\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 42, pp. 1--23.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/42\hfil Multi-dimensional Cahn-Hilliard equation] {Periodic solutions of a multi-dimensional Cahn-Hilliard equation} \author[J. Liu, Y. Wang, J. Zheng \hfil EJDE-2016/42\hfilneg] {Ji Liu, Yifu Wang, Jiashan Zheng} \address{Ji Liu (corresponding author) \newline School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China} \email{cau\_lj@126.com, phone 18811789567} \address{Yifu Wang \newline School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China} \email{wangyifu@bit.edu.cn} \address{Jiashan Zheng \newline School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China} \email{zhengjiashan2008@163.com} \thanks{Submitted August 7, 2014. Published January 29, 2016.} \subjclass[2010]{35K25, 35B10, 35A01} \keywords{Periodic solutions; Cahn-Hilliard equation; viscosity approach; \hfill\break\indent Schauder fixed point theorem} \begin{abstract} This article concerns a multi-dimensional Cahn-Hilliard equation subject to Neumann boundary condition. We show existence of the periodic solutions by using the viscosity approach. By applying the Schauder fixed point theorem, we show existence of the solutions to the suitable approximate problem and then obtain the solutions of the considered periodic problem using a priori estimates. Our results extend those in \cite{20}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In 1958, Cahn and Hilliard \cite{3} derived the Cahn-Hilliard equation \begin{equation} u_{\tau}-\Delta(-\kappa\Delta{u}+g(u))=f,\label{e1.1} \end{equation} which is a model of phase separation in binary material. Here $g(u)$ is the derivative of free energy $F(u)$. If $F(u)$ is a smooth function, \eqref{e1.1} can be used to characterize the spread of populations and the diffusion of an oil film over a solid surface, see \cite{4, 16}. While $F(u)$ is not smooth, \eqref{e1.1} is used to describe the phase separation with constraints, see for example \cite{2}. Because of the applications of Cahn-Hilliard equation \eqref{e1.1} in physics, there has been a great interest in studying the qualitative properties of solutions to the Cahn-Hilliard equation. For example, we can refer to \cite{6, 19} for existence, uniqueness and regularity of the solutions, and \cite{7, 13} for asymptotic behavior of the solutions. In addition, using the techniques of subdifferential operator, Kenmochi et al \cite{9} investigated the Cahn-Hilliard equation with constraints. More recently, Kubo \cite{11} considered the strong solution and weak solution to the Cahn-Hilliard equation with a time-dependent constraint and also discussed the relation between these solutions. It is well known that one of the most interesting topics of the higher-order parabolic equations, from a theoretical and practical point of view, is existence of the periodic solutions, which has been considered in several works \cite{12,14,18,20,22}. Zhao et al \cite{22} studied existence and uniqueness of the time-periodic generalized solutions to a fourth-order parabolic equation by the Galerkin