\documentclass[reqno]{amsart} %\usepackage[notref,notcite]{showkeys} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 39, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/39\hfil Existence of non-oscillatory solutions] {Existence of non-oscillatory solutions to first-order neutral differential equations} \author[T. Candan \hfil EJDE-2016/39\hfilneg] {Tuncay Candan} \address{Tuncay Candan \newline Department of Mathematics, Faculty of Arts and Sciences, Ni\u{g}de University, Ni\u{g}de 51200, Turkey} \email{tcandan@nigde.edu.tr} \thanks{Submitted October 14, 2015. Published January 27, 2016.} \subjclass[2010]{34K11, 34C10} \keywords{Neutral equations; fixed point; non-oscillatory solution} \begin{abstract} This article presents sufficient conditions for the existence of non-oscillatory solutions to first-order differential equations having both delay and advance terms, known as mixed equations. Our main tool is the Banach contraction principle. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this article, we consider a first-order neutral differential equation \begin{equation}\label{e:1} \begin{aligned} &\frac{d}{dt}[x(t)+P_1(t)x(t-\tau_1)+P_2(t)x(t+\tau_2)]\\ &+Q_1(t)x(t-\sigma_1)-Q_2(t)x(t+\sigma_2)=0, \end{aligned} \end{equation} where $P_i\in C([t_0,\infty),\mathbb{R})$, $Q_i\in C([t_0,\infty),[0,\infty))$, $\tau_i>0$ and $\sigma_i\geq 0$ for $i=1,2$. We give some new criteria for the existence of non-oscillatory solutions of \eqref{e:1}. Recently, the existence of non-oscillatory solutions of first-order neutral functional differential equations has been investigated by many authors. Yu and Wang \cite{Yu} showed that the equation \[ \frac{d}{dt}\left[x(t)+px(t-c)\right]+Q(t)x(t-\sigma)=0,\quad t\geq t_0 \] has a non-oscillatory solution for $p\geq 0$. Later, in $1993$, Chen et al \cite{Che} studied the same equation and they extended the results to the case $p\in\mathbb{R}\backslash\{-1\}$. Zhang et al \cite{Zha} investigated the existence of non-oscillatory solutions of the first-order neutral delay differential equation with variable coefficients \[ \frac{d}{dt}[x(t)+P(t)x(t-\tau)]+Q_1(t)x(t-\sigma_1)-Q_2(t)x(t-\sigma_2)=0,\quad t\geq t_0 \,. \] They obtained sufficient conditions for the existence of non-oscillatory solutions depending on the four different ranges of $P(t)$. In \cite{Doroc}, existence of non-oscillatory solutions of first-order neutral differential equations \[ \frac{d}{dt}[x(t)-a(t) x(t-\tau)]=p(t)f(x(t-\sigma)) \] was studied. On the other hand, there has been research activities about the oscillatory behavior of first and higher order neutral differential equations with advanced terms. For instance, in \cite{Aga0} and \cite{Tun0}, n-th order neutral differential equations with advanced term of the form \[ [x(t)+ax(t-\tau)+bx(t+\tau)]^{(n)}+\delta \left(q(t)x(t-g)+p(t)x(t+h)\right)=0 \] and \[ [x(t)+\lambda ax(t-\tau)+\mu bx(t+\tau)]^{(n)}+\delta\Big( \int_c^dq(t,\xi)x(t-\xi)d\xi+\int_c^dp(t,\xi)x(t+\xi)d\xi\Big)=0, \] were studied, respectively. This article was motivated by the above studies. To the best of our knowledge, this current paper is the only paper regarding to the existence of non-oscillatory solutions of neutral differential equation with advanced term. Some other papers for the existence of non-oscillatory solutions of first, second and higher order neutral functional differential and difference equations; see \cite{Kule, Zho, Tun1, Tun2, Tun3, Tia} and the references contained therein. We refer the reader to the books \cite{Lad, Gyo, Bai, Erb, Aga1, Aga2} on the subject of neutral differential equations. Let $m=\max\{\tau_1,\sigma_1\}$. By a solution of \eqref{e:1} we mean a function $x\in C([t_1-m,\infty),\mathbb{R})$, for some $t_1\geq t_0$, such that $x(t)+P_1(t)x(t-\tau_1)+P_2(t)x(t+\tau_2)$ is continuously differentiable on $[t_1,\infty)$ and \eqref{e:1} is satisfied for $t\geq t_1$. As it is customary, a solution of \eqref{e:1} is said to be oscillatory if it has arbitrarily large zeros. Otherwise the solution is called non-oscillatory. The following theorem will be used to prove the theorems. \begin{theorem}[Banach's Contraction Mapping Principle] A contraction mapping on a complete metric space has exactly one fixed point. \end{theorem} \section{Main Results} To show that an operator $S$ satisfies the conditions for the contraction mapping principle, we consider different cases for the ranges of the coefficients $P_1(t)$ and $P_2(t)$. \begin{theorem}\label{t:1} Assume that $ 0\leq P_1(t)\leq p_1<1$, $0\leq P_2(t)\leq p_2<1-p_1$ and \begin{equation}\label{e:2} \int_{t_0}^{\infty}Q_1(s) ds<\infty,\quad \int_{t_0}^{\infty}Q_2(s) ds<\infty, \end{equation} then \eqref{e:1} has a bounded non-oscillatory solution. \end{theorem} \begin{proof} Because of \eqref{e:2}, we can choose a $t_1>t_0$, \begin{equation}\label{e:3} t_1\geq t_0+\max\{\tau_1,\sigma_1\} \end{equation} sufficiently large such that \begin{gather}\label{e:4} \int_{t}^{\infty}Q_1(s) ds\leq \frac{M_2-\alpha}{M_2},\quad t\geq t_1, \\ \label{e:5} \int_{t}^{\infty}Q_2(s) ds\leq \frac{\alpha-(p_1+p_2)M_2-M_1}{M_2}, \quad t\geq t_1, \end{gather} where $M_1$ and $M_2$ are positive constants such that \[ (p_1+p_2)M_2+M_1t_0$ sufficiently large satisfying \eqref{e:3} such that \begin{gather}\label{e:6} \int_{t}^{\infty}Q_1(s) ds\leq \frac{(1+p_2)N_2-\alpha}{N_2},\quad t\geq t_1, \\ \label{e:7} \int_{t}^{\infty}Q_2(s) ds\leq \frac{\alpha-p_1N_2-N_1}{N_2}, \quad t\geq t_1, \end{gather} where $N_1$ and $N_2$ are positive constants such that \[ N_1+p_1N_2<(1+p_2)N_2\quad\text{and}\quad \alpha \in (N_1+p_1N_2,(1+p_2)N_2). \] Let $\Lambda$ be the set of all