\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 32, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/32\hfil Entire functions] {Entire functions that share a small function with their difference operators} \author[A. El Farissi, Z. Latreuch, B. Bela\"idi, A. Asiri \hfil EJDE-2016/32\hfilneg] {Abdallah El Farissi, Zinel\^aabidine Latreuch, \\ Benharrat Bela\"idi, Asim Asiri} \address{Abdallah El Farissi \newline Department of Mathematics and Informatics, Faculty of Exact Sciences, University of Bechar, Algeria} \email{elfarissi.abdallah@yahoo.fr} \address{Zinel\^aabidine Latreuch \newline Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria} \email{z.latreuch@gmail.com} \address{Benharrat Bela\"idi \newline Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria} \email{benharrat.belaidi@univ-mosta.dz} \address{Asim Asiri \newline Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia} \email{amkasiri@kau.edu.sa} \thanks{Submitted July 27, 2015. Published January 21, 2016.} \subjclass[2010]{30D35, 39A32} \keywords{Uniqueness; entire functions; difference operators} \begin{abstract} In this article, we study the uniqueness of entire functions that share small functions of finite order with their difference operators. In particular, we give a generalization of results in \cite{c2,c3,l3}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction and statement of results} In this article, by meromorphic functions we mean meromorphic functions in the complex plane. In what follows, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory of meromorphic functions \cite{h3,l1,y1}. In addition, we will use $\rho (f) $ to denote the order of growth of $f$ and $\lambda (f)$ to denote the exponent of convergence of zeros of $f$, we say that a meromorphic function $\varphi (z) $ is a small function of $f(z) $ if $T(r,\varphi)=S(r,f) $, where $S(r,f) =o(T(r,f)) $, as $r\to \infty $ outside of a possible exceptional set of finite logarithmic measure, we use $S(f) $ to denote the family of all small functions with respect to $f(z)$. For a meromorphic function $f(z)$, we define its shift by $f_c(z) =f(z+c) $ and its difference operators by \begin{equation*} \Delta _cf(z) =f(z+c) -f(z) ,\quad \Delta _c^nf(z) =\Delta _c^{n-1}(\Delta_cf(z)) ,\quad n\in\mathbb{N},\; n\geq 2. \end{equation*} In particular, $\Delta _c^nf(z) =\Delta ^nf(z)$ for the case $c=1$. Let $f$ and $g$ be two meromorphic functions and let $a$ be a finite nonzero value. We say that $f$ and $g$ share the value $a$ CM provided that $f-a$ and $g-a$ have the same zeros counting multiplicities. Similarly, we say that $f$ and $g$ share $a$ IM provided that $f-a$ and $g-a$ have the same zeros ignoring multiplicities. It is well-known that if $f$ and $g$ share four distinct values CM, then $f$ is a M\"{o}bius transformation of $g$. Rubel and Yang \cite{r1} proved that if an entire function $f$ shares two distinct complex numbers CM with its derivative $f'$, then $f\equiv f'$ . In 1986, Jank et al \cite{j1} proved that for a nonconstant meromorphic function $f$, if $f$, $f'$ and $f^{\prime \prime }$ share a finite nonzero value CM, then $f'\equiv f$ . This result suggests the following question: \begin{quote} Question $1$ in \cite{y1}. Let $f$ be a nonconstant meromorphic function, let $a$ be a finite nonzero constant, and let $n$ and $m$ $(nn+1$, and let $b$ be a constant satisfying $b^n=b^{m}\neq 1$. Set $a=b^n$ and $f(z) =e^{bz}+a-1$. Then $f$, $f^{(n) }$ and $f^{(m) }$ share the value $a$ CM, and $f^{(n) }\not\equiv f$. However, when $f$ is an entire function of finite order and $m=n+1$, the answer to Question 1 is positive. In fact, P. Li and C. C. Yang proved the following: \begin{theorem}[\cite{l4}] \label{thmA} Let $f$ be a nonconstant entire function, let $a$ be a finite nonzero constant, and let $n$ be a positive integer. If $f$, $f^{(n) }$ and $f^{(n+1) }$ share the value $a$ CM, then $f\equiv f'$. \end{theorem} Recently several papers have focussed on the Nevanlinna theory with respect to difference operators see, e.g. \cite{b1,c4,h1,h2}. Many authors started to investigate the uniqueness of meromorphic functions sharing values with their shifts or difference operators. Chen et al \cite{c2,c3} proved a difference analogue of result of Jank et al and obtained the following results. \begin{theorem}[\cite{c2}] \label{thmB} Let $f(z) $ be a nonconstant entire function of finite order, and let $a(z)\in S(f)$ ($\not\equiv 0$) be a periodic entire function with period $c$. If $f(z)$, $\Delta _cf(z) $ and $\Delta _c^{2}f(z) $ share $a(z) $ CM, then $\Delta _cf\equiv \Delta _c^{2}f$. \end{theorem} \begin{theorem}[\cite{c3}] \label{thmC} Let $f(z)$ be a nonconstant entire function of finite order, and let $a(z)\in S(f)$ ($\not\equiv 0$) be a periodic entire function with period $c$. If $f(z)$, $\Delta _cf(z) $ and $\Delta _c^nf(z) $ $(n\geq 2) $ share $a(z) $ CM, then $\Delta _cf\equiv \Delta _c^nf$. \end{theorem} \begin{theorem}[\cite{c3}] \label{thmD} Let $f(z) $ be a nonconstant entire function of finite order. If $f(z)$, $\Delta _cf(z) $ and $\Delta _c^nf(z) $ share $0$ CM, then $\Delta _c^nf(z) =C\Delta _cf(z)$, where $C$ is a nonzero constant. \end{theorem} Recently Latreuch et al \cite{l3} proved the following results. \begin{theorem}[\cite{l3}] \label{thmE} Let $f(z) $ be a nonconstant entire function of finite order, and let $a(z) \in S(f) $ ($\not\equiv 0$) be a periodic entire function with period $c$. If $f(z) $, $\Delta _c^nf(z) $ and $\Delta _c^{n+1}f(z) $ ($n\geq 1$) share $a(z) $ CM, then $\Delta_c^{n+1}f(z) \equiv \Delta _c^nf(z) $. \end{theorem} \begin{theorem}[\cite{l3}] \label{thmF} Let $f(z) $ be a nonconstant entire function of finite order. If $f(z)$, $\Delta _c^nf(z)$ and $\Delta _c^{n+1}f(z) $ share $0$ CM, then $\Delta _c^{n+1}f(z) =C\Delta _c^nf(z)$, where $C$ is a nonzero constant. \end{theorem} For the case $n=1$, El Farissi and others gave the following result. \begin{theorem}[\cite{e1}] \label{thmG} Let $f(z) $ be a non-periodic entire function of finite order, and let $a(z)\in S(f) $ ($\not\equiv 0$) be a periodic entire function with period $c$. If $f(z)$, $\Delta _cf(z) $ and $\Delta _c^{2}f(z) $ share $a(z) $ CM, then $\Delta _cf(z) \equiv f(z) $. \end{theorem} We remark that Theorem \ref{thmG} is essentially known in \cite{e1}. For the convenience of readers, we give his proof in the Lemma \ref{lem2.4}. Now It is natural to ask the following question: \begin{quote} Under the hypotheses of Theorem \ref{thmE}, can we obtain $\Delta _cf(z) \equiv f(z) $? \end{quote} The aim of this article is to answer this question and to give a difference analogue of result of Li and Yang \cite{l4}. In fact we obtain the following results: \begin{theorem} \label{thm1.1} Let $f(z) $ be a nonconstant entire function of finite order such that $\Delta_c^nf(z) \not\equiv 0$, and let $a(z)\in S(f) $ ($\not\equiv 0$) be a periodic entire function with period $c$. If $f(z) $, $ \Delta _c^nf(z) $ and $\Delta _c^{n+1}f( z) $ $(n\geq 1) $ share $a(z) $ CM, then $\Delta _cf(z) \equiv f(z) $. \end{theorem} The condition $\Delta_c^nf(z) \not\equiv 0$ is necessary. Let us take for example the entire function $f(z) =1+e^{2\pi iz}$ and $c=a=1$, then $f-a$ and $\Delta ^nf-a=\Delta ^{n+1}f-a=-1$ have the same zeros but $\Delta f\neq f$. On the other hand, under the conditions of Theorem \ref{thm1.1}, $\Delta _c^nf(z) \not\equiv 0$ can not be a periodic entire function with periodic $c$ because $\Delta _c^{n+1}f(z) \equiv \Delta_c^nf(z) $ \cite[Theorem 1.5]{l3}. \begin{example} \label{examp1.1}\rm Let $f(z) =e^{z\ln 2}$ and $c=1$. Then, for any $a\in\mathbb{C}$, we notice that $f(z) $, $\Delta _c^nf(z) $ and $\Delta _c^{n+1}f(z) $ share $a$ CM for all $n\in\mathbb{N}$ and we can easily see that $\Delta _cf(z) \equiv f(z) $. This example satisfies Theorem \ref{thm1.1}. \end{example} \begin{theorem} \label{thm1.2} Let $f(z) $ be a nonconstant entire function of finite order such that $\Delta_c^nf(z) \not\equiv 0$, and let $a(z) $, $b(z) \in S(f) $ ($\not\equiv 0$) such that $b(z) $ is a periodic entire function with period $c$ and $\Delta _c^{m}a(z) \equiv 0$ ($1\leq m\leq n$). If $f(z) -a(z)$, $\Delta _c^nf(z) -b(z) $ and $\Delta _c^{n+1}f(z) -b(z) $ share $0$ CM, then $\Delta _cf(z) \equiv f(z) +b(z) +\Delta _ca(z) -a(z) $. \end{theorem} The condition $b(z) \not\equiv 0$ is necessary in the proof of Theorem \ref{thm1.2}, for the case $b(z) \equiv 0$, please see Theorem \ref{thm1.4}. The condition $\Delta _c^{m}a(z) \equiv 0$ in Theorem \ref{thm1.2} is more general than the condition ``periodic entire function of period $c$''. For the case $m=1$, we deduce the following result. \begin{corollary} \label{coro1.1} Let $f(z) $ be a nonconstant entire function of finite order such that $\Delta_c^nf(z) \not\equiv 0$, and let $a(z) $, $b(z) \in S(f) $ ($\not\equiv 0$) be periodic entire functions with period $c$. If $f(z)-a(z)$, $\Delta _c^nf(z) -b(z) $ and $\Delta _c^{n+1}f(z) -b(z) $ share $0$ CM, then $\Delta _cf(z) \equiv f(z) +b(z) -a(z) $. \end{corollary} \begin{example} \label{examp1.2} \rm Let $f(z) =e^{z\ln 2}-2$, $a=-1$ and $b=1$. It is clear that $f(z) -a$, $\Delta ^nf( z) -b$ and $\Delta ^{n+1}f(z) -b$ share $0$ CM. Here, we also get $\Delta f(z) =f(z) +b-a$. \end{example} \begin{example} \label{examp1.3} \rm Let $f(z) =e^{z\ln 2}+z^{3}-1$, $a(z) =z^{3}$ and $b=1$. It is clear that $f(z)-z^{3}$, $\Delta ^{4}f(z) -1$ and $\Delta ^{5}f(z) -1 $ share $0$ CM. On the other hand, we can verify that $\Delta f(z) =f(z) +1+\Delta z^{3}-z^{3}$ which satisfies Theorem \ref{thm1.2}. \end{example} \begin{theorem} \label{thm1.3} Let $f(z) $ be a nonconstant