method. Moreover, \cite{12, 14} are concerned with the existence, uniqueness and attractivity of the time-periodic solutions to the Cahn-Hilliard equations with periodic gradient-dependent potentials and sources. It should be remarked that \cite{12, 14, 22} are all in the case of one spatial dimension. Also in one spatial dimension, Yin et al \cite{20} used the qualitative theory of parabolic equations to prove existence of the periodic solutions in the classical sense to the following equation $$ u_{\tau}+\kappa{u_{xxxx}=(A(\tau)u^3-B(\tau)u)_{xx}+f(x,\tau)}, $$ where $A(\tau)$ and $B(\tau)$ are positive, continuous and periodic functions with the period $\omega>0$, and $f(\tau)$ is also a smooth $\omega$-periodic function satisfying $\int^1_0f(x,\tau)dx=0$ for any $\tau\in[0,\omega]$. As for the case of higher dimensions, Wang and Zheng \cite{18} recently showed the existence of periodic solutions to the Cahn-Hillard equation with a constraint by applying the viscosity approach. Motivated by the above works, the purpose of this paper is to show existence of the periodic solutions to the problem \begin{gather} u_{\tau}(x,\tau)-\Delta(-\kappa\Delta{u(x,\tau)}+g(u(x,\tau))) =f(x,\tau)\quad\text{in }Q_\omega:=\Omega\times(0,\omega), \label{e1.2}\\ \frac{\partial{u}}{\partial{\nu}}(x,\tau) =\frac{\partial}{\partial{\nu}}(-\kappa\Delta{u(x,\tau)}+g(u(x,\tau)))=0 \quad\text{on }\Sigma_{\omega}:=\partial\Omega\times(0,\omega),\label{e1.3} \\ u(x,0)=u(x,\omega)\quad\text{in }\Omega,\label{e1.4} \end{gather} where $\Omega$ is a bounded domain in $\mathbb{R}^N(1\leq{N}\leq3)$ with smooth boundary, ${\frac{\partial}{\partial\nu}}$ stands for the outward normal derivative on $\partial\Omega$, $f$ is a $\omega$-periodic function and $g(u)=a_3u^3+a_2u^2+a_1u+a_0$ with constants $a_3>0$ and $a_i\in\mathbb{R}~(i=0,1,2)$. In this case, the free energy $ F(u)=\frac{a_3}{4}u^4+\frac{a_2}{3}u^3+\frac{a_1}{2}u^2+a_0u+C$, where $C$ is a constant. Particularly, if $a_2=0$ and $a_1<0$, $F(u)$ is called double-well form potential. Since the principle part of \eqref{e1.2} is a fourth-order operator, we take the viscosity approach in order to use the standard theory of the second order parabolic equations. More precisely, we study the approximate problem \begin{equation} \begin{gathered} u_{\tau}(x,\tau)-\Delta(\varepsilon{u_{\tau}(x,\tau)} -\kappa\Delta{u(x,\tau)}+g(u(x,\tau)))=f(x,\tau) \quad\text{in }Q_\omega,\\ {\frac{\partial{u}}{\partial{\nu}}(x,\tau) =\frac{\partial}{\partial{\nu}}(-\kappa\Delta{u(x,\tau)}+g(u(x,\tau)))=0} \quad\text{on }\Sigma_{\omega},\\ u(x,0)=u(x,\omega) \quad\text{in }\Omega, \end{gathered} \label{e1.5} \end{equation} where $0<\varepsilon<1$. In order to apply the Schauder fixed point theorem to show existence of the periodic solutions of \eqref{e1.5}, we need to establish some a priori estimates on the solutions of \eqref{e1.5} (cf. Lemma \ref{lem3.3} below). The plan of this article is as follows. In Section 2, we state some basic results in functional analysis and give the main results. In Section 3, we first establish some estimates of the solutions for \eqref{e1.5}, and then