continuous and bounded functions on $[t_0,\infty)$ with the supremum norm. Set \[ \Omega=\{x\in \Lambda: N_1\leq x(t)\leq N_2,\; t\geq t_0 \}. \] It is clear that $\Omega$ is a bounded, closed and convex subset of $\Lambda$. Define an operator $S:\Omega\to\Lambda$ as follows: \[ (Sx)(t)=\begin{cases} \alpha-P_1(t)x(t-\tau_1)-P_2(t)x(t+\tau_2)\\ +\int_{t}^{\infty}\left[Q_1(s)x(s-\sigma_1)-Q_2(s)x(s+\sigma_2)\right]ds,& t\geq t_1,\\[4pt] (Sx)(t_1),& t_0\leq t\leq t_1. \end{cases} \] Obviously, $Sx$ is continuous. For $t\geq t_1$ and $x\in \Omega$, from \eqref{e:6} and \eqref{e:7}, respectively, it follows that \begin{gather*} (Sx)(t)\leq \alpha-p_2N_2+N_2\int_{t}^{\infty}Q_1(s) ds\leq N_2, \\ (Sx)(t)\geq\alpha- p_1N_2-N_2\int_{t}^{\infty}Q_2(s) ds\geq N_1. \end{gather*} This proves that $S\Omega\subset \Omega$. To apply the contraction mapping principle, it remains to show that $S$ is a contraction mapping on $\Omega$. Thus, if $x_1, x_2\in \Omega$ and $t\geq t_1$, \begin{align*} |(Sx_1)(t)-(Sx_2)(t)| &\leq \|x_1-x_2\|\Big(p_1-p_2+\int_{t}^{\infty}\left(Q_1(s) +Q_2(s)\right) ds\Big)\\ &\leq \lambda_2\|x_1-x_2\|, \end{align*} where $\lambda_2=(1-\frac{N_1}{N_2})$. This implies \[ \|Sx_1-Sx_2\|\leq \lambda_2\|x_1-x_2\|, \] where the supremum norm is used. Since $\lambda_2<1$, $S$ is a contraction mapping on $\Omega$. Thus $S$ has a unique fixed point which is a positive and bounded solution of \eqref{e:1}. This completes the proof. \end{proof} \begin{theorem}\label{t:3} Assume that $1t_0$, \begin{equation}\label{e:8} t_1+\tau_1\geq t_0+\sigma_1, \end{equation} sufficiently large such that \begin{gather}\label{e:9} \int_{t}^{\infty}Q_1(s) ds\leq \frac{p_1M_4-\alpha}{M_4},\quad t\geq t_1, \\ \label{e:10} \int_{t}^{\infty}Q_2(s) ds\leq \frac{\alpha-p_{1_0}M_3-(1+p_2)M_4}{M_4},\quad t \geq t_1, \end{gather} where $M_3$ and $M_4$ are positive constants such that \[ p_{1_0}M_3+(1+p_2)M_4 t_0$ sufficiently large satisfying \eqref{e:8} such that \begin{gather}\label{e:11} \int_{t}^{\infty}Q_1(s) ds\leq \frac{(p_1+p_2)N_4-\alpha}{N_4},\quad t\geq t_1, \\ \label{e:12} \int_{t}^{\infty}Q_2(s) ds\leq \frac{\alpha-p_{1_0}N_3-N_4}{N_4},\quad t \geq t_1, \end{gather} where $N_3$ and $N_4$ are positive constants such that \[ p_{1_0}N_3+N_4<(p_1+p_2)N_4\quad\text{and}\quad \alpha \in\big(p_{1_0}N_3+N_4, (p_1+p_2)N_4\big)\, . \] Let $\Lambda$ be the set of all continuous and bounded functions on $[t_0,\infty)$ with the supremum norm. Set \[ \Omega=\{x\in \Lambda:N_3\leq x(t)\leq N_4,\; t\geq t_0 \}. \] It is clear that $\Omega$ is a bounded, closed and convex subset of $\Lambda$. Define a mapping $S:\Omega\to \Lambda$ as follows: \[ (Sx)(t)= \begin{cases} \frac{1}{P_1(t+\tau_1)}\{\alpha-x(t+\tau_1)-P_2(t+\tau_1)x(t+\tau_1+\tau_2)\\ +\int_{t+\tau_1}^{\infty}\left[Q_1(s)x(s-\sigma_1)-Q_2(s)x(s+\sigma_2)\right]ds\}, &t\geq