\pi }(Q(t)\varphi _{j_q},\varphi _{j_q}) dt\Big] =4^{-1}[ \operatorname{tr}Q(\pi) -\operatorname{tr}Q(0) ] . \label{e44} \end{equation} \end{proof} The limit on the left hand side of the equality (44) is said to be regularized trace of the operator $L$ (see \cite{bib1}). \begin{thebibliography}{99} \bibitem{bib1} I. M. Gelfand, B. M. Levitan; \emph{On a simple identity for the characteristic values of a differential operator of the second order,} Doklady Akademii Nauk SSSR, 88 (1953), 593--596. \bibitem{bib2} E. Gul; \emph{A regularized trace formula for a differential operator of second order with unbounded operator coefficients given in a finite interval}, International Journal of Pure and Applied Mathematics, 32 (2) (2006), 223--242. \bibitem{bib3} E. Ad\i g\"{u}zelov, Y. Sezer; \emph{The regularized trace of a self adjoint differential operator of higher order with unbounded operator coefficient}, Applied Mathematics and Computation, 218 (2011), 2113-2121. \bibitem{bib4} E. E. Ad\i g\"{u}zelov, A. Bayramov, O. Baykal; \emph{On the spectrum and regularized trace of the Sturm--Liouville problem with spectral parameter on the boundary condition and with the operator coefficient}, International Journal of Differential Equations and Applications, 2 (3) (2001), 317--333. \bibitem{bib5} E. E. Ad\i g\"{u}zelov, H. Avc\i , E. Gul; \emph{The trace formula for Sturm--Liouville operator with operator coefficient}, Journal of Mathematical Physics, 42 (6) (2001), 1611--1624. \bibitem{bib6} E. Ad\i g\"{u}zelov, Y. Sezer; \emph{On Spektrum of a self adjoint differential operator of higher order with unbounded operator coefficient and asymptotic behaviour of eigenvalues}, Journal of Engineering and Natural Sciences Sigma, 4 (2006), 32--49. \bibitem{bib7} E. E. Ad\i g\"{u}zelov, O. Baksi; \emph{On the regularized trace of the differantial operator equation given in a finite interval}, Journal of Engineering and Natural Sciences Sigma, 1 (2004), 47--55. \bibitem{bib8} I. Albayrak, K. Koklu, A. Bayramov; \emph{A Regularized trace formula for differential equations with trace class operator coefficients}, Rocky Mountain Journal of Mathematics, 40 (4) (2010), 1095--1110. \bibitem{bib9} A. Bayramov, S. K. \c{C}ali\c{s}kan, F. A. Akg\"{u}n; \emph{The second regularized trace of differential operator equation with the semi-periodic boundary conditions}, Mathematical Methods in the Applied Sciences, 35 (2012) 2185-2197. \bibitem{bib10} A. Makin; \emph{Regularized trace of the Sturm-Liouville operator with irregular boundary conditions,} Electronic Journal of Differential Equations (EJDE), 2009 (27) (2009), 1-8. \bibitem{bib11} A. A. Kirillov; \emph{Elements of the Theory of Representations}, Springer of Verlag, New York, 1976. \bibitem{bib12} V. I. Gorbachuk, M. L. Gorbachuk; \emph{Classes of boundary value problems for the Sturm-Liouville equation with an operator potential}, Ukrainian Mathematical Journal, 24 (3) (1972), 291-305. \bibitem{bib13} V. I. Smirnov; \emph{A Course of Higher Mathematics}, Volume 5, Pergamon Press, New York, 1964. \bibitem{bib14} C. Cohberg, M. G. Krein; \emph{Introduction to the Theory of Linear Non-self Adjoint Operators}, Translation of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, Rhode Island, 1969. \end{thebibliography} \end{document}