obtain existence of the periodic solutions for \eqref{e1.5} by the Schauder fixed point theorem. In Section 4, based on the a priori estimates in Section 3, we can take the limit as $\varepsilon\to 0$ and then obtain the periodic solutions of \eqref{e1.2}--\eqref{e1.4}. \section{Preliminaries} The notation and the basic results that we will use here are stated as follows. (1) We denote by $(\cdot,\cdot)$ and $|\cdot|_2$ the usual inner product and the norm in $L^2(\Omega)$, respectively. Also, we denote the Hilbert space $L^2(\Omega)$ by $H$. (2) We denote $H^1(\Omega)$ by $V$ and its inner product by $(\cdot,\cdot)_V$, where $(\eta_1,\eta_2)_V=(\eta_1,\eta_2)+(\nabla\eta_1,\nabla\eta_2)$ for any $\eta_1,\eta_2\in{H^1(\Omega)}$. As a result, the norm in $H^1(\Omega)$ can be denoted by $|\eta|_V=(\eta,\eta)^{1/2}_V$. $V^{*}$ denotes the dual space of $V$ and $\langle\cdot,\cdot\rangle_{V^{*},V}$ stands for the duality pairing between $V^{*}$ and $V$. (3) We define $H_0:=\{\eta\in{H}|\int_{\Omega}\eta(x)dx=0\}$ which is the closed subspace of $H$. We choose the notation $\pi_0$ to denote the projection operator from $H$ onto $H_0$, that is, $\pi_0[\eta](x)=\eta(x)-\frac{1}{|\Omega|}\int_{\Omega}\eta(y)dy$. Also, we denote the inner product on $H_0$ by $(\cdot,\cdot)_0$. (4) We denote by $V_0$ the space $V\cap{H_0}$ with the inner product $(\cdot,\cdot)_{V_0}$ and the norm $|\cdot|_{V_0}$, where $(\eta_1,\eta_2)_{V_0}=(\nabla\eta_1,\nabla\eta_2)$ for any $\eta_1,\eta_2\in{V_0}$. Furthermore, $F^{-1}_0$ and $\langle\cdot,\cdot\rangle_{V^{*}_0,V_0}$ denote the duality mapping from $V^{*}_0$ onto $V_0$ and the duality pairing between $V^{*}_0$ and $V_0$, respectively. Thus, we see that $V^{*}_0$ is a Hilbert space and its inner product can be defined as \begin{equation} (\eta_1,\eta_2)_{V^{*}_0}=\langle{\eta_1},F^{-1}_0\eta_2\rangle_{V^{*}_0,V_0} =\langle{F^{-1}_0\eta_1,\eta_2}\rangle_{V_0,V^{*}_0} \quad \text{for any }\eta_1,\eta_2\in{V^{*}_0}.\label{e2.1} \end{equation} It is observed that the Hilbert spaces stated above satisfy the following relations $$ V\subset{H}\subset{V^{*}},\quad V_0\subset{H_0}\subset{V^{*}_0}, $$ where all the injections are compact and densely defined. Throughout this article, we denote by $C_j>0(j=1,2,\ldots)$ the constants induced by injection. Therefore, from the above injections, we have \begin{equation} \begin{gathered} |\eta|_{V^{*}}\leq C_1|\eta|_2\quad \text{for any }\eta\in H,\\ |\eta|_2\leq C_2|\eta|_{V_0}\quad \text{for any } \eta\in V_0. \end{gathered}\label{e2.2} \end{equation} (5) Let $\Delta_N$ be the Laplace operator with homogeneous Neumann boundary condition in $H_0$ with its domain \[ D(\Delta_N)=\big\{\eta\in{H^2(\Omega)\cap H_0: {\frac{\partial\eta}{\partial{\nu}}=0} \text{ a.e. on } \partial\Omega}\big\}. \] Specially, $\Delta_N\eta=\Delta\eta$ a.e. on $\Omega$ for any $\eta\in{D(\Delta_N)}$. We note that $-\Delta_N$ is invertible in $H_0$ and the inverse $(-\Delta_N)^{-1}$ is linear, continuous, positive and selfadjoint in $H_0$ as well as its fractional power $(-\Delta_N)^{1/2}$ \cite[Chapter 9, Section 11]{21}. In addition, we