t_1,\\[4pt] (Sx)(t_1), & t_0\leq t\leq t_1. \end{cases} \] Clearly, $Sx$ is continuous. For $t\geq t_1$ and $x\in \Omega$, from \eqref{e:11} and \eqref{e:12}, respectively, it follows that \begin{align*} (Sx)(t) &\leq \frac{1}{P_1(t+\tau_1)}\Big(\alpha-p_2N_4+N_4\int_{t}^{\infty}Q_1(s) ds\Big)\\ &\leq \frac{1}{p_1}\Big(\alpha-p_2N_4+N_4\int_{t}^{\infty}Q_1(s) ds\Big)\leq N_4 \end{align*} and \begin{align*} (Sx)(t) &\geq \frac{1}{P_1(t+\tau_1)}\Big(\alpha-N_4-N_4\int_{t}^{\infty}Q_2(s) ds\Big)\\ &\geq \frac{1}{p_{1_0}}\Big(\alpha-N_4-N_4\int_{t}^{\infty}Q_2(s) ds\Big)\geq N_3. \end{align*} This proves that $S\Omega\subset \Omega$. To apply the contraction mapping principle it remains to show that $S$ is a contraction mapping on $\Omega$. Thus, if $x_1, x_2\in \Omega$ and $t\geq t_1$, \begin{align*} |(Sx_1)(t)-(Sx_2)(t)| &\leq \frac{1}{p_1} \|x_1-x_2\|\Big(1-p_2+\int_{t}^{\infty}\left(Q_1(s) +Q_2(s)\right) ds\Big)\\ &\leq \lambda_4\|x_1-x_2\|, \end{align*} where $\lambda_4=(1-\frac{p_{1_0}N_3}{p_1N_4})$. This implies \[ \|Sx_1-Sx_2\|\leq \lambda_4\|x_1-x_2\|, \] where the supremum norm is used. Since $\lambda_4<1$, $S$ is a contraction mapping on $\Omega$. Thus $S$ has a unique fixed point which is a positive and bounded solution of \eqref{e:1}. This completes the proof. \end{proof} \begin{theorem}\label{t:5} Assume that $-1t_0$ sufficiently large satisfying \eqref{e:3} such that \begin{equation}\label{e:13} \int_{t}^{\infty}Q_1(s) ds\leq \frac{(1+p_1)M_6-\alpha}{M_6},\quad t\geq t_1, \end{equation} and \begin{equation}\label{e:14} \int_{t}^{\infty}Q_2(s) ds\leq \frac{\alpha-p_2M_6-M_5}{M_6}, \quad t\geq t_1\,, \end{equation} where $M_5$ and $M_6$ are positive constants such that \[ M_5+p_2M_6<(1+p_1)M_6\quad\text{and}\quad \alpha \in ( M_5+p_2M_6, (1+p_1)M_6)\,. \] Let $\Lambda$ be the set of all continuous and bounded functions on $[t_0,\infty)$ with the supremum norm. Set \[ \Omega=\{x\in \Lambda:M_5\leq x(t)\leq M_6,\; t\geq t_0 \}. \] It is clear that $\Omega$ is a bounded, closed and convex subset of $\Lambda$. Define an operator $S:\Omega\to\Lambda$ as follows: \[ (Sx)(t)=\begin{cases} \alpha-P_1(t)x(t-\tau_1)-P_2(t)x(t+\tau_2)\\ +\int_{t}^{\infty}\left[Q_1(s)x(s-\sigma_1)-Q_2(s)x(s+\sigma_2)\right]ds, & t\geq t_1,\\[4pt] (Sx)(t_1), & t_0\leq t\leq t_1. \end{cases} \] Obviously, $Sx$ is continuous. For $t\geq t_1$ and $x\in \Omega$, from \eqref{e:13} and \eqref{e:14}, respectively, it follows that \begin{gather*} (Sx)(t)\leq \alpha-p_1M_6+M_6\int_{t}^{\infty}Q_1(s) ds\leq M_6, \\ (Sx)(t)\geq\alpha- p_2M_6-M_6\int_{t}^{\infty}Q_2(s) ds\geq M_5. \end{gather*} This proves that $S\Omega\subset \Omega$. To apply the contraction mapping principle it remains to show that $S$ is a contraction mapping on $\Omega$. Thus, if $x_1, x_2\in \Omega$, $t\geq t_1$, \begin{align*} |(Sx_1)(t)-(Sx_2)(t)| &\leq \|x_1-x_2\|\Big(-p_1+p_2+\int_{t}^{\infty}\left(Q_1(s) +Q_2(s)\right) ds\Big)\\ &\leq \lambda_5\|x_1-x_2\|, \end{align*} where $\lambda_5=(1-\frac{M_5}{M_6})$. This implies \[ \|Sx_1-Sx_2\|\leq \lambda_5\|x_1-x_2\|, \] where the supremum norm is used. Since $\lambda_5<1$, $S$ is a contraction mapping on $\Omega$. Thus $S$ has a unique fixed point which is a positive and bounded solution of \eqref{e:1}. This completes the proof. \end{proof} \begin{theorem}\label{t:6} Assume that $-1t_0$ sufficiently large satisfying \eqref{e:3} such that \begin{equation}\label{e:15} \int_{t}^{\infty}Q_1(s) ds\leq \frac{(1+p_1+p_2)N_6-\alpha}{N_6},\quad t\geq t_1, \end{equation} and \begin{equation}\label{e:16} \int_{t}^{\infty}Q_2(s) ds\leq \frac{\alpha-N_5}{N_6}, \quad t\geq t_1, \end{equation} where $N_5$ and $N_6$ are positive constants such that \[ N_5<(1+p_1+p_2)N_6\quad\text{and}\quad \alpha \in( N_5,(1+p_1+p_2)N_6) . \] Let $\Lambda$ be the set of continuous and bounded functions on $[t_0,\infty)$ with the supremum norm. Set \[ \Omega=\{x\in \Lambda:N_5\leq x(t)\leq N_6,\; t\geq t_0 \}. \] It is clear that $\Omega$ is a bounded, closed and convex subset of $\Lambda$. Define an operator $S:\Omega\to\Lambda$ as follows: \[ (Sx)(t)=\begin{cases} \alpha-P_1(t)x(t-\tau_1)-P_2(t)x(t+\tau_2)\\ +\int_{t}^{\infty}\left[Q_1(s)x(s-\sigma_1)-Q_2(s)x(s+\sigma_2)\right]ds,\ & t\geq t_1,\\[4pt] (Sx)(t_1),& t_0\leq t\leq t_1. \end{cases} \] Obviously, $Sx$ is continuous. For $t\geq t_1$ and $x\in \Omega$, from \eqref{e:15} and \eqref{e:16}, respectively, it follows that \begin{gather*} (Sx)(t) \leq \alpha-p_1N_6-p_2N_6+N_6\int_{t}^{\infty}Q_1(s) ds\leq N_6, \\ (Sx)(t)\geq\alpha-N_6\int_{t}^{\infty}Q_2(s) ds\geq N_5. \end{gather*} This proves that $S\Omega\subset \Omega$. To apply the contraction mapping principle it remains to show that $S$ is a contraction mapping on $\Omega$. Thus, if $x_1, x_2\in \Omega$ and $t\geq t_1$, \begin{align*} |(Sx_1)(t)-(Sx_2)(t)| &\leq \|x_1-x_2\|\Big(-p_1-p_2+\int_{t}^{\infty}\left(Q_1(s) +Q_2(s)\right) ds\Big)\\ &\leq \lambda_6\|x_1-x_2\|, \end{align*} where $\lambda_6=(1-\frac{N_5}{N_6})$. This implies \[ \|Sx_1-Sx_2\|\leq \lambda_6\|x_1-x_2\|, \] where the supremum norm is used. Since $\lambda_6<1$, $S$ is a contraction mapping on $\Omega$. Thus $S$ has a unique fixed point which is a positive and bounded solution of \eqref{e:1}. This completes the proof. \end{proof} \begin{theorem}\label{t:7} Assume that $-\inftyt_0$ sufficiently large satisfying \eqref{e:8} such that \begin{equation}\label{e:17} \int_{t}^{\infty}Q_1(s) ds\leq \frac{p_{1_0}M_7+\alpha}{M_8},\quad t\geq t_1, \end{equation} and \begin{equation}\label{e:18} \int_{t}^{\infty}Q_2(s) ds\leq \frac{(-p_1-1-p_2)M_8-\alpha}{M_8},\quad t\geq t_1, \end{equation} where $M_7$ and $M_8$ are positive