entire function of finite order such that $\Delta_c^nf(z) \not\equiv 0$. If $f(z)$, $\Delta _c^nf(z) $ and $\Delta_c^{n+1}f(z) $ share $0$ CM, then $\Delta_cf(z) \equiv Cf(z)$, where $C$ is a nonzero constant. \end{theorem} \begin{example} \label{examp1.4} \rm Let $f(z) =e^{az}$ and $c=1$ where $a\neq 2k\pi i$ $(k\in\mathbb{Z}) $, it is clear that $\Delta _c^nf(z) =(e^{a}-1) ^ne^{az}$ for any integer $n\geq 1$. So, $f(z)$, $\Delta _c^nf(z) $ and $\Delta_c^{n+1}f(z) $ share $0$ CM for all $n\in\mathbb{N}$ and we can easily see that $\Delta _cf(z) \equiv Cf(z) $ where $C=e^{a}-1$. This example satisfies Theorem \ref{thm1.3}. \end{example} \begin{corollary} \label{coro1.2} Let $f(z) $ be a nonconstant entire function of finite order such that $f(z)$, $\Delta _c^nf(z) $ ($\not\equiv0$) and $\Delta _c^{n+1}f(z) $ ($n\geq 1$) share $0$ CM. If there exists a point $z_0$ and an integer $m\geq 1$ such that $\Delta _c^{m}f(z_0) =f(z_0) \neq 0$, then $\Delta _c^{m}f(z) \equiv f(z) $. \end{corollary} By combining Theorem \ref{thm1.2} and Theorem \ref{thm1.3} we can prove the following result. \begin{theorem} \label{thm1.4} Let $f(z) $ be a nonconstant entire function of finite order such that $\Delta _c^nf(z) \not\equiv 0$, and let $a(z)\in S(f) $ such that $\Delta _c^{m}a(z)\equiv 0$ ($1\leq m\leq n$). If $f(z)-a(z)$, $\Delta _c^nf(z) $ and $\Delta _c^{n+1}f(z) $ share $0$ CM, then $\Delta _cf(z) \equiv Cf(z) +\Delta _ca(z) -a(z)$, where $C$ is a nonzero constant. \end{theorem} \section{Some lemmas} \begin{lemma}[\cite{c4}] \label{lem2.1} Let $\eta _1,\eta _2$ be two arbitrary complex numbers such that $\eta _1\neq \eta _2$ and let $f(z) $ be a finite order meromorphic function. Let $\sigma $ be the order of $f(z) $, then for each $\varepsilon >0$, we have \begin{equation*} m\Big(r,\frac{f(z+\eta _1) }{f(z+\eta _2) } \Big) =O(r^{\sigma -1+\varepsilon }). \end{equation*} \end{lemma} By combining \cite[Theorem 1.4]{c1} and \cite[Theorem 2.2]{l2}, we can prove the following lemma. \begin{lemma} \label{lem2.2} Let $a_0(z), a_1(z) ,\dots ,a_n(z) (\not\equiv 0)$, $F(z)$ ($\not\equiv 0$) be finite order meromorphic functions, $c_k$ ($k=0,\dots ,n$) be constants, unequal to each other. If $f$ is a finite order meromorphic solution of the equation \begin{equation} a_n(z) f(z+c_n) +\dots +a_1(z)f(z+c_1) +a_0(z) f(z+c_0) =F(z) \label{e2.1} \end{equation} with \begin{equation*} \max \{ \rho (a_{i}) ,(i=0,\dots ,n) ,\rho (F) \} <\rho (f) , \end{equation*} then $\lambda (f) =\rho (f) $. \end{lemma} \begin{proof} By \eqref{e2.1} we have \begin{equation} \frac{1}{f(z+c_0) }=\frac{1}{F}\Big(a_n\frac{f( z+c_n) }{f(z+c_0) }+\dots +a_1\frac{f( z+c_1) }{f(z+c_0) }+a_0\Big) . \label{e2.2} \end{equation} Set $\max \{ \rho (a_j) \text{ }(j=0,\dots ,n) ,\rho (F) \} =\beta <\rho (f) =\rho$. Then, for any given $\varepsilon $ $(0<\varepsilon <\frac{\rho -\beta }{2}) $, we have \begin{equation} \sum_{j=0}^n T(r,a_j) +T(r,F) \leq (n+2) \exp \{ r^{\beta +\varepsilon }\} =o( 1) \exp \{ r^{\rho -\varepsilon }\} . \label{e2.3} \end{equation} By \eqref{e2.2}, \eqref{e2.3} and Lemma \ref{lem2.1}, we obtain \begin{equation} \begin{aligned} T(r,f) &=T\big(r,\frac{1}{f}\big) +O(1) \\ &=m( r,\frac{1}{f}) +N\big(r,\frac{1}{f}\big) +O(1) \\ &\leq N\big(r,\frac{1}{f}\big) +m\big(r,\frac{1}{F}\big) +\sum_{j=0}^n m(r,a_j) \\ &\quad +\sum_{j=1}^n m(r,\frac{f(z+c_j) }{f(z+c_0) }) +O(1) \\ &\leq N\big(r,\frac{1}{f}\big) +T(r,\frac{1}{F}) +\sum_{j=0}^n T(r,a_j) +\sum_{j=1}^n m(r,\frac{f(z+c_j) }{f(z+c_0) }) +O(1) \\ &\leq N\big(r,\frac{1}{f}\big) +O(r^{\rho -1+\varepsilon }) +o(1) \exp \{ r^{\rho -\varepsilon }\} . \end{aligned} \label{e2.4} \end{equation} From this this inequality we obtain that $\rho (f) \leq \lambda (f) $ and since $\lambda (f) \leq \rho (f) $ for every meromorphic function, we deduce that $\lambda (f) =\rho (f) $. \end{proof} Recently, Wu and Zheng \cite{w1} obtained Lemma \ref{lem2.2} by using a different proof. \begin{lemma}[\cite{y1}] \label{lem2.3} Suppose $f_j(z) $ $(j=1,2,\dots ,n+1)$ and $g_j(z) $ $(j=1,2,\dots ,n)$ $(n\geq 1)$ are entire functions satisfying the following conditions: \begin{itemize} \item[(i)] $\sum_{j=1}^n f_j(z) e^{g_j(z) }\equiv f_{n+1}(z)$; \item[(ii)] The order of $f_j(z) $\ is less than the order of $e^{g_k(z) }$ for $1\leq j\leq n+1$, $1\leq k\leq n$. Furthermore, the order of $f_j(z) $ is less than the order of $e^{g_{h}(z) -g_k(z) }$ for $n\geq 2$ and $1\leq j\leq n+1$, $1\leq h1$, then \begin{equation} \max \{ \rho (a_{i}) \text{ }(i=0,\dots ,n+1) ,\rho (\alpha _{n+1}) \} <\deg P. \label{e3.15} \end{equation} To prove that $\alpha _{n+1}(z) \not\equiv 0$, it suffices to show that $\Delta _c^n(2e^{-P}-e^{-P_c}) \not\equiv 0$. Suppose the contrary. Thus \begin{equation} \sum_{i=0}^n C_n^{i}(-1) ^{n-i}( 2e^{-P_{ic}}-e^{-P_{(i+1) c}}) \equiv 0. \label{e3.16} \end{equation} The equation \eqref{e3.16} can be written as \begin{equation*} \sum_{i=0}^{n+1} b_{i}e^{-P_{ic}}\equiv 0, \end{equation*} where \begin{equation*} b_{i}=\begin{cases} 2(-1) ^n, & \text{if }i=0 \\ (2C_n^{i}+C_n^{i-1}) (-1) ^{n-i}, &\text{if } 1\leq i\leq n \\ -1, &\text{if }i=n+1. \end{cases} \end{equation*} Since $\deg P=m>1$, then for any two integers $j$ and $k$ such that $0\leq j1$, which is a contradiction. \smallskip \noindent\textbf{(ii)} $\deg P=1$. Suppose now that $P(z) =\mu z+\eta $ $(\mu \neq 0) $. Assume that $\alpha_{n+1}(z) \equiv 0$. It easy to see that \begin{equation*} \Delta _c^n(2e^{-P}-e^{-P_c}) =(2-e^{-\mu c}) \Delta _c^n(e^{-P}) . \end{equation*} In the following two subcases, we prove that both of $(2-e^{-\mu c}) $ and $\Delta _c^n(e^{-P}) $ are not vanishing. \smallskip \noindent\textbf{(A)} Suppose that $2=e^{-\mu c}$. Then for any integer $i$, we have $e^{-i\mu c}=2^{i}$ and $e^{-P_{ic}}=2^{i}e^{-P}$, applying that on \eqref{e3.6}, we obtain \begin{gather*} A_n(z) =\sum_{i=0}^n C_n^{i}(-1) ^{n-i}2^{i}e^{-i\mu c}-e^{P}=3^n-e^{P}, \\ \begin{aligned} B_n(z) &=a(z) \Big(\sum_{i=0}^n C_n^{i}(-1) ^{n-i}(2^{i}-1)e^{-P_{ic}}-1\Big) \\ &=a(z) (\sum_{i=0}^n C_n^{i}( -1) ^{n-i}(4^{i}-2^{i}) e^{-P}-1) =a(z) ((3^n-1) e^{-P}-1) . \end{aligned} \end{gather*} Then \begin{equation*} (3^n-e^{P}) g(z) +a(z) ((3^n-1) e^{-P}-1) =0, \end{equation*} which is equivalent to \begin{equation} g(z) =a(z) \frac{e^{P}-(3^n-1) }{e^{P}(3^n-e^{P}) }. \label{e3.17} \end{equation} By the same argument as before and \eqref{e3.7}, we obtain \begin{equation*} g(z) =a(z) \frac{e^{P}-(3^{n+1}-1) }{e^{P}(3^{n+1}-e^{P}) }, \end{equation*} which contradicts \eqref{e3.17}. \smallskip \noindent\textbf{(B)} Suppose now that $\Delta _c^n(e^{-P}) \equiv 0$. Then \begin{align*} \Delta _c^n(e^{-P}) & =\sum_{i=0}^n C_n^{i}(-1) ^{n-i}e^{-\mu (z+ic) -\eta }\\ &=e^{-P} \sum_{i=0}^n C_n^{i}(-1) ^{n-i}e^{-\mu ic} \\ &=e^{-P}(e^{-\mu c}-1) ^n. \end{align*} This together with $\Delta _c^ne^{-P}\equiv 0$ gives $(e^{-\mu c}-1) ^n\equiv 0$, which yields $e^{\mu c}\equiv 1$. Therefore, for any $j\in \mathbb{Z}$, \begin{equation} e^{P(z+jc) }=e^{\mu z+\mu jc+\eta }=(e^{\mu c}) ^{j}e^{P(z) }=e^{P(z) }. \label{e3.18} \end{equation} On the other hand, from \eqref{e3.1} we have \begin{equation} \Delta _c^nf(z) =e^{P(z) }(f(z) -a(z)) +a(z) . \label{e3.19} \end{equation} By \eqref{e3.18} and \eqref{e3.19}, we have \begin{equation} \Delta _c^{n+1}f(z) =e^{P(z) }\Delta _cf(z) \label{e3.20} \end{equation} Combining \eqref{e3.2} and \eqref{e3.20}, we obtain \begin{equation*} \Delta _cf(z) =(f(z) -a(z)) +a(z) e^{-P(z) } \end{equation*} which means that $\Delta _c^{n+1}f(z) =\Delta _c^nf(z) $ for all $n\geq 1$. Therefore, $f(z)$, $\Delta _cf(z) $ and $\Delta _c^{2}f(z) $ share $a(z) $ CM and by Lemma \ref{lem2.4} we obtain $\Delta _cf(z) =f(z) $, which contradicts the hypothesis. Then $\Delta _c^n(e^{-P})\not\equiv 0$. From the subcases (A) and (B), we can deduce that $\alpha _{n+1}(z) \not\equiv 0$. It is clear that \begin{equation*} \max \{ \rho (a_{i}) ,\rho (\alpha _{n+1}),i=0,\dots ,n+1\} <\deg P=1. \end{equation*} By using Lemma \ref{lem2.2}, we obtain $\lambda (e^{P}) =\deg P=1$, which is a contradiction, and $P$ must be a constant. \smallskip \noindent\textbf{Case 2.} $P(z) \equiv K$, $K\in\mathbb{C}-\{ 2k\pi i,k\in\mathbb{Z}\} $. From \eqref{e3.1} we have \begin{equation*} \Delta _c^nf(z) =e^{K}(f(z) -a(z)) +a(z) . \end{equation*} Hence \begin{equation} \Delta _c^{n+1}f(z) =e^{K}\Delta _cf(z) . \label{e3.21} \end{equation} Combining \eqref{e3.2} and \eqref{e3.21}, we obtain \begin{equation*} \Delta _cf(z) =(f(z) -a(z)) +a(z) e^{-K} \end{equation*} which means that $\Delta _c^{n+1}f(z) =\Delta _c^nf(z) $ for all $n\geq 1$. Therefore, $f(z)$, $\Delta _cf(z) $ and $\Delta _c^{2}f(z) $ share $a(z) $ CM and by Lemma \ref{lem2.4} we obtain $\Delta _cf(z) =f(z) $, which contradicts the hypothesis. Then $e^{P}\equiv 1$ and the proof is complete. \end{proof} \begin{proof}[Proof of the Theorem \ref{thm1.2}] Setting $g(z) =f(z) +b(z) -a(z) $. Since $\Delta_c^{m}a(z) \equiv 0$ ($1\leq m\leq n$), we can remark that \begin{gather*} g(z) -b(z) =f(z) -a(z) , \\ \Delta _c^ng(z) -b(z) =\Delta _c^nf(z) -b(z), \\ \Delta _c^{n+1}g(z) -b(z) =\Delta _c^nf(z) -b(z) ,\quad n\geq 2. \end{gather*} Since $f(z) -a(z)$, $\Delta_c^nf(z) -b(z) $ and $\Delta_c^{n+1}f(z) -b(z) $ share $0$ CM, then $g(z)$, $\Delta _c^ng(z) $ and $\Delta _c^{n+1}g(z) $ share $b(z) $ CM. By using Theorem \ref{thm1.1}, we deduce that $\Delta _cg(z) \equiv g(z) $, which leads to $\Delta _cf(z) \equiv f(z) +b(z) +\Delta _ca(z) -a(z) $ and the proof is complete. \end{proof} \begin{proof}[Proof of the Theorem \ref{thm1.3}] Note that $f(z) $ is a nonconstant entire function of finite order. Since $f(z)$, $\Delta _c^nf(z) $ and $\Delta_c^{n+1}f(z) $ share $0$ CM, it follows from Theorem \ref{thmF} that $\Delta _c^{n+1}f(z) =C\Delta _c^nf(z) $, where $C$ is a nonzero constant. Then we have \begin{gather} \frac{\Delta _c^nf(z) }{f(z) }=e^{P(z) }, \label{e3.22} \\ \frac{\Delta _c^{n+1}f(z) }{f(z) }=Ce^{P(z) }, \label{e3.23} \end{gather} where $P$ is a polynomial. By \eqref{e3.22} and \eqref{e3.23} we obtain \begin{equation} f_{ic}(z) =(C+1) ^{i}e^{P-P_{ic}}f(z). \label{e3.24} \end{equation} Then \begin{equation} \Delta _c^nf(z) =\Big(\sum_{i=0}^nC_n^{i}(-1) ^{n-i}(C+1) ^{i}e^{P-P_{ic}}\Big)f(z) =e^{P(z) }f(z) . \label{e3.25} \end{equation} This equality leads to $\deg P=0$. Hence $P(z) -P_{ic}(z) \equiv 0$ and \eqref{e3.25} will be \begin{equation} \sum_{i=0}^n C_n^{i}(-1) ^{n-i}(C+1) ^{i}=C^n=e^{P(z) }. \label{e3.26} \end{equation} By \eqref{e3.22}, \eqref{e3.23} and \eqref{e3.26} we deduce that \begin{gather*} \Delta _c^nf(z) =C^nf(z), \\ \Delta _c^{n+1}f(z) =C^{n+1}f(z) . \end{gather*} Then \begin{equation*} \Delta _c^{n+1}f(z) =\Delta _c(\Delta _c^nf(z)) =\Delta _c(C^nf(z)) =C^n\Delta _cf(z) =C^{n+1}f(z) , \end{equation*} which implies $\Delta _cf(z) =Cf(z) $. Thus, the proof is complete. \end{proof} \begin{proof}[Proof of Corollary \ref{coro1.2}] By Theorem \ref{thm1.3} we have $\Delta _cf(z) =Cf(z) $, where $C$ is a nonzero constant. Then \begin{equation} \Delta _c^{m}f(z) =C\Delta _c^{m-1}f(z) =C^{m}f(z) ,\text{ }m\geq 1. \label{e3.27} \end{equation} On the other hand, for $z_0\in\mathbb{C}$ we have \begin{equation} \Delta _c^{m}f(z_0) =f(z_0) . \label{e3.28} \end{equation} By \eqref{e3.27} and \eqref{e3.28} we deduce that $C^{m}=1$. Hence $\Delta _c^{m}f(z) =f(z) $. \end{proof} \begin{proof}[Proof of the Theorem \ref{thm1.4}] Setting $g(z)=f(z) -a(z) $, we have \begin{gather*} g(z) =f(z) -a(z) , \\ \Delta _c^ng(z) =\Delta _c^nf(z) -b(z), \\ \Delta _c^{n+1}g(z) =\Delta _c^nf(z) -b(z) ,\quad n\geq 2. \end{gather*} Since $f(z) -a(z)$, $\Delta _c^nf(z) -b(z) $ and $\Delta _c^{n+1}f(z) -b(z) $ share $0$ CM, it follows that $g(z)$, $\Delta _c^ng(z) $ and $\Delta _c^{n+1}g(z) $ share $0$ CM. Using Theorem \ref{thm1.3}, we deduce that $\Delta _cg(z) \equiv Cg(z) $, where $C $ is a nonzero constant, which leads to $\Delta _cf(z) \equiv Cf(z) +\Delta _ca(z) -a(z) $ and the proof is complete. \end{proof} \section{Open Problem} It has been proved in \cite{e1} that \begin{theorem}[{\cite[Corollary 1.1]{e1}}] \label{thmH} Let $f(z) $ be a non-periodic entire function of finite order, and let $a(z) \in S(f) $ ($\not\equiv 0$) be a periodic entire function with period $c$. If $f(z)$, $\Delta _cf(z) $ and $\Delta _c^{3}f(z) $ share $a(z) $ CM, then $\Delta _cf(z) \equiv f(z) $. \end{theorem} It is an open question to see under what conditions Theorem \ref{thmH} holds for entire functions share a small function with $\Delta _c^nf(z) $ and $\Delta _c^{n+2}f(z) $ $(n\geq 1)$. We believe that: \begin{quote} Let $f(z) $ be a nonconstant entire function of finite order such that $\Delta_c^nf(z) \not\equiv 0$, and let $a(z) \in S(f) $ ($\not\equiv 0$) be a periodic entire function with period $c$. If $f(z) $, $\Delta _c^nf(z) $ and $\Delta _c^{n+2}f(z) $ $(n\geq 1) $ share $a(z) $ CM, then $\Delta _cf(z) \equiv