have \begin{equation} |(-\Delta_N)^{1/2}\eta|_{H_0} =|(-\Delta_N)^{-1}\eta|_{V_0} =|\eta|_{V^{*}_0},\quad \forall{\eta}\in{H_0}. \label{e2.3} \end{equation} In this article, we always assume that the following condition holds \begin{itemize} \item[(H1)] $f\in{L^{\infty}(0,\omega;H)}$ is a $\omega-$periodic function and satisfies $\int^{\omega}_0\int_{\Omega}f(x,\tau)\,dx\,d\tau=0$. \end{itemize} Now, we give the notion of the solution for \eqref{e1.2}--\eqref{e1.4}. \begin{definition} \label{def2.1}\rm A function $u$ is called a solution of \eqref{e1.2}--\eqref{e1.4}, if the conditions below hold: \begin{itemize} \item[(H2)] $u\in{L^2(0,\omega;H^2(\Omega))\cap{L^{\infty}(0,\omega;V)} \cap{W^{1,2}(0,\omega;V^{*})}}$, ${\frac{\partial{u}}{\partial{\nu}}=0}$ a.e. on $\Sigma_\omega$. \item[(H3)] For all $\eta\in{H^2(\Omega)}$ with ${\frac{\partial\eta}{\partial\nu}\Big|_{\partial\Omega}=0}$, \begin{align*} &\int^{\omega}_0\langle{u_\tau(\tau),\eta}\rangle_{V^{*},V}d\tau +\kappa\int^{\omega}_0(\Delta{u(\tau)},\Delta\eta)d\tau -\int^{\omega}_0(g(u(\tau)),\Delta\eta)d\tau\\ &=\int^{\omega}_0(f(\tau),\eta)d\tau. \end{align*} \item[(H4)] $u(0)=u(\omega)\quad\text{in }H$. \end{itemize} \end{definition} Now, we subtract $\frac{1}{|\Omega|}\int_{\Omega}f(x,\tau)dx$ from \eqref{e1.2} and obtain \begin{equation} \begin{aligned} &\frac{d}{d\tau}\Big[u(x,\tau)-\frac{1}{|\Omega|} \int^\tau_0\int_{\Omega}f(x,s)\,dx\,ds\big] -\Delta(-\kappa\Delta{u(x,\tau)}+g(u(x,\tau)))\\ &=\pi_0[f(x,\tau)]. \end{aligned} \label{e2.4} \end{equation} Let \[ w(x,\tau)=u(x,\tau)-\frac{1}{|\Omega|}\int^\tau_0\int_{\Omega}f(x,s)\,dx\,ds. \] Then \eqref{e2.4} can be rewritten as \begin{equation} \begin{aligned} &w_\tau(x,\tau)-\Delta\Big[-\kappa\Delta{w(x,\tau)}+g\Big(w(x,\tau) +\frac{1}{|\Omega|}\int^\tau_0\int_{\Omega}f(x,s)\,dx\,ds\Big)\Big]\\ &=\pi_0[f(x,\tau)]. \end{aligned}\label{e2.5} \end{equation} Therefore $\frac{1}{|\Omega|}\int_{\Omega}w(x,\tau)dx=m_0$ for some constant $m_0$. Further, putting $v(x,\tau)=w(x,\tau)-m_0$, we can rewrite \eqref{e2.5} as \begin{equation} v_\tau(x,\tau)-\Delta_N(-\kappa\Delta_N{v(x,\tau)}) -\Delta_N\pi_0[g\left(v(x,\tau)+m(\tau)\right)] =\pi_0[f(x,\tau)],\label{e2.6} \end{equation} with $\int_{\Omega} v(x,\tau)dx=0$ for all $\tau>0$, where $ m(\tau)=m_0+\frac{1}{|\Omega|}\int^\tau_0\int_{\Omega}f(x,s)\,dx\,ds$. Now for any function $z\in H_0$, we can take $(-\Delta_N)^{-1}z$ as $\eta$ in $(H3)$. Hence by the arguments in\cite[Proposition 1.1]{5}, for any $z\in{H_0}$, it holds that \begin{equation} \begin{aligned} &\int^{\omega}_0((-\Delta_N)^{-1}v_\tau(\tau),z)_{0}d\tau +\kappa\int^{\omega}_0(-\Delta_N{v(\tau)},z)_0d\tau\\ &+\int^{\omega}_0(\pi_0[g(v(\tau)+m(\tau))],z)_0d\tau\\ &=\int^{\omega}_0((-\Delta_N)^{-1}\pi_0[f(\tau)],z)_0d\tau. \end{aligned}\label{e2.7} \end{equation} From \eqref{e2.3}, \eqref{e2.7} and the definition of $F^{-1}_0$, we obtain an equivalent form of \eqref{e1.2}, that is, \begin{equation} F^{-1}_0v_\tau(\tau)-\kappa\Delta_Nv(\tau)+\pi_0[g((v(\tau)+m(\tau)))] =F^{-1}_0\pi_0[f(\tau)].