constants such that \[ -p_{1_0}M_7<(-p_1-1-p_2)M_8\quad\text{and}\quad \alpha \in ( -p_{1_0}M_7, (-p_1-1-p_2)M_8)\,. \] Let $\Lambda$ be the set of all continuous and bounded functions on $[t_0,\infty)$ with the supremum norm. Set \[ \Omega=\{x\in \Lambda:M_7\leq x(t)\leq M_8,\; t\geq t_0 \}. \] It is clear that $\Omega$ is a bounded, closed and convex subset of $\Lambda$. Define a mapping $S:\Omega\to \Lambda$ as follows: \[ (Sx)(t)=\begin{cases} \frac{-1}{P_1(t+\tau_1)}\{\alpha+x(t+\tau_1)+P_2(t+\tau_1)x(t+\tau_1+\tau_2)\\ -\int_{t+\tau_1}^{\infty}\left[Q_1(s)x(s-\sigma_1)-Q_2(s)x(s+\sigma_2)\right]ds\}, & t\geq t_1\\[4pt] (Sx)(t_1), & t_0\leq t\leq t_1. \end{cases} \] Clearly, $Sx$ is continuous. For $t\geq t_1$ and $x\in \Omega$, from \eqref{e:18} and \eqref{e:17}, respectively, it follows that \[ (Sx)(t)\leq \frac{-1}{p_1}\left(\alpha+M_8+p_2M_8+M_8\int_{t}^{\infty}Q_2(s) ds\right)\leq M_8 \] and \[ (Sx)(t) \geq \frac{-1}{p_{1_0}}\left(\alpha-M_8\int_{t}^{\infty}Q_1(s)ds\right) \geq M_7. \] This implies that $S\Omega\subset \Omega$. To apply the contraction mapping principle it remains to show that $S$ is a contraction mapping on $\Omega$. Thus, if $x_1, x_2\in \Omega$ and $t\geq t_1$, \begin{align*} |(Sx_1)(t)-(Sx_2)(t)| &\leq \frac{-1}{p_1} \|x_1-x_2\|\Big(1+p_2+\int_{t}^{\infty}\left(Q_1(s) +Q_2(s)\right) ds\Big)\\ &\leq \lambda_7\|x_1-x_2\|, \end{align*} where $\lambda_7=(1-\frac{p_{1_0}M_7}{p_1M_8})$. This implies \[ \|Sx_1-Sx_2\|\leq \lambda_7\|x_1-x_2\|, \] where the supremum norm is used. Since $\lambda_7<1$, $S$ is a contraction mapping on $\Omega$. Thus $S$ has a unique fixed point which is a positive and bounded solution of \eqref{e:1}. This completes the proof. \end{proof} \begin{theorem}\label{t:8} Assume that $-\inftyt_0$ sufficiently large satisfying \eqref{e:8} such that \begin{equation}\label{e:19} \int_{t}^{\infty}Q_1(s) ds\leq \frac{p_{1_0}N_7+p_2N_8+\alpha}{N_8},\quad t\geq t_1, \end{equation} and \begin{equation}\label{e:20} \int_{t}^{\infty}Q_2(s) ds\leq \frac{(-p_1-1)N_8-\alpha}{N_8},\quad t\geq t_1, \end{equation} where $N_7$ and $N_8$ are positive constants such that \[ -p_{1_0}N_7-p_2N_8<(-p_1-1)N_8\quad\text{and}\quad \alpha \in ( -p_{1_0}N_7-p_2N_8,(-p_1-1)N_8). \] Let $\Lambda$ be the set of continuous and bounded functions on $[t_0,\infty)$ with the supremum norm. Set \[ \Omega=\{x\in \Lambda:N_7\leq x(t)\leq N_8,\; t\geq t_0 \}. \] It is clear that $\Omega$ is a bounded, closed and convex subset of $\Lambda$. Define a mapping $S:\Omega\to \Lambda$ as follows: \[ (Sx)(t)=\begin{cases} \frac{-1}{P_1(t+\tau_1)}\{\alpha+x(t+\tau_1)+P_2(t+\tau_1)x(t+\tau_1+\tau_2)\\ -\int_{t+\tau_1}^{\infty}\left[Q_1(s)x(s-\sigma_1)-Q_2(s)x(s+\sigma_2)\right]ds\}, & t\geq t_1,\\ (Sx)(t_1),& t_0\leq t\leq t_1. \end{cases} \] Clearly, $Sx$ is continuous. For $t\geq t_1$ and $x\in \Omega$, from \eqref{e:20} and \eqref{e:19}, respectively, it follows that \[ (Sx)(t)\leq \frac{-1}{p_1}\Big(\alpha+N_8+N_8\int_{t}^{\infty}Q_2(s) ds\Big)\leq N_8 \] and \[ (Sx)(t) \geq \frac{-1}{p_{1_0}}\Big(\alpha+p_2N_8-N_8\int_{t}^{\infty}Q_1(s)ds\Big) \geq N_7. \] These prove that $S\Omega\subset \Omega$. To apply the contraction mapping principle it remains to show that $S$ is a contraction mapping on $\Omega$. Thus, if $x_1, x_2\in \Omega$, $t\geq t_1$, \begin{align*} |(Sx_1)(t)-(Sx_2)(t)| &\leq \frac{-1}{p_1} \|x_1-x_2\|\Big(1-p_2+\int_{t}^{\infty}\left(Q_1(s) +Q_2(s)\right) ds\Big)\\ &\leq \lambda_8\|x_1-x_2\|, \end{align*} where $\lambda_8=(1-\frac{p_{1_0}N_7}{p_1N_8})$. This implies \[ \|Sx_1-Sx_2\|\leq \lambda_8\|x_1-x_2\|, \] where the supremum norm is used. Since $\lambda_8<1$, $S$ is a contraction mapping on $\Omega$. Thus $S$ has a unique fixed point which is a positive and bounded solution of \eqref{e:1}. This completes the proof. \end{proof} \begin{example} \label{ex1} \rm Consider the equation \begin{equation}\label{e:21} \begin{aligned} &\Big[x(t)-\frac{1}{2}x(t-2\pi) +\big[\frac{1}{2}-\exp(-\frac{t}{2})\big]x(t+5\pi)\Big]'\\ &+\frac{1}{2}\exp(-\frac{t}{2}) x(t-4\pi)-\exp(-\frac{t}{2}) x(t+\frac{5\pi}{2})=0, \quad t>-2\ln(1/2) \end{aligned} \end{equation} and note that \[ P_1(t)=-\frac{1}{2},\quad P_2(t)=\frac{1}{2}-\exp(-\frac{t}{2}),\quad Q_1(t)=\frac{1}{2}\exp(-\frac{t}{2}),\quad Q_2(t)=\exp(-\frac{t}{2}). \] A straightforward verification yields that the conditions of Theorem~\ref{t:5} are valid. We note that $x(t)=2+\sin t$ is a non-oscillatory solution of \eqref{e:21}. \end{example} \begin{example} \label{ex2} \rm Consider the equation \begin{equation}\label{e:22} \begin{aligned} &\Big[x(t)-\frac{1}{\exp(1)}\big[\frac{3}{4}-\exp(-t)\big]x(t-1) -\exp(1/4)\big[\frac{1}{4}+\exp(-t)\big]x(t+\frac{1}{4})\Big]'\\ &+ \exp(-t-1)x(t-1)-\exp(-t+\frac{1}{4}) x(t+\frac{1}{4})=0, \quad t\geq \frac{3}{2} \end{aligned} \end{equation} and note that \begin{gather*} P_1(t)=-\frac{1}{\exp(1)}\big[\frac{3}{4}-\exp(-t)\big],\quad P_2(t)=-\exp(\frac{1}{4})\big[\frac{1}{4}+\exp(-t)\big],\\ Q_1(t)=\exp(-t-1), \quad Q_2(t)=\exp(-t+\frac{1}{4}) . \end{gather*} It is easy to verify that the conditions of Theorem~\ref{t:6} are valid. We note that $x(t)=1+\exp(-t)$ is a non-oscillatory solution of \eqref{e:22}. \end{example} \begin{thebibliography}{99} \bibitem{Aga0} R. P. Agarwal, S. R. Grace; \emph{Oscillation Theorems for Certain Neutral Functional Differential Equations}, Comput. Math. Appl., \textbf{38} (1999), 1-11. \bibitem{Aga1} R. P. Agarwal, S. R. Grace, D. O'Regan; \emph{Oscillation Theory for Difference and Functional Differential Equations}, Kluwer Academic, (2000). \bibitem{Aga2} R. P. Agarwal, M. Bohner, W. T. Li; \emph{Nonoscillation and Oscillation: Theorey for