f(z) $. \end{quote} Unfortunately, we have not succeed in proving this. \subsection*{Acknowledgements} The authors would like to thank to anonymous referees for their helpful comments. \begin{thebibliography}{00} \bibitem{b1} W. Bergweiler, J. K. Langley; \emph{Zeros of differences of meromorphic functions}, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133--147. \bibitem{c1} Z. X. Chen; \emph{Zeros of entire solutions to complex linear difference equations}, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 3, 1141--1148. \bibitem{c2} B. Chen, Z. X. Chen, S. Li; \emph{Uniqueness theorems on entire functions and their difference operators or shifts}, Abstr. Appl. Anal. 2012, Art. ID 906893, 8 pp. \bibitem{c3} B. Chen, S. Li; \emph{Uniquness problems on entire functions that share a small function with their difference operators}, Adv. Difference Equ. 2014, 2014:311, 11 pp. \bibitem{c4} Y. M. Chiang, S. J. Feng; \emph{On the Nevanlinna characteristic of $f(z+\eta) $ and difference equations in the complex plane}, Ramanujan J. 16 (2008), no. 1, 105-129. \bibitem{e1} A. El Farissi, Z. Latreuch, A. Asiri; \emph{On the uniqueness theory of entire functions and their difference operators}, Complex Anal. Oper. Theory, 2015, 1-11. \bibitem{h1} R. G. Halburd, R. J. Korhonen; \emph{Difference analogue of the lemma on the logarithmic derivative with applications to difference equations}, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. \bibitem{h2} R. G. Halburd, R. J. Korhonen; \emph{Nevanlinna theory for the difference operator}, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463--478. \bibitem{h3} W. K. Hayman; \emph{Meromorphic functions}, Oxford Mathematical Monographs Clarendon Press, Oxford 1964. \bibitem{j1} G. Jank. E. Mues, L. Volkmann; \emph{Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen}, Complex Variables Theory Appl. 6 (1986), no. 1, 51--71. \bibitem{l1} I. Laine; \emph{Nevanlinna theory and complex differential equations}, de Gruyter Studies in Mathematics, 15. Walter de Gruyter \& Co., Berlin, 1993. \bibitem{l2} Z. Latreuch, B. Bela\"{\i}di; \emph{Growth and oscillation of meromorphic solutions of linear difference equations}, Mat. Vesnik 66 (2014), no. 2, 213--222. \bibitem{l3} Z. Latreuch, A. El Farissi, B. Bela\"{\i}di; \emph{Entire functions sharing small functions with their difference operators.} Electron. J. Diff. Equ., Vol. 2015 (2015), No. 132, 1-10. \bibitem{l4} P. Li, C. C. Yang; \emph{Uniqueness theorems on entire functions and their derivatives}, J. Math. Anal. Appl., 253 (2001), no. 1, 50--57. \bibitem{r1} L. A. Rubel, C. C. Yang; \emph{Values shared by an entire function and its derivatives}, Lecture Notes in Math. 599 (1977), Berlin, Springer - Verlag, 101-103. \bibitem{w1} S. Z. Wu, X. M. Zheng; \emph{Growth of solutions of some kinds of linear difference equations}, Adv. Difference Equ. (2015) 2015:142, 11 pp. \bibitem{y1} C. C. Yang, H. X. Yi; \emph{Uniqueness theory of meromorphic functions}, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003. \bibitem{y2} L. Z. Yang; \emph{Further results on entire functions that share one value with their derivatives}, J. Math. Anal. Appl. 212 (1997), 529-536. \end{thebibliography} \end{document}