\label{e2.8} \end{equation} Similarly, \eqref{e1.5} is equivalent to \begin{equation} \begin{gathered} (F^{-1}_0+\varepsilon{I})v'_{\varepsilon} (\tau)-\kappa\Delta_Nv_{\varepsilon}(\tau) +\pi_0[g(v_{\varepsilon}(\tau)+m(\tau))] =F^{-1}_0\pi_0[f(\tau)]\quad \text{in }Q_\omega,\\ {\frac{\partial{v_{\varepsilon}}}{\partial{\nu}}(x,\tau)=0} \quad\text{on }\Sigma_{\omega},\\ v_{\varepsilon}(x,0)=v_{\varepsilon}(x,\omega)\quad\text{in }\Omega, \end{gathered} \label{e2.9} \end{equation} where $\varepsilon\in(0,1)$, $v'_{\varepsilon}(\tau)=\frac{d}{d\tau}v_{\varepsilon}(\tau)$ and $I$ is identity operator in $H_0$. The main result of this article can be stated as follows. \begin{theorem} \label{thm2.1} Assume that {\rm (H1)} holds. Then for any constant $m_0$, \eqref{e1.2}--\eqref{e1.4} admits a solution $u(x,\tau)$ with \[ \frac{1}{|\Omega|}\int_\Omega u(x,\tau)dx =m_0+\frac{1}{|\Omega|}\int^\tau_0\int_{\Omega}f(x,s)\,dx\,ds. \] \end{theorem} To prove this theorem, we use the viscosity approach. Therefore, we need to investigate \eqref{e2.9} first. We have the following result which is proved in next section. \begin{theorem} \label{thm2.2} Under the hypothesis of Theorem \ref{thm2.1}, \eqref{e2.9} admits a solution which has the following properties: \begin{itemize} \item[(H2')] $v_{\varepsilon}\in{L^2(0,\omega;H^2(\Omega)\cap H_0) \cap{L^{\infty}(0,\omega;V_0)}\cap{W^{1,2}(0,\omega;H_0)}}$, $\frac{\partial{v_{\varepsilon}}}{\partial{\nu}}=0$ a.e. on $\Sigma_{\omega}$. \item[(H3')] For any $\eta\in{D(\Delta_N)}$ and $0<\tau<\omega$, \begin{align*} &\int^{\omega}_0((F^{-1}_0+\varepsilon{I})v'_{\varepsilon}(\tau) -\kappa\Delta_Nv_{\varepsilon}(\tau) +\pi_0[g(v_{\varepsilon}(\tau)+m(\tau))],\eta)_0d\tau\\ &=\int^{\omega}_0(F^{-1}_0\pi_0[f(\tau)],\eta)_0d\tau \quad\text{in }H_0. \end{align*} \item[(H4')] $v_{\varepsilon}(0)=v_{\varepsilon}(\omega)\quad\text{in }H_0$. \end{itemize} \end{theorem} \section{Proof of Theorem \ref{thm2.2}} For this purpose we use the Schauder fixed point theorem. Firstly, we study the system \begin{equation} \begin{gathered} (F^{-1}_{0}+\varepsilon{I})v'(\tau)-\kappa\Delta_Nv(\tau) =\widehat{f}\quad\text{in }H_0,\\ v(0)=v(\omega)\quad\text{in }H_0, \end{gathered}\label{e3.1} \end{equation} where $\hat{f}\in{L^{\infty}(0,\omega;H_0)}$. \begin{theorem} \label{thm3.1} Let $\hat{f}\in{L^{\infty}(0,\omega;H_0)}$. Then there exists a unique solution $v(x,t)$ to problem \eqref{e3.1}. \end{theorem} We prove this theorem using Poincar\'e's mapping. Thus, we first introduce the corresponding Cauchy problem \begin{equation} \begin{gathered} (F^{-1}_{0}+\varepsilon{I})v'(\tau)-\kappa\Delta_Nv(\tau)=\widehat{f}, \quad 0<\tau<\omega,\\ v(0)=v_0\in{H_0}. \end{gathered} \label{e3.2} \end{equation} With the help of the results in \cite{8,10}, we can see that \eqref{e3.2} admits one and only one solution $v\in{C([0,\omega];H_0)\cap{L^{\infty}_{loc}(0,\omega;V_0)}}$. Consequently, with the unique solution $v(\tau)$, we can define a single-valued mapping $P:v(0)\in{H_0}\to {v(\omega)\in{H_0}}$. Define $\phi: H_0\to \mathbb{R}\bigcup\{+\infty\}$ by $$ \phi(v)=\begin{cases} \frac{\kappa}{2}|\nabla{v}|^2_2,& \text{if } v\in{V_0},\\ +\infty, &\text{otherwise}. \end{cases} $$ We see that $\phi$ is a proper, lower semicontinuous, and convex functional on $H_0$. Now, we give two lemmas which play an important role in the proof of Theorem \ref{thm3.1}. \begin{lemma} \label{lem3.1} There exists a constant $R>0$ such that $P$ is a self-mapping on the set $$ B_R:=\{v\in{D(\phi);~\phi(v)\leq{R}}\}, $$ that is $P(B_R)\subset{B_R}$. \end{lemma} \begin{proof} Multiplying the equation in \eqref{e3.2} by $v'$, we have \[ |v'|^2_{V^{*}_0}+\varepsilon|v'|^2_2+\frac{\kappa}{2}\frac{d}{dt}|\nabla{v}|^2_2 = (\widehat{f},v')_0 \leq |\widehat{f}|_2|v'|_2 \leq \frac{1}{2\varepsilon}|\widehat{f}|^2_2 +\frac{\varepsilon}{2}|v'|^2_2, \] i.e., \begin{equation} |v'|^2_{V^{*}_0}+\frac{\varepsilon}{2}|v'|^2_2 +\frac{\kappa}{2}\frac{d}{dt}|\nabla{v}|^2_2 \leq\frac{1}{2\varepsilon}|\widehat{f}|^2_2.\label{e3.3} \end{equation} We also multiply the equation by $v$ and obtain \begin{align*} \kappa|\nabla{v}|^2_2 &= (\widehat{f},v)_0-(\varepsilon{v'},v)_0 -\langle{F^{-1}_{0}{v'}},v\rangle_{V_0,V^{*}_0}\\ &\leq |\widehat{f}|_2|v|_2+\varepsilon|{v'}|_2|v|_2+|v'|_{V^{*}_0}|v|_{V^{*}_0}\\ &\leq \frac{2C^2_2}{\kappa}|\widehat{f}|^2_2+\frac{\kappa}{8}|\nabla{v}|^2_2 +\frac{2\varepsilon^2C^2_2}{\kappa}|v'|^2_2 +\frac{\kappa}{8}|\nabla v|^2_2+\frac{C^2_1C^2_2}{\kappa}|v'|^2_{V^{*}_0} +\frac{\kappa}{4}|\nabla v|^2_2\\ &= \frac{2C^2_2}{\kappa}|\widehat{f}|^2_2 +\frac{2\varepsilon^2C^2_2}{\kappa}|v'|^2_2+\frac{C^2_1C^2_2}{\kappa}|v'|^2_{V^{*}_0} +\frac{\kappa}{2}|\nabla{v}|^2_2, \end{align*} which implies \begin{equation} \frac{\kappa}{2}|\nabla{v}|^2_2 \leq\frac{2C^2_2}{\kappa}|\widehat{f}|^2_2 +\frac{2\varepsilon^2C^2_2}{\kappa}|v'|^2_2 +\frac{C^2_1C^2_2}{\kappa}|v'|^2_{V^{*}_0}\,. \label{e3.4} \end{equation} Letting $\mu>0$ and performing $\eqref{e3.3}\times\mu+\eqref{e3.4}$, we obtain \begin{align*} & \mu\frac{d}{dt}(\frac{{\kappa}}{2}|\nabla{v}|^2_2) +\frac{\kappa}{2}|\nabla{v}|^2_2 \\ &\leq(\frac{\mu}{2\varepsilon}+\frac{2C^2_2}{\kappa})|\widehat{f}|^2_2 +(\frac{C^2_1C^2_2}{\kappa}-\mu)|v'|^2_{V^{*}_0} +(\frac{2\varepsilon^2C^2_2}{\kappa}-\frac{\mu\varepsilon}{2})|v'|^2_2. \end{align*} Choosing $\mu=\max\big\{\frac{C^2_1C^2_2}{\kappa},\frac{4C^2_2}{\kappa}\big\}$, from $0<\varepsilon<1$ we have \[ \frac{d}{dt}\phi(v)+\frac{1}{\mu}\phi(v) \leq\big(\frac{1}{2\varepsilon}+\frac{2C^2_2}{\kappa\mu}\big)|\widehat{f}|^2_2. \] It follows from the Gronwall inequality that \[ \phi(v(\omega))\leq{e^{-\frac{\omega}{\mu}}\phi(v(0)) +(1-e^{-\frac{\omega}{\mu}}) \big(\frac{\mu}{2\varepsilon}+\frac{2C^2_2}{\kappa}\big) \|\widehat{f}\|^2_{L^{\infty}(0,\omega;H_0)}}. \] Set $R=(\frac{\mu}{2\varepsilon}+\frac{2C^2_2}{\kappa}) \|\widehat{f}\|^2_{L^{\infty}(0,\omega;H_0)}$. Then $\phi(v(\omega))\leq{R}$ provided that $\phi(v(0))\leq{R}$. The proof is complete. \end{proof} \begin{lemma} \label{lem3.2} The mapping $P$ is continuous in $H_0$. \end{lemma} \begin{proof} Let $v_{0,n}\in{H_0}$ be such that $v_{0,n}\to {v_0}$ in $H_0$. We denote the unique solution of \eqref{e3.2} by $v_n$ and $v$ corresponding to the initial data $v_{0,n}$ and $v_{0}$, respectively. Then we have \begin{equation} F^{-1}_{0}(v'_{n}-v')+\varepsilon(v'_{n}-v')-\kappa\Delta_{N}(v_n-v)=0.