Functional Differential Equations}, Marcel Dekker, Inc., New York, 2004. \bibitem{Bai} D. D. Bainov, D. P. Mishev; \emph{Oscillation Theory for Neutral Differential Equations with Delay}, Adam Hilger, (1991). \bibitem{Tun0} T. Candan, R. S. Dahiya; \emph{Oscillation theorems for nth-order neutral functional differential equations}, Math. Comput. Modelling, \textbf{43} (2006) ,357-367. \bibitem{Tun1} T. Candan and R. S. Dahiya; \emph{Existence of nonoscillatory solutions of first and second order neutral differential equations with distributed deviating arguments}, J. Franklin Inst., \textbf{347} (2010), 1309-1316. \bibitem{Tun2} T. Candan; \emph{The existence of nonoscillatory solutions of higher order nonlinear neutral equations}, Appl. Math. Lett., \textbf{25(3)} (2012), 412-416. \bibitem{Tun3} T. Candan; \emph{Existence of nonoscillatory solutions of first -order nonlinear neutral differential equations}, Appl. Math. Lett., \textbf{26} (2013), 1182-1186. \bibitem{Che} M. P. Chen, J. S. Yu, Z. C. Wang; \emph{Nonoscillatory solutions of neutral delay differential equations}, Bull. Austral. Math. Soc., \textbf{48(3)} (1993) ,475-483. \bibitem{Doroc} B. Dorociakov\'{a}, A. Najmanov\'{a}, R. Olach; \emph{Existence of nonoscillatory solutions of first-order neutral differential equations}, Abstr. Appl. Anal., 2011, Art. ID 346745, 9 pp. \bibitem{Erb} L. H. Erbe, Q. K. Kong, B. G. Zhang; \emph{Oscillation Theory for Functional Differential Equations}, Marcel Dekker, Inc., New York, (1995). \bibitem{Gyo} I. Gy\"{o}ri, G. Ladas; \emph{Oscillation Theory of Delay Differential Equations With Applications}, Clarendon Press, Oxford, (1991). \bibitem{Kule} M. R. S. Kulenovi\'{c}, S. Had\v{z}iomerspahi\'{c}; \emph{Existence of Nonoscillatory Solution of Second-Order Linear Neutral Delay Equation}, J. Math.Anal. Appl., \textbf{228} (1998), 436-448. \bibitem{Lad} G. S. Ladde, V. Lakshmikantham, B. G. Zhang; \emph{Oscillation Theory of Differential Equations with Deviating Arguments}, Marcel Dekker, Inc., New York, (1987). \bibitem{Tia} Y. Tian, Y. Cai, T. Li; \emph{Existence of nonoscillatory solutions to second-order nonlinear neutral difference equations}, J. Nonlinear Sci. Appl., \textbf{8} (2015), 884-892. \bibitem{Yu} J. Yu, Y. Wang; \emph{Nonoscillation of a neutral delay differential equation}, Rad. Mat., \textbf{8(1)} (1992/1996), 127-133. \bibitem{Zha} W. Zhang, W. Feng, J. Yan, J. Song; \emph{Existence of Nonoscillatory Solutions of First-Order Linear Neutral Delay Differential Equations}, Comput. Math. Appl., \textbf{49} (2005), 1021-1027. \bibitem{Zho} Y. Zhou, B. G. Zhang; \emph{Existence of Nonoscillatory Solutions of Higher-Order Neutral Differential Equations with Positive and Negative Coefficients}, Appl. Math. Lett., \textbf{15} (2002), 867-874. \end{thebibliography} \end{document}