\label{e3.5} \end{equation} Multiplying \eqref{e3.5} by $v_n-v$ and using integration by parts, we obtain $$ \frac{1}{2}\frac{d}{dt}|v_n-v|^2_{V^{*}_0} +\frac{\varepsilon}{2}\frac{d}{dt}|v_n-v|^2_2 +\kappa|\nabla(v_n-v)|^2_2=0. $$ It can be easy to see that $$ \frac{1}{2}\frac{d}{dt}|v_n-v|^2_{V^{*}_0} +\frac{\varepsilon}{2}\frac{d}{dt}|v_n-v|^2_2\leq0. $$ Therefore, $$ \frac{1}{2}|v_n(\omega)-v(\omega)|^2_{V^{*}_0} +\frac{\varepsilon}{2}|v_n(\omega)-v(\omega)|^2_2 \leq\frac{1}{2}|v_{n0}-v_0|^2_{V^{*}_0}+\frac{\varepsilon}{2}|v_{n0}-v_0|^2_2, $$ which implies $v_n(w)\to {v(\omega)}$ in $H_0$ as $n\to \infty$. Hence, $P$ is continuous in $H_0$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm3.1}] On the one hand, it follows from the definition of $B_R$ and the convexity of $\phi$ that $B_R$ is compact and convex in $H_0$. On the other hand, Lemmas \ref{lem3.1} and \ref{lem3.2} ensure that $P$ maps $B_R$ to $B_R$ and is continuous in $H_0$. Thus, the Schauder fixed point theorem admits a fixed point $v^{*}_0\in{B_R}$ such that $Pv^{*}_0=v^{*}_0$, which implies that the solution $v(x,t)$ of \eqref{e3.2} with $v_0=v^{*}_0$ is the desired solution of \eqref{e3.1}. Now, we prove that the solution for \eqref{e3.1} is unique. To this end, let $v_1$ and $v_2$ be two solutions of \eqref{e3.1}. Then we have \begin{equation} F^{-1}_{0}(v'_{1}-v'_{2})+\varepsilon(v'_{1}-v'_{2})-\kappa\Delta_{N}(v_1-v_2)=0. \label{e3.6} \end{equation} We multiply \eqref{e3.6} by $v_1-v_2$ and then get that $$ \frac{1}{2}\frac{d}{dt}|v_1-v_2|^2_{V^{*}_0} +\frac{\varepsilon}{2}\frac{d}{dt}|v_1-v_2|^2_2 +\kappa|\nabla(v_1-v_2)|^2_2=0. $$ Integrating the equation over $(0,\omega)$ and by the periodic property, we obtain $$ \int^{\omega}_0|\nabla(v_1(\tau)-v_2(\tau))|^2_2d\tau\leq0, $$ which, together with \eqref{e2.2}, implies that $$ \int^{\omega}_0\int_{\Omega}|v_1-v_2|^2\,dx\,d\tau\leq0. $$ Hence, $v_1=v_2$ and the proof is complete. \end{proof} To apply the Schauder fixed point theorem to \eqref{e2.9}, we need to establish a priori estimates for $v_{\varepsilon}$. \begin{lemma} \label{lem3.3} Let $v_{\varepsilon}$ be a solution of \eqref{e2.9}. Then \begin{gather} \varepsilon\int^{\omega}_0|v'_{\varepsilon}(\tau)|^2_2d\tau +\int^{\omega}_0|v'_{\varepsilon}(\tau)|^2_{V^{*}_0}d\tau \leq\omega C^2_1\|f\|^2_{L^{\infty}(0,\omega;H)},\label{e3.7} \\ \sup_{\tau\in[0,\omega]}|v_{\varepsilon}(\tau)|^2_{V_0} \leq\frac{2}{\kappa}\Big(3A_1+4A_2+\frac{3C^2_1+4\omega}{2}C^2_1 \|f\|^2_{L^{\infty}(0,\omega;H)}\Big), \label{e3.8} \\ \begin{aligned} &\|-\Delta_Nv_{\varepsilon}\|^2_{L^2(0,\omega;H_0)}\\ &\leq \frac{4\omega}{\kappa^2}\Big(\frac{a^2_2}{2a_3}+|a_1|\Big)(3A_1+4A_2)\\ &\quad +\frac{\omega}{\kappa^2} \Big[(3C^2_1+4\omega)C^2_1\Big(\frac{a^2_2}{a_3}+2|a_1|\Big)+C^4_1\Big] \|f\|^2_{L^{\infty}(0,\omega;H)} \end{aligned}\label{e3.9} \\ \|v_{\varepsilon}(\tau)+m(\tau)\|^6_{C([0,\omega];L^6(\Omega))}\leq{A^3_3}, \label{e3.10} \end{gather} where $a_i$ $(i=0,1,2,3)$ are the coefficients of $g(\cdot)$, \begin{gather*} \begin{aligned} A_1:&= |\Omega|\Big[\frac{9^3}{4}a_3 \Big(|m_0|+\frac{\omega}{|\Omega|^{1/2}}\|f\|_{L^{\infty}(0,\omega;H)}\Big)^4 +\Big(\frac{3a^2_1}{2a_3}+\frac{3a^2_2}{a_3}+1\Big) \\ &\quad \times \Big(|m_0|+\frac{\omega}{|\Omega|^{1/2}} \|f\|_{L^{\infty}(0,\omega;H)}\Big)^2 \\ &\quad +\frac{a^4_2}{4}\big(\frac{9}{a_3}\big)^3 +\frac{a_3}{12}+\frac{3a^2_1+3}{a_3}\Big], \end{aligned} \\ A_2:=6|\Omega|\Big[\frac{6a^4_2}{a^3_3}+\frac{a^2_1}{2a_3} +\frac{a^{4/3}_0}{4}\big(\frac{6}{a_3}\big)^{1/3}\Big], \\ \begin{aligned} A_3:&= C_3\Big\{\frac{2}{\kappa}(2\omega C^2_1C^2_2+2C^2_2+1)(3A_1+4A_2) +4m^2_0|\Omega|(\omega C^2_1+1) \\ &\quad +\Big[4\omega^3C^2_1+4\omega^2 \Big(\frac{2C^4_1C^2_2}{\kappa}+1\Big) +2C^2_1\omega\Big(\frac{3C^4_1C^2_2+4C^2_2+2}{\kappa}+2\Big)\\ &\quad +\frac{3C^4_1(2C^2_2+1)}{\kappa}\Big] \|f\|^2_{L^{\infty}(0,\omega;H)}\Big\}. \end{aligned} \end{gather*} \end{lemma} \begin{proof} From \eqref{e2.2}, the definition of $\pi_0$ and $(H1)$, we know that \begin{equation} \|\pi_0[f]\|^2_{L^2(0,\omega;V^{*}_0)} \leq C^2_1\|\pi_0[f]\|^2_{L^2(0,\omega;H_0)} \leq \omega C^2_1\|f\|^2_{L^{\infty}(0,\omega;H)}.\label{e3.11} \end{equation} It follows from the H\"{o}lder inequality and (H1) that for any $\tau\in[0,\omega]$ \begin{equation} \begin{aligned} |m(\tau)|&= \left|m_0+\frac{1}{|\Omega|}\int^{\tau}_0\int_{\Omega}f(x,s)\,dx\,ds\right|\\ &\leq |m_0|+\frac{\omega}{|\Omega|^{1/2}}\|f\|_{L^{\infty}(0,\omega;H)}. \end{aligned}\label{e3.12} \end{equation} We multiply the equation in \eqref{e2.9} by $v'_{\varepsilon}$, and obtain \begin{equation} \begin{aligned} &|v'_{\varepsilon}|^2_{V^{*}_0}+\varepsilon|v'_{\varepsilon}|^2_2 +\frac{\kappa}{2}\frac{d}{dt}|\nabla{v_{\varepsilon}}|^2_2 +\int_{\Omega}v'_{\varepsilon}\pi_0[g(v_{\varepsilon}(\tau)+m(\tau))]dx\\ &= \langle{F^{-1}_0\pi_0[f]},v'_{\varepsilon}\rangle_{V_0,V^{*}_0}\\ &\leq |\pi_0[f]|_{V^{*}_0}|v'_{\varepsilon}|_{V^{*}_0}\\ &\leq \frac{1}{2}|\pi_0[f]|^2_{V^{*}_0}+\frac{1}{2}|v'_{\varepsilon}|^2_{V^{*}_0}. \end{aligned}\label{e3.13} \end{equation} By the definition of $\pi_0$ and $g(\cdot)$, we have \begin{equation} \begin{aligned} &\frac{1}{2}|v'_{\varepsilon}|^2_{V^{*}_0}+\varepsilon|v'_{\varepsilon}|^2_2 +\frac{\kappa}{2}\frac{d}{dt}|\nabla{v_{\varepsilon}}|^2_2 +\frac{d}{dt}\int_{\Omega}\Big[\frac{a_3}{4}(v_{\varepsilon}(\tau)+m(\tau))^4\\ &+\frac{a_2}{3}(v_{\varepsilon}(\tau)+m(\tau))^3 +\frac{a_1}{2}(v_{\varepsilon}(\tau)+m(\tau))^2 +a_0(v_{\varepsilon}(\tau)+m(\tau))\Big]dx\\ &\leq \frac{1}{2}|\pi_0[f]|^2_{V^{*}_0}. \end{aligned}\label{e3.14} \end{equation} From the periodic property, we integrate \eqref{e3.14} over $(0,\omega)$ and then obtain \begin{equation} 2\varepsilon\int^{\omega}_0|v'_{\varepsilon}(\tau)|^2_2d\tau +\int^{\omega}_0|v'_{\varepsilon}(\tau)|^2_{V^{*}_0}d\tau \leq\int^{\omega}_0|\pi_0[f(\tau)]|^2_{V^{*}_0}d\tau.\label{e3.15} \end{equation} Combining this inequality with \eqref{e3.11}, we have $$ \varepsilon\int^{\omega}_0|v'_{\varepsilon}(\tau)|^2_2d\tau +\int^{\omega}_0|v'_{\varepsilon}(\tau)|^2_{V^{*}_0}d\tau \leq\omega C^2_1\|f\|^2_{L^{\infty}(0,\omega;H)}, $$ which is \eqref{e3.7}. Choose any $s,t\in[0,\omega]$ which satisfy $s